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Abstract—Current researches focused on gene function classi-
fication and discovery are with the use of wet laboratory. This
research focused on the identification of outlier yeast genes,
Saccharomyces cerevisiae involved in a eukaryotic cell cycle
using time series normalized gene expression data. A method
for identifying outlier genes using Nonmetric Multidimensional
Scaling (nMDS) with confidence intervals of 95% and confi-
dence ellipse of 95% is used for the computing method for
identifying the goodness of fit per group. This method shows a
good identification of outlier genes based on the identified genes
per cell cycle phases, using criteria identified for visualization
associated with confidence interval. Visualization of the data
set captures the group structure of genes based from the cell
cycle. It shows the characteristics of the events of the genes and
identified outliers are included at the adjacent groups. Based
on this study, 25 outlier genes were identified, 6.51% of the
gene set population.

Index Terms—Gene expression, outlier, Nonmetric Multidi-
mensional Scaling, Saccharomyces cerevisiae.

I. INTRODUCTION

THE development of microarray technology has supplied
a large amount of data to the field of bioinformatics.

This technique is a key technology that facilitates the genome
wide analysis of gene expression levels for gene function
discovery and biomedical applications. However, this huge
amount of data has no meaning without doing significant data
mining and other exploratory techniques. Analysis without
biological significance is futile. Identification of gene func-
tions is carried out by doing specific laboratory techniques
which are often very tedious. Cell cycle is associated with
numerous biological changes, making it an attractive model
for the genome wide regulation of gene activity.

Studies have been made identifying sets of genes that are
periodically expressed at specific phases of cell cycle in yeast
and the cell cycle phase at each time point [1], [2]. The
group of Cho[1] identified the cell cycle phase based on the
size of the buds, the cellular position of the nucleus and
standardization to more than 20 transcripts whose mRNA
fluctuations are used as reference.

Yeast genome have been subjected to a number of
high throughput investigations such as gene expression
analysis[3], [4], [5], [12], computational methods for esti-
mating cell cycle distribution [6], functional analysis [7] and
identification of cell cycle regulated genes by microarray
hybridization [2] among others.
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Genes are the basic hereditary unit of living organisms and
are encoded in the chromosomes of an individual and dictate
the biological processes which are carried out by proteins in
a cell. Protein synthesis is dependent on the gene expression
of an organism and gene expressions are measured using
deoxyribonucleic acid (DNA) microarrays.

The amount of gene expressed dictates how much proteins
are synthesized and therefore responsible for the biochemical
interactions taking place inside the cell and gene expression
analysis results are highly dependent on basic informations
about samples and not all available time series gene ex-
pression data include these information. Identification of
biological functions of genes that can lead to gene and pattern
discovery that will guide to new biomedical applications.
Identification of biological functions in silico will minimize
tedious wet laboratory experiments. Gene function discovery
can lead to development of treatments and drugs for dis-
eases and identify appropriate medical treatment to specific
types of diseases. Gene expression analysis, leads to drug
development, drug response, and therapy development [10].
This research endeavored to develop a method for identifying
outlier genes of yeast cell cycle phases, of Saccharomyces
cerevisiae [11] genes using scientific visualization of gene
expression data.

A. Basic Definition and Notations

1) Cell cycle: The cell cycle [8] refers to the events that
take place in a cell between its inception and subsequent
replication as shown in Figure 1. The cell cycle is composed
of 4 distinct phases: G1 phase, S phase, G2 phase, and M
phase. Interphase is a collection of G1, S, and G2 phases.

The phases of the eukaryotic cell cycle:
a) M phase. The Mitosis (M) phase is relatively brief

and consist of nuclear division, or mitosis, followed by
division of the cytoplasm. Biosynthetic activities are largely
halted during M phase. The 2 resulting daughter cells enter
interphase once the M phase is complete.

b) G1 phase. The Growth 1 (G1) phase is the first phase in
interphase. The G indicates ”gap” or ”growth”. Cells in G1
are 2n and biosynthetic activities resume that were suspended
during the M phase.

c) S phase. DNA Synthesis (S) phase begins when DNA
synthesis starts. At the end of S phase, all chromosomes have
been replicated, providing a pair of sister chromatids.

d) G2 phase. Growth 2 (G2) lasts until the cell enters
mitosis. Normal activities of the cell including metabolism,
growth, and differentiation occur during G2.
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Fig. 1: A eukaryotic cell cycle.

