
 

 
Abstract—Four multi-sensor, solar-powered, electronic 

beehive monitoring devices were assembled and deployed over 
extended   periods at two apiaries in Northern Utah to collect 
28 gigabytes of audio, temperature, and image data in different 
weather conditions. An audio processing algorithm is 
presented for digitizing bee buzzing signals into A440 piano 
note sequences. The note range detected by the algorithm on a 
sample of 3421.52 MB of wav data contained the first four 
octaves, with the lowest note being A0 and the highest note 
being F4#. The detected notes exhibited a cyclic pattern during 
a 24-hour period. A computer vision algorithm is proposed for 
estimating forager traffic levels from images. On a sample of 
378 images from a deployed beehive monitoring device,  the 
algorithm achieved an accuracy of 73 percent.  
 

Index Terms—audio analysis, computer vision; electronic 
beehive monitoring, sustainable computing   

I. INTRODUCTION 

ince 2006 honeybees have been disappearing from many 
amateur and commercial apiaries. This trend has been 

called the colony collapse disorder (CCD) [1]. The high 
rates of colony loss threaten to disrupt the world’s food 
supply. A consensus is emerging among researchers and 
practitioners that electronic beehive monitoring (EBM) can 
help extract critical information on colony behavior and 
phenology without invasive beehive inspections [2]. 
Continuous advances in electronic sensor and solar 
harvesting technologies make it possible to transform 
apiaries into ad hoc sensor networks that collect multi-
sensor data to recognize bee behavior patterns. 

In this paper, algorithms are presented for digitizing 
buzzing signals into A440 piano note sequences and for 
estimating forager traffic levels from images. When viewed 
as time series, note sequences and forager traffic estimates 
can be correlated with other timestamped data for pattern 
recognition. It is probable that other musical instruments can 
be used for obtaining note sequences so long as their notes  

 
 
  Manuscript received December 5, 2015; revised December 24, 2015.  
 Vladimir. A. Kulyukin is with the Department of Computer Science of 
Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax: 
435-791-3265; e-mail: vladimir.kulyukin@usu.edu).  
 Myles Putnam is with the Department of Computer Science of Utah 
State University, Logan, UT USA 84322.  

Sai Kiran Reka is with the Department of Computer Science of Utah 
State University, Logan, UT USA 84322.   

 
have standard frequencies detectable in a numerically stable 
manner.  

The standard modern piano keyboard is called the A440 
88-keyboard, because it has eighty-eight keys where the 
fifth A, called A4, is tuned to a frequency of 440 Hz. The 
standard list of frequencies for an ideally tuned piano is 
used for tuning actual instruments. For example, A4#, the 
50th key on the 88-key keyboard has a frequency of 466.14 
Hz. In this paper, the terms note and key are used 
interchangeably. 

Buzzing signals and images are captured by a solar-
powered, electronic beehive monitoring device (EBMD), 
called BeePi. BeePi is designed for the Langstroth hive [3] 
used by many beekeepers worldwide. Four BeePi EBMDs 
were assembled and deployed at two Northern Utah apiaries 
to collect 28 gigabytes of audio, temperature, and image 
data in different weather conditions. Except for drilling 
narrow holes in inner hive covers for temperature sensor 
and microphone wires, no structural hive modifications are 
required for deployment.  

The remainder of this paper is organized as follows. In 
Section II, related work is reviewed. In Section III, the 
hardware and software details of BeePi are presented and 
collected data are described. In Section IV, an algorithm is 
proposed for digitizing buzzing signals into A440 piano 
note sequences. In Section V, the results are presented of 
applying the digitization algorithm to 3421.52 MB of 
collected wav data. In Section VI, a computer vision 
algorithm is outlined for estimating forager traffic levels 
from images. The algorithm is evaluated on a sample of 378 
images. In Section VII, conclusions are drawn. 

II. RELATED WORK 

Beehives of all sorts and shapes have been monitored by 
humans for centuries. Gates collected hourly temperature 
measurements from a Langstroth beehive in 1914 [4]. In the 
1950’s, Woods placed a microphone in a beehive [5] and 
identified a warbling noise in the range from 225 to 285 Hz. 
Woods subsequently built Apidictor, an audio beehive 
monitoring tool. Bencsik [6] equipped several hives with 
accelerometers and observed increasing amplitudes a few 
days before swarming, with a sharp change at the point of 
swarming. Evans [7] designed Arnia, a beehive monitoring 
system that uses weight, temperature, humidity, and sound. 
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Fig 1. BeePi hardware components in a  Langstroth super. 

