
 

  

Abstract— In this paper the plane state of stress in an 

elastic-plastic rotating solid disk of exponentially varying 

thickness and exponentially varying density has been studied. 

Radial and circumferential stresses are analytically derived 

using classical yield condition and strain hardening law. The 

graphs are plotted for angular speed, normalized stresses and 

displacement against radii ratio. It is concluded that high 

angular speed is required for a material to yield for 

exponentially variable thickness and exponentially variable 

density and that becomes plastic as compared to the disk with 

other parameters, which in turns give more significant and 

economic design by an appropriate choice of thickness and 

density parameters. 

 
 

Index Terms— Rotating disc, Variable thickness, Variable 

density, Stresses. 

 

I. INTRODUCTION 

HE  theoretical research on rotating disks has started 

long ago because of its high usage in industry. Rotating 

disks are most widely used as important structural 

component in engineering. The stress analysis of perfectly 

plastic rotating solid disk based on Tresca’s and von-Mises 

yield criterion has been listed in many textbooks (see for 

instance, [1-2]). The stress distribution in an elastic - plastic 

rotating solid disk was first introduced by F. Laszlo [3] in 

1925. Since then a lot of research has been done on the 

rotating disk under various conditions, such as plastic 

collapse speed, variable thickness, variable density, thermal 

effects, etc. Gamer [4-5] in 1983 and 1984 considered the 

linear strain hardening material using Tresca’s yield 

condition under different boundary conditions. Gamer 

studied the stress distributions in rotating solid disks with 

constant thickness and density. Guven [6-7] and Orcan et al. 

[8] extended the problem of Gamer and take into 

consideration the disk with variable thickness for both solid 

and annular disks. A perturbation technique is used by You 

et al. [9] for solving problem on non-linear strain hardening. 

 
Manuscript received September 30, 2015; revised October 23, 2015. 

Manoj Sahni is with Department of Mathematics and Computer Science, 

School of Technology, Pandit Deendayal Petroleum University, 

Gandhinagar, Gujarat-382007, INDIA. (corresponding author phone: 

+9179-2327-5470; fax: +9179-2327-5030; e-mail: 

manoj_sahani117@rediffmail.com). 

Sanjeev Sharma  is  with Department of Mathematics, Jaypee Institute 

of Information Technology, A-10, Sector 62, Noida - 201307, U.P., INDIA. 

(e-mail: sanjeev.sharma@jiit.ac.in). 

 

Angular velocities under plastic limit have been calculated 

for different values of the thickness parameter by Eraslan 

[10]. Eraslan [11] uses elliptical thickness profile for 

calculating stresses in 2005. The displacement, 

circumferential and radial stresses has been obtained in 

terms of Whittaker's functions in the research paper by 

Zenkour [12]. Stress analysis has been done using two 

different analytical methods namely HPM and ADM under 

different density and thickness parameters in 2012 by 

Hojjati et al. [13]. Study of behaviour of an annular disc 

with constant Poisson’s ratio and pressure was done by 

Sahni et al. [14]. Sahni et al. [15] calculated the stresses of a 

functionally graded rotating disc with variable thickness and 

external pressure using stress function. 

Transition theory [16] has been used to derive the elastic-

plastic and transitional stresses for a thin rotating disk of 

exponentially varying thickness with edge load and 

inclusion. In 2013, Sharma et al. [17] have obtained creep 

stresses for an annular disk with variable thickness and 

variable density with edge load at the outer boundary. This 

theory is used to study elastic-plastic behaviour under 

various conditions like temperature applied at the internal 

surface and external pressure in the research papers [18-19] 

using Lebesgue strain measure. 

In order to obtain an optimal structural design, it is 

necessary to estimate the angular velocity and the stress 

distribution of a rotating disk in fully plastic state. The aim 

of this work is to develop a useful analytical solution for 

elastic - plastic rotating solid disk with thickness and density 

varying in an exponential form under the assumption of 

Tresca’s yield condition, its associated flow rule and linear 

strain hardening.  

II. PROBLEM FORMULATION 

 

The problem of plane stress with the variation of density 

and thickness in an exponential form is considered and is 

given as 

ℎ = ℎ������
	
�

,  � = ����
��
	
�

           (1) 

 

Here ℎ� and  �� are thickness and density at � = � and � is 

the radius of the disk. All other parameters in equation (1) 

are geometric parameters. 