TABLE I: A summary of periodic, biologically classified and
unclassified genes by Cho[1] and Yeung[3].

Phases No. of No. of No. of

Periodic Classified Unclassified

Genes[3] Genes[1] Genes

Early G1 67 30 37

Late G1/G1 135 81 54

S 75 40 35

G2 52 24 28

M 55 30 25

Total 384 205 179

2) Data Set: Cell cycle dependent periodic genes were
found in 416 of the 6218 monitored transcripts by [1]. 384
genes are Reduced Yeast Cell Cycle (RYCC) data set of
[3]. Of the 384 genes identified by [3] to the different cell
cycle phases, 205 were characterized or classified by [1] as
summarized in Table I. The summarized genes were divided
in the 4 cell cycle phases and early G1(resting phase). The
total characterized genes are 205 out of 384, there are 11
genes characterized by Cho et. al. of which has peak in more
than one phase of cell cycle and not included in the data set
of Yeung[3] and 5 genes characterized by Cho and not on
data set of Yeung[3].

The 384 × 17 (genes×sample) data set, and each sample
were taken in a 10 minutes interval starting at time 0 until
160 minutes after, the full and detailed data set are available
in [11]. The table is a summarized number of genes from
the data set of [3] and [11].

II. METHODOLOGY

In this study, the set of classified genes with their cell cycle
phases were used, for the analysis specially in validating
and assessing the quality of our visualizations for the outlier
detection. This study focused on the 384 x 17 normalized
data set of Saccharomyces cerevisiae from [3].

This steps in computing framework for the identification
of outliers genes are:

1) Compute for the Non-Metric Multidimensional Scaling
(nMDS) of the given data set.

Let O be the set of n objects and E be the Euclidean space.
The goal of nMDS is to find a mapping from O to E such
that the dissimilarity between the objects in O are consistent
as much as possible with the distances of the objects in the
Euclidean space.

The distance between two objects in O, say xi and xj
such that 1 ≤ i , j ≤ n is computed to obtain the data set’s
dissimilarity matrix D, let that be defined in the set O x O.
Each object in D is computed using the Euclidean distance.

[D]ij = δ2ij
δ2ij = (xi − xj)

T
(xi − xj)

From the dissimilarity matrix D, define an inner product
matrix B = XTX , where each element in B is

[B]ij = xTi xj

From the known squared distances in D, find the inner
product matrix B, and then from B to the unclassified
coordinates X . Since B is symmetric, positive semi-definite,
with rank p therefore B has p non-zero eigenvalues and n−p
zero eigenvalues. Given the properties of B we can get X
from B using its spectral decomposition [13].

2) Visualize the result of 384 x 2 data matrix using a
scatterplot graph for each cell cycle phase Gp, where G is a
set of genes and p = (1, 2, ..., 5), with genes based on Table I,
periodic genes classified by [3]. Graph using 2D scatterplot
Sp, where Sp = (S1, S2,...,S5).

3) Build a confidence ellipse Ep, where Ep = (E1,
E2,...,E5) with 95% confidence interval[16]. It uses intervals
for both X and Y . The interval is projected horizontally and
vertically respectively. The confidence ellipse is formed by
the following equation

Z̄ ±R x I

where Z̄ is the mean of either X or Y , R is the range of
either X or Y , I is the confidence level 1-α.

These form the minor and major axes of the ellipse.
The ellipse is given a 100(1-α)% confidence to contain

the data points it bound. Set ellipse to 95% confidence
coefficient. Scale the graph to the equal maximum extent and
step increment for the nMDS x and nMDS y coordinates.

