

Abstract—Four multi-sensor, solar-powered, electronic

beehive monitoring devices were assembled and deployed over
extended periods at two apiaries in Northern Utah to collect
28 gigabytes of audio, temperature, and image data in different
weather conditions. An audio processing algorithm is
presented for digitizing bee buzzing signals into A440 piano
note sequences. The note range detected by the algorithm on a
sample of 3421.52 MB of wav data contained the first four
octaves, with the lowest note being A0 and the highest note
being F4#. The detected notes exhibited a cyclic pattern during
a 24-hour period. A computer vision algorithm is proposed for
estimating forager traffic levels from images. On a sample of
378 images from a deployed beehive monitoring device, the
algorithm achieved an accuracy of 73 percent.

Index Terms—audio analysis, computer vision; electronic
beehive monitoring, sustainable computing

I. INTRODUCTION

ince 2006 honeybees have been disappearing from many
amateur and commercial apiaries. This trend has been

called the colony collapse disorder (CCD) [1]. The high
rates of colony loss threaten to disrupt the world’s food
supply. A consensus is emerging among researchers and
practitioners that electronic beehive monitoring (EBM) can
help extract critical information on colony behavior and
phenology without invasive beehive inspections [2].
Continuous advances in electronic sensor and solar
harvesting technologies make it possible to transform
apiaries into ad hoc sensor networks that collect multi-
sensor data to recognize bee behavior patterns.

In this paper, algorithms are presented for digitizing
buzzing signals into A440 piano note sequences and for
estimating forager traffic levels from images. When viewed
as time series, note sequences and forager traffic estimates
can be correlated with other timestamped data for pattern
recognition. It is probable that other musical instruments can
be used for obtaining note sequences so long as their notes

 Manuscript received December 5, 2015; revised December 24, 2015.
 Vladimir. A. Kulyukin is with the Department of Computer Science of
Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax:
435-791-3265; e-mail: vladimir.kulyukin@usu.edu).
 Myles Putnam is with the Department of Computer Science of Utah
State University, Logan, UT USA 84322.

Sai Kiran Reka is with the Department of Computer Science of Utah
State University, Logan, UT USA 84322.

have standard frequencies detectable in a numerically stable
manner.

The standard modern piano keyboard is called the A440
88-keyboard, because it has eighty-eight keys where the
fifth A, called A4, is tuned to a frequency of 440 Hz. The
standard list of frequencies for an ideally tuned piano is
used for tuning actual instruments. For example, A4#, the
50th key on the 88-key keyboard has a frequency of 466.14
Hz. In this paper, the terms note and key are used
interchangeably.

Buzzing signals and images are captured by a solar-
powered, electronic beehive monitoring device (EBMD),
called BeePi. BeePi is designed for the Langstroth hive [3]
used by many beekeepers worldwide. Four BeePi EBMDs
were assembled and deployed at two Northern Utah apiaries
to collect 28 gigabytes of audio, temperature, and image
data in different weather conditions. Except for drilling
narrow holes in inner hive covers for temperature sensor
and microphone wires, no structural hive modifications are
required for deployment.

The remainder of this paper is organized as follows. In
Section II, related work is reviewed. In Section III, the
hardware and software details of BeePi are presented and
collected data are described. In Section IV, an algorithm is
proposed for digitizing buzzing signals into A440 piano
note sequences. In Section V, the results are presented of
applying the digitization algorithm to 3421.52 MB of
collected wav data. In Section VI, a computer vision
algorithm is outlined for estimating forager traffic levels
from images. The algorithm is evaluated on a sample of 378
images. In Section VII, conclusions are drawn.