The solid disk considered is divided into three regions – 

inner plastic region, outer plastic region and elastic region. 

For each region the yield condition will vary. In figure 1, ��  
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and �� are the interface radii separating the two plastic 

regions (inner and outer) and the outer elastic region, 

respectively. 

 

 
Figure 1: Solid disk showing the interface radii. 

 

The plastic (inner region) deformation of the solid disk is 

governed by the yield condition   

 

��� = ��� = ��� .                                                   (2) 

 

The equations of equilibrium are all satisfied except, 

 
��������

�� − ℎ��� + ℎ����� = 0,             (3) 

 

where h is the thickness function, ρ is the density function 

and ω is the angular velocity. 

 

Substituting equations (1) and (2) in equation (3) and 

integrating, one gets 
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where,    

 

!���� = " #����$
	


�
��
�$

	

%�

� .
                                                                                                     (5) 

The linear strain hardening law for a linear isotropic 

hardening material is 

 

��� = ��&1 + (�)*+,                                                    (6) 

 

where �� is the initial tensile yield stress, η is the linear 

strain hardening parameter and �)* is the equivalent plastic 

strain. Using the equivalence of increment of plastic work, 

    

p p

rr r zz eq
T de T de T deθθ θ + =

                                     (7)

                together with the yield condition, leads to  

( )0
1 1 .p p

eq r zz
e e e T Tθ η= + = −                               (8)  

Considering the increment of plastic work, the elastic and 

plastic strains are added and after the integration, the radial 

displacement is obtained as 
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where  ���  is finite at the axis. The displacement at r = 0 

vanishes and hence the integration constant ,� = 0. 
Substituting ������ = ������ into equation (9) from equation 

(4), the displacement becomes                           
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where, 
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The plastic strain components are obtained by subtracting 

their elastic parts from their total strains as   
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                                                                                      (13) 

Here, the elastic parts of the strains are expressed by stresses 

with the help of Hooke’s law and the plastic parts with the 

help of the hardening law. 

In the outer plastic region ��� ≤ � ≤ ��� the largest stress is 

equal to the yield stress �����, i.e. ��� = ��� .  Considering 

the increment of plastic work gives �)* = ��
.
 together with 

the yield condition one obtains ��
. = −��

.
 and ��

. = 0. Since 

the radial strain is purely elastic and 

/�
. = �1 (⁄ ����� �� − 1⁄ �, the strain-displacement relations 

lead to 

0

2

1 1
rr

Tu
T T

r E W H
θθ ν

 
= − − 

    
and 

( )
1

,rr

du
T T

dr E
θθν= −                                            (14) 

 

where 1 = 2�3
4   is the normalized hardening parameter and 

5� = 6
67�.  From equation (14) the radial stress ����� and 

circumferential stress ����� is calculated as: 
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in which a prime denotes differentiation with respect to ‘r’. 

Substituting equations (15) and (16) in the equation of 

equilibrium, we have 
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 (17) 

 

To solve this differential equation, let us introduce a new 

variable	9 = :�� �⁄ �;  and the transformation u(r) = ry(z). 

Substitution of these in equation (17) gives a differential 

equation in y(z), whose homogeneous part is

( ) ( )
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                                                                        (18) 

The above equation has a solution in terms of confluent 

hypergeometric function given as 
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                                                                           (19) 

where ,<= and ,>= are arbitrary constants. Here            

?� = − @
; + @AB

; , �� = 1 − �@
;  and C�D, E, F� and       

F (α, β, γ) is the confluent hypergeometric function given as 
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                                                                           (20) 

In this confluent hypergeometric function y should not be 

zero or a negative integer. The general solution of equation 

(17) can be written as 
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,u r A P r A Q r R r= + +                          (21)  

where G���� = �
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J
;K and         

L���� = �@C I?� − �� + 1, 2 − ��, : ��
J
;K.                   (22) 

The term N���� in equation (21) is the particular solution of 

equation (17). N���� can be obtained using the method of 

variation of parameters as: 
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and 5O. is the Wronskian given by 
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Here, 
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The radial and circumferential stresses are obtained as 
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The plastic strain components for this region are given as   

��
. = 0 , ��

. = P�QQ
�3

− 1R ��
2
 , ��
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2
 P�QQ
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− 1R.  (29) 

 

In an elastic region��� ≤ � ≤ ��, the stress-displacement 

relations are   
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Substitution of equations (30) in equation (3), we get a 

differential equation as   
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The general solution of this equation is given as 
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and  ?� = − �
; + S

;  , �� = 1 − �
; . 