 
Fig. 2. Covered BeePi camera. 

 
Fig. 3. Solar panels on beehives. 

The system breaks down hive sounds into flight buzzing, 
fanning, and ventilating and sends SMS or email alerts to 
beekeepers. 

Several EBM projects have focused on swarm detection. 
S. Ferrari et al. [8] assembled an ad hoc system for 
monitoring swarm sounds in beehives. The system consisted 
of a microphone, a temperature sensor, and a humidity 
sensor placed in a beehive and connected to a computer in a 
nearby barn via underground cables. The sounds were 
recorded at a sample rate of 2 kHz and analyzed with 
MATLAB and Cool Edit Pro. The researchers monitored 
three beehives for 270 hours and observed that swarming 
was indicated by an increase of the buzzing frequency at 
about 110 Hz with a peak at 300 Hz when the swarm left the 
hive. Another finding was that a swarming period correlated 
with a rise in temperature from 33° C to 35° C with a 
temperature drop to 32° C at the actual time of swarming.  

Rangel and Seeley [9] investigated signals of honeybee 
swarms. Five custom designed observation hives were 
sealed with glass covers. The captured video and audio data 
were monitored daily by human observers. The researchers 
found that approximately one hour before swarm exodus, 
the production of piping signals gradually increased and 
ultimately peaked at the start of the swarm departure.  

Meikle and Holst [10] placed four beehives on precision 
electronic scales linked to data loggers to record weight for 
over sixteen months. The researchers investigated the effect 
of swarming on daily data and reported that empty beehives 
had detectable daily weight changes due to moisture level 
changes in the wood. 

III. SOLAR-POWERED ELECTRONIC BEEHIVE MONITORING 

A. Hardware 

A fundamental objective of the BeePi design is 
reproducibility: other researchers and practitioners should 
be able to replicate our results at minimum cost and time 
commitments. Each BeePi consists of a raspberry pi 
computer, a miniature camera, a solar panel, a temperature 
sensor, a battery, a hardware clock, and a solar charge 
controller. 

The exact BeePi hardware components are shown in Fig. 
1. We used the Pi Model B+ 512MB RAM models, Pi T-
Cobblers, half-size breadboards, waterproof DS18B20 
digital temperature sensors, and Pi cameras. For solar 
harvesting, we used the Renogy 50 watts 12 Volts 

monocrystalline solar panels, Renogy 10 Amp PWM solar 
charge controllers, Renogy 10ft 10AWG solar adaptor kits, 
and the UPG 12V 12Ah F2 sealed lead acid AGM deep-
cycle rechargeable batteries. All hardware fits in a shallow 
super, except for the solar panel that is placed on top of a 
hive (see Fig. 3) or next to it (see Fig. 4). 

 

Two holes were drilled in the inner hive cover under a 
super with the BeePi hardware for a temperature sensor and 
a microphone. The temperature sensor chord was lowered 
into the second deep super (the first deep super is the lowest 
one) with nine frames of live bees to the left of frame 1. The 
microphone chord was lowered into the second deep super 
to the right of frame 9. More holes can be drilled if the 
placements of the microphone and temperature sensors 
should be changed.  

The camera is placed outside to take static snapshots of 
the beehive’s entrance, as shown in Fig. 2. A small piece of 
hard plastic was placed above the camera to protect it from 
the elements. Fig. 3 displays the solar panels on top of two 
hives equipped with BeePi devices at the Utah State 
University Organic Farm. The solar panels were tied to the 
hive supers with bungee cords.  

B. Software 

In each BeePi, all data collection is done on the raspberry 
pi computer. The collected data is saved on a 25G sdcard 
inserted into the pi. Data collection software is written in 
Python 2.7. When the system starts, three data collection 
threads are spawned. The first thread collects temperature 
readings every 10 minutes and saves them into a text file. 
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Fig. 4. BeePi in an overwintering beehive. 

The second thread collects 30-second wav recordings every 
15 minutes. The third thread saves PNG pictures of the 
beehive’s landing pad every 15 minutes.  

A cronjob monitors the threads and restarts them after 
hardware failures. For example, during a field deployment 
the camera of one of the EBMDs stopped functioning due to 
excessive heat. The cronjob would periodically restart the 
PNG thread until the temperature went down and the camera 
started functioning properly again. 