II. RELATED WORK

Beehives of all sorts and shapes have been monitored by
humans for centuries. Gates collected hourly temperature
measurements from a Langstroth beehive in 1914 [4]. In the
1950’s, Woods placed a microphone in a beehive [5] and
identified a warbling noise in the range from 225 to 285 Hz.
Woods subsequently built Apidictor, an audio beehive
monitoring tool. Bencsik [6] equipped several hives with
accelerometers and observed increasing amplitudes a few
days before swarming, with a sharp change at the point of
swarming. Evans [7] designed Arnia, a beehive monitoring
system that uses weight, temperature, humidity, and sound.

Digitizing Buzzing Signals into A440 Piano
Note Sequences and Estimating Forager

Traffic Levels from Images in Solar-Powered,
Electronic Beehive Monitoring

Vladimir A. Kulyukin, Myles Putnam, and Sai Kiran Reka

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig 1. BeePi hardware components in a Langstroth super.

Fig. 2. Covered BeePi camera.

Fig. 3. Solar panels on beehives.

The system breaks down hive sounds into flight buzzing,
fanning, and ventilating and sends SMS or email alerts to
beekeepers.

Several EBM projects have focused on swarm detection.
S. Ferrari et al. [8] assembled an ad hoc system for
monitoring swarm sounds in beehives. The system consisted
of a microphone, a temperature sensor, and a humidity
sensor placed in a beehive and connected to a computer in a
nearby barn via underground cables. The sounds were
recorded at a sample rate of 2 kHz and analyzed with
MATLAB and Cool Edit Pro. The researchers monitored
three beehives for 270 hours and observed that swarming
was indicated by an increase of the buzzing frequency at
about 110 Hz with a peak at 300 Hz when the swarm left the
hive. Another finding was that a swarming period correlated
with a rise in temperature from 33° C to 35° C with a
temperature drop to 32° C at the actual time of swarming.

Rangel and Seeley [9] investigated signals of honeybee
swarms. Five custom designed observation hives were
sealed with glass covers. The captured video and audio data
were monitored daily by human observers. The researchers
found that approximately one hour before swarm exodus,
the production of piping signals gradually increased and
ultimately peaked at the start of the swarm departure.

Meikle and Holst [10] placed four beehives on precision
electronic scales linked to data loggers to record weight for
over sixteen months. The researchers investigated the effect
of swarming on daily data and reported that empty beehives
had detectable daily weight changes due to moisture level
changes in the wood.

III. SOLAR-POWERED ELECTRONIC BEEHIVE MONITORING

A. Hardware

A fundamental objective of the BeePi design is
reproducibility: other researchers and practitioners should
be able to replicate our results at minimum cost and time
commitments. Each BeePi consists of a raspberry pi
computer, a miniature camera, a solar panel, a temperature
sensor, a battery, a hardware clock, and a solar charge
controller.

The exact BeePi hardware components are shown in Fig.
1. We used the Pi Model B+ 512MB RAM models, Pi T-
Cobblers, half-size breadboards, waterproof DS18B20
digital temperature sensors, and Pi cameras. For solar
harvesting, we used the Renogy 50 watts 12 Volts

monocrystalline solar panels, Renogy 10 Amp PWM solar
charge controllers, Renogy 10ft 10AWG solar adaptor kits,
and the UPG 12V 12Ah F2 sealed lead acid AGM deep-
cycle rechargeable batteries. All hardware fits in a shallow
super, except for the solar panel that is placed on top of a
hive (see Fig. 3) or next to it (see Fig. 4).

Two holes were drilled in the inner hive cover under a
super with the BeePi hardware for a temperature sensor and
a microphone. The temperature sensor chord was lowered
into the second deep super (the first deep super is the lowest
one) with nine frames of live bees to the left of frame 1. The
microphone chord was lowered into the second deep super
to the right of frame 9. More holes can be drilled if the
placements of the microphone and temperature sensors
should be changed.

The camera is placed outside to take static snapshots of
the beehive’s entrance, as shown in Fig. 2. A small piece of
hard plastic was placed above the camera to protect it from
the elements. Fig. 3 displays the solar panels on top of two
hives equipped with BeePi devices at the Utah State
University Organic Farm. The solar panels were tied to the
hive supers with bungee cords.