 
The particular solution N���� is obtained in the form 
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and 5)T is the Wronskian given by  
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The radial and circumferential stresses are 
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III. DETERMINATION OF INTEGRATION 

CONSTANTS AND NUMERICAL DISCUSSIONS 

 

The expressions for stresses and displacement for different 

regions of deformation contain the unknown integration 

constants ,�, ,<, ,>, ,U, ,Vand the interface radii �� and ��. 

For the determination of these seven unknowns there are 

seven nonredundant conditions available: ��� , ��� and u are 

individually continuous at ��and ��, and ��� vanishes at the 

outer boundary of the disk, i.e. at r = b. These conditions are 

written explicitly as 

( ) ( )1 1 ,ip op
u r u r=  ( ) ( )1 1

,ip op

rr rr
T r T r= ( ) ( )1 1

,ip opT r T rθθ θθ=

( ) ( )2 2 ,
op el

u r u r= ( ) ( )2 2 ,op el

rr rrT r T r=  ( ) ( )2 2
,op elT r T rθθ θθ=

( ) 0.el

rrT b =  

When n and m vanishes, the solution describes the 

behaviour of a rotating solid disk with uniform thickness 

and uniform density.  

 

Graphs are drawn for radial and circumferential stresses, 

displacements, plastic strains (radial and circumferential) 

with respect to radii ratio. Calculations are performed for 

four cases:  

1) Disk with uniform thickness and uniform density. 

2) Disk with uniform thickness and exponentially variable 

density.        

3) Disk with exponentially variable thickness and uniform 

density.        

4) Disk with exponentially variable density and 

exponentially variable thickness. 

 
Figure 2: Angular speed against radii ratio. 

 

In figure 2, it can seen that for the disk with uniform 

thickness and uniform density with linear strain hardening 

parameter I = 1/3, angular speed required for initial yielding 

and fully plasticity is 1.48735 and 2.01571 respectively. The 

results obtained by Gamer [5] are Ω� =  1.54919 and    

Ω� = 2.08043 for I = 0.5. The variation between the results 

is because of consideration of different hardening parameter, 

while the trends of graphs are same. For a disk with 

exponentially variable thickness (n = 0.5, k = 4), the angular 

speed is 1.63452 and 2.10301 for initial yielding and fully 

plasticity respectively. For the case with uniform thickness 

and exponentially varying density (m = 0.5,  t = 2), angular 

speed required for initial yielding and fully plasticity are 

1.8153 and 2.44011, which is very high as compared to the 

disk with uniform thickness and uniform density. For a disk 

with exponentially varying thickness and exponentially 

varying density (m = 0.5,  t = 2,  n = 0.5, k = 4), angular 

speed required for initial yielding and fully plasticity is 

1.94985 and 2.53629 which is higher as compared to other 

density and thickness parameters. 

 

Further the stresses, displacement and plastic strains are 

calculated for the partially plastic case with hardening 

parameter I = 1/3 and outer radii as ��X = 0.5. These are 

depicted in figure 3 for (a) uniform thickness-variable 

density, and (b) variable thickness-variable density disk. The 

integration constants in non-dimensional form for uniform 

thickness and variable density are calculated as ,�YYY = Z[
�3

=
1.16683, ,<YYY = Z_

J[`H = 0.0828,  ,>YYY = Za
J[bH = 0.00870242 , 

,UYYY = ,U = 0.593503 , ,VYYY = Zg
JA = 0.0365816 with inner 

radii ��X = 0.22523, separating the inner plastic and outer 
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plastic region and corresponding angular velocity 

Ω=1.96853. Similarly, the integration constants are 

calculated for variable thickness-variable density disk. In 

non-dimensional form these are ,�YYY = 1.18352, ,<YYY =
−0.0258557, ,>YYY = 0.564171, ,UYYY = 0.0414589, ,VYYY =
0.578308 with interface radii ��X = 0.224057and 

corresponding angular velocity is Ω=2.07676. 