C. Field Deployment 

Three field deployments of BeePi devices have been 
executed so far. The first deployment was on private 
property in Logan, UT in early fall 2014. A BeePi was 
placed into an empty hive and ran exclusively on solar 
power for two weeks. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The second deployment was in Garland, UT in December 
2014 – January 2015 in subzero temperatures. A BeePi in a 
hive with overwintering bees is shown in Fig. 4. Due to 
strong winter winds typical for Northern Utah, the solar 
panel was placed next to the hive on an empty super and 
tied down to a hive stand with bungee cords to ensure its 
safety. The BeePi successfully operated for nine out of the 
fourteen days of deployment exclusively on solar power. 
Over 3 gigabytes of pictures, wav files, and temperature 
readings were obtained during the nine operational days. 
These field deployments indicate that electronic beehive 
monitoring may be sustained by solar power. 

IV. DIGITIZING BUZZING SIGNALS 

Digitizing buzzing signals into A440 piano note 
sequences is a method of obtaining a symbolic 
representation of signals grounded in time. When viewed as 
a time series, such sequences can be correlated with other 
timestamped data such as estimates of forager bee traffic 
levels or temperatures.  

Bee buzzing audio signals were first processed with the 
Fast Fourier Transform (FFT), as implemented in Octave 
[11], to compute the FFT frequency spectrograms to identify 
the A440 piano key notes. The quality of the computed 
spectrograms was inadequate for reliable note identification 
due to low volumes. 

The second attempt, which also relied on Fourier 
analysis, did not use the FFT. A more direct, although less 

efficient, method outlined in Tolstov’s monograph [12] was 
used. Tolstov’s method relies on periodic functions f(x) with 
a period of 2π that have expansions given in (1). 
Multiplying both sides of (1), separately, by cos(nx) and by 
sin(nx), integrating the products from  -π to π, and 
regrouping, the equations in (2) are obtained for the Fourier 
coefficients in the Fourier series of f(x). The interval of 
integration can be defined not only on [-π, π] but also on [a, 
a+2π] for some real number a, as in (3). 

 

 
(1) 

 

 

(2) 

 

(3) 

 
In many real world audio processing situations, when f(x) 

is represented by a finite audio signal, it is unknown 
whether the series on the right side of (1) converges and 
actually equals the sum of f(x). Therefore, only the 
approximate equality in (4) can be used. Tolstov’s method 
defines constituent harmonics in f(x) by (5). 

 

 
(4) 

 

 (5) 
 
The proposed algorithm for detecting A440 piano notes 

in beehive audio samples is based on Tolstov’s method and 
implemented in Java. An A440 key K is represented as a 
harmonic defined in (5). Since n in (5) is a non-negative 
integer and note frequencies are real numbers, K is defined 
in (6) as a set of harmonics where f is K’s A440 frequency 
in Hz and b is a small positive integer that defines a band of 
integer frequencies centered around K’s real frequency.  For 
example, the A440 frequency of A0 is 27.56 Hz. Thus, a set 
of six integer harmonics, from h25(x) to h30(x), can be 
defined to identify the presence of A0 in a signal, as in (7). 

The presence of a key in a signal is done by thresholding 
the absolute values of the Fourier coefficients or harmonic 
magnitudes. Thus, a key is present in a signal if the set in 
(6) is not empty for a given value of b and a given 
threshold. 

 

(6) 

 
(7) 

 
A Java class in the current implementation of the 

algorithm takes wav files and generates LOGO music files 
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for the LOGO Music Player (LMP) 
(www.terrapinlogo.com). Fig. 5 shows several lines from an 
LMP file generated from a wav file. PLAY is a LOGO 
function. The remainder of each line consists of the 
arguments to this function in square brackets. A single pair 
of brackets indicates a one-note chord; double brackets 
indicate a chord consisting of multiple resulting notes. 

 

 
Fig. 5. LMP instructions with A440 notes detected in wav files. 

 

 
Fig. 6. Musical score of bee buzzing. 

 
 To visualize beehive music, the audio files generated by 
the LMP can be converted into musical scores. Fig. 6 gives 
one such score obtained with ScoreCloud Studio 
(http://scorecloud.com) from an LMP file converted to midi. 