B. Software

In each BeePi, all data collection is done on the raspberry
pi computer. The collected data is saved on a 25G sdcard
inserted into the pi. Data collection software is written in
Python 2.7. When the system starts, three data collection
threads are spawned. The first thread collects temperature
readings every 10 minutes and saves them into a text file.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Fig. 4. BeePi in an overwintering beehive.

The second thread collects 30-second wav recordings every
15 minutes. The third thread saves PNG pictures of the
beehive’s landing pad every 15 minutes.

A cronjob monitors the threads and restarts them after
hardware failures. For example, during a field deployment
the camera of one of the EBMDs stopped functioning due to
excessive heat. The cronjob would periodically restart the
PNG thread until the temperature went down and the camera
started functioning properly again.

C. Field Deployment

Three field deployments of BeePi devices have been
executed so far. The first deployment was on private
property in Logan, UT in early fall 2014. A BeePi was
placed into an empty hive and ran exclusively on solar
power for two weeks.

The second deployment was in Garland, UT in December
2014 – January 2015 in subzero temperatures. A BeePi in a
hive with overwintering bees is shown in Fig. 4. Due to
strong winter winds typical for Northern Utah, the solar
panel was placed next to the hive on an empty super and
tied down to a hive stand with bungee cords to ensure its
safety. The BeePi successfully operated for nine out of the
fourteen days of deployment exclusively on solar power.
Over 3 gigabytes of pictures, wav files, and temperature
readings were obtained during the nine operational days.
These field deployments indicate that electronic beehive
monitoring may be sustained by solar power.

IV. DIGITIZING BUZZING SIGNALS

Digitizing buzzing signals into A440 piano note
sequences is a method of obtaining a symbolic
representation of signals grounded in time. When viewed as
a time series, such sequences can be correlated with other
timestamped data such as estimates of forager bee traffic
levels or temperatures.

Bee buzzing audio signals were first processed with the
Fast Fourier Transform (FFT), as implemented in Octave
[11], to compute the FFT frequency spectrograms to identify
the A440 piano key notes. The quality of the computed
spectrograms was inadequate for reliable note identification
due to low volumes.

The second attempt, which also relied on Fourier
analysis, did not use the FFT. A more direct, although less

efficient, method outlined in Tolstov’s monograph [12] was
used. Tolstov’s method relies on periodic functions f(x) with
a period of 2π that have expansions given in (1).
Multiplying both sides of (1), separately, by cos(nx) and by
sin(nx), integrating the products from -π to π, and
regrouping, the equations in (2) are obtained for the Fourier
coefficients in the Fourier series of f(x). The interval of
integration can be defined not only on [-π, π] but also on [a,
a+2π] for some real number a, as in (3).

(1)

(2)

(3)

In many real world audio processing situations, when f(x)

is represented by a finite audio signal, it is unknown
whether the series on the right side of (1) converges and
actually equals the sum of f(x). Therefore, only the
approximate equality in (4) can be used. Tolstov’s method
defines constituent harmonics in f(x) by (5).

(4)

 (5)

The proposed algorithm for detecting A440 piano notes

in beehive audio samples is based on Tolstov’s method and
implemented in Java. An A440 key K is represented as a
harmonic defined in (5). Since n in (5) is a non-negative
integer and note frequencies are real numbers, K is defined
in (6) as a set of harmonics where f is K’s A440 frequency
in Hz and b is a small positive integer that defines a band of
integer frequencies centered around K’s real frequency. For
example, the A440 frequency of A0 is 27.56 Hz. Thus, a set
of six integer harmonics, from h25(x) to h30(x), can be
defined to identify the presence of A0 in a signal, as in (7).