4) Identify all genes which are and not bounded by
confidence ellipse based on the criteria per phase. And filter
the set of genes per phase G′

p, without the outliers identified.
Potential outliers are points found near or at the periphery

of a region occupied by a cluster in the 2-dimensional visu-
alization [14], [15]. The potential outliers are classified into
a) absolute potential outliers; b) valid potential outliers; and
c) ambiguous potential outliers through the use of confidence
ellipses.

a) Absolute potential outliers. An absolute potential outlier
is a point lying outside the confidence curve and confidence
ellipse. This point is no longer bounded by the confidence
ellipse and is not represented by fitted curve.

b) Valid potential outliers. A valid potential outlier is a
point lying outside the confidence ellipse but is still within
the confidence curve. This point is no longer bounded by the
confidence ellipse but is still represented by fitted curve.

c) Ambiguous potential outliers. An ambiguous potential
outlier is a point that is bounded by two different confidence
ellipses or two different confidence curve, or a point that
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Fig. 2: nMDS scatterplot Sp of cell cycle phases of RYCC
data set with 95% confidence ellipse per phase Ep and
confidence curve per phase Cf .

is within the confidence ellipse but outside the confidence
band. It is unclear as to which cluster should this point be
identified with.

5) Visualize the result of G′
p based on Table II, using

a scatterplot for each cell cycle phase without identified
outliers S′

p, where S′
p = (S′

1, S′
2,...,S′

5, graph using 2D
scatterplot.

6) Build a confidence ellipse E′
p, where E′

p = (E′
1,

E′
2,...,E′

5) with 95% level of confidence per phase. By setting
the normal ellipse to 95% confidence coefficient, scale the
graph to the equal maximum extent and step increment for
the nMDS x and nMDS y coordinates.

7) Identify the genes that are potential outliers and classify
accroding to absolute potential outliers Gab, valid potential
outliers Gv and ambiguous potential outliers Gam [14].

III. MAJOR FINDINGS

A. Closeness of Co-members

The visualization of the computed nMDS of RYCC as
seen in Figure 2 shows the confidence curve and ellipses
Ep, of 384 periodic genes as enumerated by [3] in his
website [11]. As seen in Figure 2, nMDS visualization
showed a significant clustering of genes with respect to its
5 groups. Genes belonging to a group are projected closer
to one. The reason for this behavior lies on the fact that
nMDS compares each gene to one another by virtue of its
dissimilarity matrix. It is clearly seen that genes belonging
to a group exhibits a common expression level through time
and nMDS visualization captures that property.

The visualization of all phases on the set of parameters
as defined in the methods are shown in Figure 3. In the
computed curve of all phases, on the set of genes in all
phases the confidence curves are polynomial and quintic. The
ellipses per phase shows a temporal pattern based on the
order of cell cycle of a budding yeast.

B. Relationship accross phases

The nMDS visualization captures the sequence of the
phases in the cell cycle, Early G1 is followed by G1, G1
is followed by S, S is followed by G2 and G2 is next to M.

(a) Early G1 (b) G1

(c) Synthesis (d) G2

(e) Mitosis

Fig. 3: nMDS visualization of RYCC data set with
95% confidence intervals of (a) Early G1 (b) G1
(c) Synthesis (d) G2 (e) Mitosis, with the computed
Confidence Ellipse and Band.

(a) G1 and G2 (b) Synthesis and Mitosis

Fig. 4: nMDS scatter plot of (a) both growth phases of
RYCC data set with 95% confidence intervals per phases
and goodness of fit and (b) synthesis and mitosis phases of
RYCC data set with 95% confidence intervals per phases and
goodness of fit.

The transition was captured in the x and y axes of the scatter
plot. As seen in Figure 3, the projection of each group using
nMDS, the position of each group in the euclidean space
with respect to some gene function, genes involved in cell
growth is located in the left hand side of the x axis and
in the lower part of y axis. As observed, the 2 dimensional
projection of genes capture its functional property not just
its temporal behavior. And the visualization of both growth
phases as seen in Figure 4 with outliers and even without
outliers in Figure 6 are linearly separable. The visualization
in synthesis and mitosis for phases Figure 4 and Figure 6 are
also linearly separable in both the confidence ellipses. It is
very clearly seen that all genes in synthesis and mitosis are
linearly separable without the outliers.

C. Outlier Identification

Outlier as we defined earlier are those genes projected
outside the ellipse for each group. The ellipse was based on
a confidence interval having a 95% confidence level. This
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TABLE II: Summary of periodic, biologically classified and
unclassified genes without outliers.