V. AUDIO DATA ANALYSIS 

The audio digitization algorithm described in Section IV 
was applied to the buzzing signals collected by a BeePi 
device at the USU Organic Farm from 22:00 on July 4th, 
2015 to 00:00 on July 7th, 2015. Each signal was saved as a 
30-second wav file. A total of 152 wav files were collected 
in this period, which amounted to a total of 3421.52 MB of 
wav data. The digitization algorithm was applied to these 
data on a PC running Ubuntu 12.04 LTS. 

The A440 piano keys were mapped to integers from 1 to 
88 so that A0 was mapped to 1 and C8 to 88. In Fig. 7, these 
key numbers correspond to the values on the X axes. Each 
24-hour period was split into 6 non-overlapping hour 

intervals: [0, 4], [5, 8], [9, 12], [13, 16], [17, 20], [21, 23]. 
The frequency counts of all notes detected at a frequency of 
44100 Hz were computed for each interval.  The detected 
spectrum contained only the first four octaves with the 
lowest detected note being A0 (1) and the highest F4# (5).  

 

Fig. 7. Timestamped A440 note histograms. 

 
The buzzing frequencies exhibited a cyclic pattern during 

a 24-hour period. From 0:00 to 4:00 (see Fig. 7, top), the 
note range ran from A0 (1) to D1# (7), with the two most 
frequent notes being D1 (6) and C1# (5).  From 5:00 to 
8:00, the note range widened from A0 all the way up to F4#, 
with the two most frequent notes being D1# and E1.  

From 9:00 to 12:00 (see Fig. 7, middle), the note range 
slightly narrowed to run from A0# (2) to C4# (41). The note 
frequency range had two pronounced sub-ranges. The first 
sub-range ran from A0# (2) to A1 (13), with the two most 
frequent notes being D1# (7) and E1 (8). The second sub-
range ran from D2# (19) to D3 (30), with the two most 
frequent notes being F2# (22) and C3# (29). Compared to 
the interval from 0:00 to 4:00 (see Fig. 7, top), the 
frequency counts in the interval from 9:00 to 12:00 had 
significantly higher frequency counts, which may indicate 
that the bees were buzzing more actively. 
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From 13:00 to 16:00, the range narrowed to run from A0 
(1) to F2 (21), with the two most frequent notes being C1 
(4) and C1# (5).  From 17:00 to 20:00, the range ran from 
A0 (1) to A4# (50), with the two most frequent notes being 
C3 (28) and C3# (29). From 21:00 to 23:00 (see Fig. 7, 
bottom), the range narrowed to run from A0 (1) to F3# (34) 
with the two most frequent notes being C1 (4) and C1# (5).  

VI. ESTIMATING FORAGER TRAFFIC FROM IMAGES 

Beekeepers use visual estimates of forager traffic to 
evaluate the health of a bee colony. In electronic beehive 
monitoring, computer vision can be used to estimate the 
amount of forager traffic from captured images. A sample 
image is shown in Fig. 8. The current forager traffic 
estimation algorithm is implemented in Java using the 
OpenCV 2 image processing library (www.opencv.org).  

Since the camera’s position is fixed, there is no need to 
process the entire image. The image processing starts by 
cropping a rectangular region of interest (ROI) where the 
landing pad is likely to be. The ROI is made wider and 
longer than the landing pad, because the camera swings 
slightly up, down and sideways in stronger winds, which 
causes the pad to shift up, down, left, or right. 

 

 
Fig. 8. Image captured from the BeePi camera. 

  
The ROI is brightened when its intensity level is below a 

threshold. Image brightening provides for more accurate bee 
identification in darker images (e.g., third image from the 
top in Fig. 9) captured on rainy or cloudy days. The actual 
landing pad is detected in the ROI with color histograms, 
because all landing pads in the hives, where the BeePi 
devices were deployed, have a distinct green color, as 
shown in Fig. 9. In Fig. 9, the two color images are the 
landing pads cropped from the ROIs. 
 The first bee identification algorithm implemented in 
BeePi is based on a contour detection algorithm in OpenCV 
2. The algorithm takes a binarized image and returned a list 
of contours, each of which is a connected component of 
pixels. The contours with fewer than 30 or more than 50 
pixels are removed. These parameters can be adjusted if 
necessary. The number of found contours is an estimate of 
the number of bees on the pad. In the two color images in 
Fig. 9, the red lines correspond to the contours of detected 
individual bees. 