The presence of a key in a signal is done by thresholding
the absolute values of the Fourier coefficients or harmonic
magnitudes. Thus, a key is present in a signal if the set in
(6) is not empty for a given value of b and a given
threshold.

(6)

(7)

A Java class in the current implementation of the

algorithm takes wav files and generates LOGO music files

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

for the LOGO Music Player (LMP)
(www.terrapinlogo.com). Fig. 5 shows several lines from an
LMP file generated from a wav file. PLAY is a LOGO
function. The remainder of each line consists of the
arguments to this function in square brackets. A single pair
of brackets indicates a one-note chord; double brackets
indicate a chord consisting of multiple resulting notes.

Fig. 5. LMP instructions with A440 notes detected in wav files.

Fig. 6. Musical score of bee buzzing.

 To visualize beehive music, the audio files generated by
the LMP can be converted into musical scores. Fig. 6 gives
one such score obtained with ScoreCloud Studio
(http://scorecloud.com) from an LMP file converted to midi.

V. AUDIO DATA ANALYSIS

The audio digitization algorithm described in Section IV
was applied to the buzzing signals collected by a BeePi
device at the USU Organic Farm from 22:00 on July 4th,
2015 to 00:00 on July 7th, 2015. Each signal was saved as a
30-second wav file. A total of 152 wav files were collected
in this period, which amounted to a total of 3421.52 MB of
wav data. The digitization algorithm was applied to these
data on a PC running Ubuntu 12.04 LTS.

The A440 piano keys were mapped to integers from 1 to
88 so that A0 was mapped to 1 and C8 to 88. In Fig. 7, these
key numbers correspond to the values on the X axes. Each
24-hour period was split into 6 non-overlapping hour

intervals: [0, 4], [5, 8], [9, 12], [13, 16], [17, 20], [21, 23].
The frequency counts of all notes detected at a frequency of
44100 Hz were computed for each interval. The detected
spectrum contained only the first four octaves with the
lowest detected note being A0 (1) and the highest F4# (5).

Fig. 7. Timestamped A440 note histograms.

The buzzing frequencies exhibited a cyclic pattern during

a 24-hour period. From 0:00 to 4:00 (see Fig. 7, top), the
note range ran from A0 (1) to D1# (7), with the two most
frequent notes being D1 (6) and C1# (5). From 5:00 to
8:00, the note range widened from A0 all the way up to F4#,
with the two most frequent notes being D1# and E1.

From 9:00 to 12:00 (see Fig. 7, middle), the note range
slightly narrowed to run from A0# (2) to C4# (41). The note
frequency range had two pronounced sub-ranges. The first
sub-range ran from A0# (2) to A1 (13), with the two most
frequent notes being D1# (7) and E1 (8). The second sub-
range ran from D2# (19) to D3 (30), with the two most
frequent notes being F2# (22) and C3# (29). Compared to
the interval from 0:00 to 4:00 (see Fig. 7, top), the
frequency counts in the interval from 9:00 to 12:00 had
significantly higher frequency counts, which may indicate
that the bees were buzzing more actively.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

From 13:00 to 16:00, the range narrowed to run from A0
(1) to F2 (21), with the two most frequent notes being C1
(4) and C1# (5). From 17:00 to 20:00, the range ran from
A0 (1) to A4# (50), with the two most frequent notes being
C3 (28) and C3# (29). From 21:00 to 23:00 (see Fig. 7,
bottom), the range narrowed to run from A0 (1) to F3# (34)
with the two most frequent notes being C1 (4) and C1# (5).

VI. ESTIMATING FORAGER TRAFFIC FROM IMAGES

Beekeepers use visual estimates of forager traffic to
evaluate the health of a bee colony. In electronic beehive
monitoring, computer vision can be used to estimate the
amount of forager traffic from captured images. A sample
image is shown in Fig. 8. The current forager traffic
estimation algorithm is implemented in Java using the
OpenCV 2 image processing library (www.opencv.org).