Phases No. of Periodic No. of Outlier No. of Filtered

Genes[3] Genes Genes

Early G1 67 4 63

Late G1/G1 135 12 123

S 75 4 71

G2 52 3 49

M 55 2 53

Total 384 25 359

Fig. 5: nMDS scatter plot of all biological phases of RYCC
data set with 95% confidence intervals per phases and
goodness of fit without outliers E′

p.

(a) G1 and G2 (b) Synthesis and Mitosis

Fig. 6: nMDS scatter plot of (a) both growth phases (G1 and
G2) of RYCC data set with 95% confidence intervals per
phases and goodness of fit without outliers and (b) synthesis
(S) and mitosis (M) phases of RYCC data set with 95%
confidence intervals per phases and goodness of fit without
outliers.

means that we are 95% confident that the genes included
inside the ellipse are members of the group. In Table II is
the summary of the number of genes identified as outliers,
and fitted an ellipse for each group and identify a set of
outliers as shown in Figure 5 and identified as shown in
Table IV. Figure 5 shows a better visualization than Figure
2 for the synthesis and the second growth phase. These
genes are subjected for further analysis for cross validation.
The enumerated outliers per phase are shown in Table III
with its cluster membership as outlier. All outliers identified
have candidate cluster classification for further analysis by
biologist and domain experts.

TABLE III: The table shows the outlier genes identified in
Early G1, G1, Synthesis, G2, M in cell cycle using 95%
confidence interval.

Phase Gene Name Biological Function[1] Membership

Early G1 YLR015w Unclassified 5

Early G1 YML109w Unclassified 2 & 3

Early G1 YGL055w Miscellaneous 2 & 3

Early G1 YNL016c Biosynthesis 2 & 3

G1 YJR043c Unclassified 3

G1 YHR039c Unclassified 3 & 1

G1 YDL124w Unclassified 1

G1 YDL119c Unclassified 1

G1 YDR493w Unclassified 1

G1 YLL021w Mating Pathway 3

G1 YPL127c Transcription factors 3

G1 YDR297w Miscellaneous 3

G1 YNL173c Mating Pathway 1

G1 YHR038w Repair and recombination 1

G1 YOR317w Biosynthesis 1

G1 YOR316c Miscellaneous 1

S YCRX04w Unclassified 4

S YNL073w Biosynthesis 2 & 1

S YER017c Miscellaneous 2 & 1

S YMR198w Chromosome segregation 4

G2 YKL053w unclassified 3

G2 YLR014c Biosynthesis 3 & 1

G2 YOR274w Biosynthesis 5

M YAL040c Cell cycle regulation 1

M YPR167c Micellaneous 4 & 3

TABLE IV: The table shows the number of outlier genes
identified on all phases of cell cycle, 95% confidence ellipse.

Phases No. of No. of
Potential Outlier Unclassified

Early G1, phase 1 4 2

G1, phase 2 12 5

S, phase 3 4 1

G2, phase 4 3 1

M, phase 5 2 0

Total 25 9

IV. CONCLUSION

Based from the defined criteria Section III-C , nMDS
visualization is a good tool for gene expression analysis.
From the methods and tools used in this study, the following
were achieved:

1) The visualization captures the group structure of genes
based from the biologically defined groups.

2) It follows the temporal pattern of gene expression based
from the events of cell cycle.

3) There is a significant transition in x and y axes of the
nMDS space with respect to the cell growth function. Groups
of gene involved in that function are on the leftmost and
lower part of the graph based on per phase.

4) Genes that are identified outliers are identified to be
included in the confidence interval of adjacent groups.
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5) There visualization of 2 growth phases are identified
to be linearly separable. Also the synthesis and mitosis are
shown to be linearly separable.

6) nMDS compare each gene to one another by virtue of
its dissimilarity matrix. It is clearly seen that genes belonging
to a group exhibits a common expression level through time
and nMDS visualization captures that property.

7) The ellipses per phase shows a temporal pattern based
on the order of cell cycle of a budding yeast.

V. RECOMMENDATIONS

All outliers identified have candidate cluster classification
for further analysis by biologist and domain experts.Further
analysis of domain experts on the set of outlier genes
detected, with proteins of unknown functions from [1] and
MIPS database. Consider also visualizing another gene ex-
pression data in time series using nMDS visualization.
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