 

Stresses, displacements and plastic strains are drawn in 

figure 3 for uniform thickness-variable density disk and 

variable thickness–variable density disk. It is seen from 

figure 3 that radial and circumferential stresses are 

maximum at the internal surface and observed that upto the 

inner plastic region; stresses are same and thereafter-radial 

stress decreases faster radially than that of circumferential 

stress. It has also been observed that a plastic strain vanishes 

at the interface radii. From figure 3, it has been observed 

that circumferential stress is maximum for the disk whose 

thickness is constant and density varies exponentially as   

compared to the disk whose thickness and density varies 

exponentially. 

 

 

                
                                              (a) 

 

              
                                      (b) 

 

Figure 3: Normalized Stresses and displacement for 

partially plastic case with (a) uniform thickness – 

variable density disk (m = 0.5, t = 2) and  

(b) variable thickness - variable density disk  

(n = 0.5, k = 4, m = 0.5, t = 2). 

 

 

The results for the fully plastic case are obtained using 

continuity and boundary conditions as  

( ) ( )11 ruru opip = , ( ) ( )11 rr op

r

ip

r σσ = , ( ) ( )11 rr
opip

θθ σσ = , ( ) 0=b
op

rσ  

 

             
                                      (a) 

               
                                                (b) 

Figure 4: Normalized Stresses and displacement for fully 

plastic case with (a) uniform thickness – variable density 

disk (m = 0.5, t = 2) and (b) variable thickness - variable 

density disk (n = 0.5, k = 4, m = 0.5, t = 2). 

 

In the fully plastic case outer interface radii reaches the 

boundary, i.e. ��X = 1.0.For the disk with uniform thickness 

and variable density, the integration constants in non-

dimensional are ,�YYY = 1.86626, ,<YYY = 0.584531, ,>YYY =
0.11508 with interface radii ��X = 0.421878 and 

corresponding angular velocity is Ω� = 2.44011, while for 

the disk with variable thickness and variable density, the 

integration constants are ,�YYY = 1.89832, ,<YYY = 0.0271469,         

,>YYY = 1.24442 with interface radii ��X= 0.414895 and 

corresponding angular velocity is  Ω� = 2.53629. Stresses, 

displacement and plastic strains are plotted against radii 

ratio in figure 4. It has been observed from figure 4 that 

plastic strains are high at the internal surface and vanishes at 

the interface radii. In addition, circumferential and radial 

stresses are maximum at the internal surface. 

 

Finally the case beyond the fully plastic limit is studied 

using  I = 1/3, m = 0.5, t = 2,  n = 0.5, k = 4. At the angular 

speed Ω�, the disk becomes fully plastic as the interface 

radii ��X  reaches the outer boundary. However this is not the 

collapse speed and the disk can maintain angular velocities 

greater than  Ω�.  
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                                               (a) 

 

                  
                                              (b) 

Figure 5: Normalized Stresses and displacement beyond 

fully plastic state, h > jk  for  H = 1/3, m = 0.5, t = 2,      

n = 0.5, k = 4 for (a) Ω = 3.0 and (b) Ω = 3.5 

 

The integration constants for the angular speed Ω = 3.0 > 

Ω� are ,�YYY = 2.85468, ,<YYY = 0.205793, ,>YYY = 2.08678  
with interface radii  ��X= 0.514423, while for the disk with 

angular speed Ω = 3.5 > Ω�,  the integration constants are 

,�YYY = 4.02113, ,<YYY = 0.479066, ,>YYY = 3.09293, with 

interface radii ��X 	 = 0.571153. The stresses, displacement 

and plastic strains for two angular speeds greater than the 

fully plastic limit are drawn in figure 5. It has been observed 

from figure 5 that with the increase in angular speed beyond 

the fully plastic limit, all parameters shows a significant 

change. From figures 3 and 4, it has also been observed that 

the magnitudes of the plastic strains are sufficiently small 

which justifies the assumption of the small deformation 

theory. 

IV CONCLUSION 

An analytical solution is obtained for elastic-plastic 

deformations of linear strain hardening solid disk of 

exponentially variable thickness and exponentially variable 

density. The results of uniform thickness and uniform 

density are verified with those available in literature. It has 

been observed that for exponentially variable thickness and 

exponentially variable density high angular speed is required 

for a material to yield and then becomes plastic as compared 

to the disk with other parameters, which in turns give more 

significant and economic design by an appropriate choice of 

thickness and density parameters. 
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