Since the camera’s position is fixed, there is no need to
process the entire image. The image processing starts by
cropping a rectangular region of interest (ROI) where the
landing pad is likely to be. The ROI is made wider and
longer than the landing pad, because the camera swings
slightly up, down and sideways in stronger winds, which
causes the pad to shift up, down, left, or right.

Fig. 8. Image captured from the BeePi camera.

The ROI is brightened when its intensity level is below a

threshold. Image brightening provides for more accurate bee
identification in darker images (e.g., third image from the
top in Fig. 9) captured on rainy or cloudy days. The actual
landing pad is detected in the ROI with color histograms,
because all landing pads in the hives, where the BeePi
devices were deployed, have a distinct green color, as
shown in Fig. 9. In Fig. 9, the two color images are the
landing pads cropped from the ROIs.
 The first bee identification algorithm implemented in
BeePi is based on a contour detection algorithm in OpenCV
2. The algorithm takes a binarized image and returned a list
of contours, each of which is a connected component of
pixels. The contours with fewer than 30 or more than 50
pixels are removed. These parameters can be adjusted if
necessary. The number of found contours is an estimate of
the number of bees on the pad. In the two color images in
Fig. 9, the red lines correspond to the contours of detected
individual bees.

 The second bee identification algorithm is based on
binary pixel separation of the cropped landing pad. Each
pixel is inspected for the presence of the green color. If the
presence of the green color exceeds a threshold, the pixel is
labeled as a pad pixel. Otherwise, the pixel is labeled as a
bee pixel. The second and fourth images in Fig. 9 show the
white pad pixels and the black bee pixels. An estimate of the
number of bees on the landing pad is obtained by dividing
the number of detected bee pixels by 30, which is the
average number of pixels in an individual bee.

Fig. 9. Bee detection at beehive’s entrance.

TABLE I

Computer vision vs human evaluation.
Images Bee Counts Mean STD ACC

378
CV HM CV HM CV HM

73.07 1582 2165 4.2 5.7 6.5 6.5

 In the first experiment, to compare the accuracy of the
two algorithms, 135 images of landing pads with bees on
them were selected. The number of bees in each image was
counted by a human observer. The total number of counted
bees was 1204. Two algorithms were evaluated on all
images. The contour detection algorithm accurately
identified 650 bees of 1204 (54%). The background
separation algorithm found 871 bees out of 1204 (71%).

In the second experiment, the pixel separation algorithm
was compared with human evaluation on another sample of
378 images. The results are tabulated in Table I. The CV
columns give the statistics for the pixel separation
algorithm. The HM columns give the statistics of the two
human evaluators who counted the actual numbers of bees
in each of the 378 images. The first human evaluator
processed 200 images. The second human evaluator
processed the remaining 178 images. The human evaluators
counted 2156 bees in 378 images. Human evaluation was
used as the ground truth.

Of the 2156 bees found by the human evaluators, the
pixel separation algorithm found 1582 bees in the same
images. The overall accuracy, given in the ACC column,
was computed as the ratio of the bees found by the
algorithm and the bees found by the human evaluators. The
accuracy came out to be 73%.

The Mean column in Table I shows the mean numbers of
bees identified by the algorithm and the human evaluators in
the images. These numbers indicate that the computer vision
algorithm, on average, identifies fewer bees than the human
evaluators in each image. The standard deviation (STD)
column shows that standard deviations of the computer
vision algorithm and the human evaluation are the same,
which indicates that the algorithm is consistent.

The subsequent analysis revealed two main causes of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

error for the pixel separation algorithm. The first cause was
the wrong identification of the landing pad in bright images
when the algorithm cropped not only the landing pad with
bees but also chunks of grass. Some of the grass blades
were erroneously counted as bees. The other cause of error
was really dark images where the algorithm found smaller
numbers of bees even after the images were brightened.
Based on the experiments and observations, the pixel
separation algorithm is proposed as a candidate method for
estimating forager traffic levels from images.