 The second bee identification algorithm is based on 
binary pixel separation of the cropped landing pad. Each 
pixel is inspected for the presence of the green color. If the 
presence of the green color exceeds a threshold, the pixel is 
labeled as a pad pixel. Otherwise, the pixel is labeled as a 
bee pixel. The second and fourth images in Fig. 9 show the 
white pad pixels and the black bee pixels. An estimate of the 
number of bees on the landing pad is obtained by dividing 
the number of detected bee pixels by 30, which is the 
average number of pixels in an individual bee. 
  

Fig. 9. Bee detection at beehive’s entrance. 

 
TABLE I  

Computer vision vs human evaluation. 
Images Bee Counts Mean STD ACC 

378 
CV HM CV HM CV HM

73.07 1582 2165 4.2 5.7 6.5 6.5 

  
 In the first experiment, to compare the accuracy of the 
two algorithms, 135 images of landing pads with bees on 
them were selected. The number of bees in each image was 
counted by a human observer. The total number of counted 
bees was 1204. Two algorithms were evaluated on all 
images. The contour detection algorithm accurately 
identified 650 bees of 1204 (54%). The background 
separation algorithm found 871 bees out of 1204 (71%). 

In the second experiment, the pixel separation algorithm 
was compared with human evaluation on another sample of 
378 images. The results are tabulated in Table I. The CV 
columns give the statistics for the pixel separation 
algorithm. The HM columns give the statistics of the two 
human evaluators who counted the actual numbers of bees 
in each of the 378 images. The first human evaluator 
processed 200 images. The second human evaluator 
processed the remaining 178 images. The human evaluators 
counted 2156 bees in 378 images. Human evaluation was 
used as the ground truth. 

Of the 2156 bees found by the human evaluators, the 
pixel separation algorithm found 1582 bees in the same 
images. The overall accuracy, given in the ACC column, 
was computed as the ratio of the bees found by the 
algorithm and the bees found by the human evaluators. The 
accuracy came out to be 73%.  

The Mean column in Table I shows the mean numbers of 
bees identified by the algorithm and the human evaluators in 
the images. These numbers indicate that the computer vision 
algorithm, on average, identifies fewer bees than the human 
evaluators in each image. The standard deviation (STD) 
column shows that standard deviations of the computer 
vision algorithm and the human evaluation are the same, 
which indicates that the algorithm is consistent.  

The subsequent analysis revealed two main causes of 
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error for the pixel separation algorithm. The first cause was 
the wrong identification of the landing pad in bright images 
when the algorithm cropped not only the landing pad with 
bees but also chunks of grass. Some of the grass blades 
were erroneously counted as bees. The other cause of error 
was really dark images where the algorithm found smaller 
numbers of bees even after the images were brightened. 
Based on the experiments and observations, the pixel 
separation algorithm is proposed as a candidate method for 
estimating forager traffic levels from images. 

VII. CONCLUSION 

An electronic beehive monitoring device, called BeePi, 
was presented. Four BeePi devices were assembled and 
deployed in beehives with live bees over extended periods 
of time in different weather conditions. The field 
deployments demonstrate that it is feasible to use solar 
power in electronic beehive monitoring. 

The algorithms were presented for digitizing bee buzzing 
signals into A440 piano note sequences and for estimating 
forager traffic levels from images. The algorithm for 
digitizing buzzing signals converts the wav signals into 
timestamped sequences of A440 piano notes. The detected 
note spectrum contained the first four octaves. The buzzing 
frequencies exhibited a cyclic pattern during a 24-hour 
period from the first octave all the way to the fourth octave 
and back. 

Two computer vision algorithms were implemented and 
tested. The first method, based on a contour detection 
algorithm, takes a binarized image and estimates the bee 
counts as the number of detected contours containing 
between 30 and 50 pixels. The second algorithm is based on 
the binary pixel separation of the cropped landing pad into 
pad pixels and bee pixels. An estimate of the number of 
bees on the landing pad is obtained by dividing the number 
of the bee pixels by 30, which is the average number of 
pixels in an individual bee.  

The pixel separation algorithm performed better than the 
contour detection algorithm on a sample of 135 images. The 
pixel separation algorithm was compared to the human 
evaluation on another sample of 378 images with an 
observed accuracy of 73%. Two main causes of error were 
individual grass blades detected as bees in bright images 
and dark images where some bees were not recognized. 
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