VII. CONCLUSION

An electronic beehive monitoring device, called BeePi,
was presented. Four BeePi devices were assembled and
deployed in beehives with live bees over extended periods
of time in different weather conditions. The field
deployments demonstrate that it is feasible to use solar
power in electronic beehive monitoring.

The algorithms were presented for digitizing bee buzzing
signals into A440 piano note sequences and for estimating
forager traffic levels from images. The algorithm for
digitizing buzzing signals converts the wav signals into
timestamped sequences of A440 piano notes. The detected
note spectrum contained the first four octaves. The buzzing
frequencies exhibited a cyclic pattern during a 24-hour
period from the first octave all the way to the fourth octave
and back.

Two computer vision algorithms were implemented and
tested. The first method, based on a contour detection
algorithm, takes a binarized image and estimates the bee
counts as the number of detected contours containing
between 30 and 50 pixels. The second algorithm is based on
the binary pixel separation of the cropped landing pad into
pad pixels and bee pixels. An estimate of the number of
bees on the landing pad is obtained by dividing the number
of the bee pixels by 30, which is the average number of
pixels in an individual bee.

The pixel separation algorithm performed better than the
contour detection algorithm on a sample of 135 images. The
pixel separation algorithm was compared to the human
evaluation on another sample of 378 images with an
observed accuracy of 73%. Two main causes of error were
individual grass blades detected as bees in bright images
and dark images where some bees were not recognized.

ACKNOWLEDGMENT

The first author, Vladimir Kulyukin, expresses his
gratitude to Neil Hattes who jumpstarted this project by
donating a raspberry pi computer, a mother board, a
temperature sensor, and a monitor. All data collection
software was originally developed and tested on this
equipment. The second author, Myles Putnam, and the third
author, Sai Kiran Reka, contributed to this project pro bono.
All bee packages, bee hives, and beekeeping equipment
used in this study were personally funded by Kulyukin.

REFERENCES
[1] B. Walsh. "A World without bees," Time, pp. 26-31, August 19, 2013.
[2] M. T. Sanford. "2nd international workshop on hive and bee

monitoring," American Bee Journal, December 2014, pp. 1351-1353.

[3] Rev. L. L. Langstroth. Langstroth on the Hive and the Honey Bee: A
Bee Keeper's Manual. Dodo Press: UK, 2008; orig. published in
1853.

[4] B. N. Gates. "The temperature of the bee colony," United States
Department of Agriculture, Dept. Bull. No. 96, 1914.

[5] M.E.A. McNeil. "Electronic Beehive Monitoring," American Bee
Journal, August 2015, pp. 875 - 879.

[6] M. Bencsik, J. Bencsik, M. Baxter, A. Lucian, J. Romieu, and M.
Millet. "Identification of the honey bee swarming process by
analyzing the time course of hive vibrations," Computers and
Electronics in Agriculture, vol. 76, pp. 44-50, 2011.

[7] W. Blomstedt. "Technology V: Understanding the buzz with arnia."
American Bee Journal, October 2014, pp. 1101 - 1104.

[8] S. Ferrari, M. Silvab, M. Guarinoa, D. Berckmans. "Monitoring of
swarming sounds in bee hives for early detection of the swarming
period," Computers and Electronics in Agriculture. vol. 64, pp. 72 -
77, 2008.

[9] J. Rangel and T D. Seeley. "The signals initiating the mass exodus of
a honeybee swarm from its nest," Animal Behavior, vol. 76, pp. 1943 -
1952, 2008.

[10] W.G. Meikle and N. Holst. "Application of continuous monitoring of
honey bee colonies," Apidologie, vol. 46, pp. 10-22, 2015.

[11] GNU Octave. https://www.gnu.org/software/octave.
[12] G.P. Tolstov. Fourier Series. Dover Publications: New York, 1962.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

