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Abstract—In this paper, we introduce a relaxed ex-
plicit extragradient-like scheme for finding a common
element of the set of solutions of the minimization
problem for a convex and continuously Fréchet dif-
ferentiable functional, the set of solutions of a finite
family of generalized mixed equilibrium problems and
the set of solutions of a finite family of variational
inequalities for inverse strongly monotone mappings
in a real Hilbert space. Under suitable control con-
ditions, we establish the strong convergence of the
proposed scheme to the same common element of the
above three sets, which is also the unique solution of
a variational inequality defined over the intersection
of the above three sets. Our results improve and ex-
tend the corresponding ones given by some authors
recently in this area.
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1 Introduction

Let H be a real Hilbert space with inner product ⟨·, ·⟩
and norm ∥ · ∥, I be the identity mapping on H, C be
a nonempty closed convex subset of H and PC be the
metric (or nearest point) projection of H onto C, that is,
the mapping PC : H → C assigns to each point x ∈ H
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the unique point PCx ∈ C satisfying the property

∥x− PCx∥ = inf
y∈C

∥x− y∥.

Let T : C → C be a self-mapping on C. We denote by
Fix(T ) the set of fixed points of T and by R the set of all
real numbers. A mapping A : H → H is called γ̄-strongly
positive on H if there exists a constant γ̄ > 0 such that

⟨Ax, x⟩ ≥ γ̄∥x∥2, ∀x ∈ H.

A mapping F : C → H is called L-Lipschitz continuous
if there exists a constant L ≥ 0 such that

∥Fx− Fy∥ ≤ L∥x− y∥, ∀x, y ∈ C.

In particular, if L = 1 then F is called a nonexpansive
mapping; if L ∈ [0, 1) then F is called a contraction. A
mapping T : C → C is called k-strictly pseudocontractive
(or a k-strict pseudocontraction) if there exists a constant
k ∈ [0, 1) such that

∥Tx−Ty∥2 ≤ ∥x−y∥2+k∥(I−T )x−(I−T )y∥2, ∀x, y ∈ C.

In particular, if k = 0, then T is a nonexpansive mapping.
The mapping T is pseudocontractive if and only if

⟨Tx− Ty, x− y⟩ ≤ ∥x− y∥2, ∀x, y ∈ C.

T is strongly pseudocontractive if and only if there exists
a constant λ ∈ (0, 1) such that

⟨Tx− Ty, x− y⟩ ≤ λ∥x− y∥2, ∀x, y ∈ C.

Note that the class of strictly pseudocontractive map-
pings includes the class of nonexpansive mappings as a
subclass. That is, T is nonexpansive if and only if T
is 0-strictly pseudocontractive. The mapping T is also
said to be pseudocontractive if k = 1 and T is said to
be strongly pseudocontractive if there exists a positive
constant λ ∈ (0, 1) such that T + (1− λ)I is pseudocon-
tractive. Clearly, the class of strictly pseudocontractive
mappings falls into the one between classes of nonexpan-
sive mappings and pseudocontractive mappings. Also it
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is clear that the class of strongly pseudocontractive map-
pings is independent of the class of strictly pseudocon-
tractive mappings (see [23] ).The class of pseudocontrac-
tive mappings is one of the most important classes of
mappings among nonlinear mappings. Recently, many
authors have been devoting the study of the problem of
finding fixed points of pseudocontractive mappings; see
e.g., [12, 13, 14, 15, 16, 17, 22, 26] and the references
therein.

Let A : C → H be a nonlinear mapping on C. The
variational inequality problem (in short, VIP) associated
with the set C and the mapping A is stated as follows:
find x∗ ∈ C such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ C. (1)

The solution set of VIP (1) is denoted by VI(C,A). The
VIP (1) was first discussed by Lions [25]. There are many
applications of VIP (1) in various fields. In 1976, Kor-
pelevich [24] proposed an iterative algorithm, which is
known as the extragradient method, for solving VIP (1)
in Euclidean space Rn. The literature on the VIP is
vast and Korpelevich’s extragradient method has received
great attention given by many authors, who improved it
in various ways; see e.g., [2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 18,
19, 20, 21, 27]and references therein, to name but a few.

On the other hand, let φ : C → R be a real-valued
function, A : C → H be a nonlinear mapping and
Θ : C × C → R be a bifunction. In 2008, Peng and
Yao [27] introduced the following generalized mixed equi-
librium problem (in short, GMEP) of finding x ∈ C such
that

Θ(x, y) + φ(y)− φ(x) + ⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C. (2)

We denote the set of solutions of GMEP (2) by
GMEP(Θ , φ,A). The GMEP (2) is very general in the
sense that it includes, as special cases, optimization prob-
lems, variational inequalities, minimax problems, Nash
equilibrium problems in noncooperative games and oth-
ers. The GMEP (2) is further considered and studied;
see e.g., [3, 4, 5, 11, 19, 21].

Furthermore, let f : C → R be a convex and continu-
ously Fréchet differentiable functional. Consider the con-
vex minimization problem (in short, CMP) of minimizing
f over the constraint set C

min
x∈C

f(x) (3)

(assuming the existence of minimizers). We denote by
Ξ the set of minimizers of CMP (3). It is well known
that the gradient-projection algorithm (GPA) generates
a sequence {xn} determined by the gradient ∇f and the
metric projection PC :

xn+1 := PC(xn − λ∇f(xn)), ∀n ≥ 0, (4)

or more generally,

xn+1 := PC(xn − λn∇f(xn)), ∀n ≥ 0, (5)

where, in both (4) and (5), the initial guess x0 is taken
from C arbitrarily, the parameters λ or λn are positive
real numbers. The convergence of algorithms (4) and (5)
depends on the behavior of the gradient ∇f . As a matter
of fact, it is known that, if ∇f is α-strongly monotone
and L-Lipschitz continuous, then, for 0 < λ < 2α

L2 , the
sequence {xn} defined by the GPA (4) converges in norm
to the unique solution of CMP (3). More generally, if the
sequence {λn} is chosen to satisfy the property

0 < lim inf
n→∞

λn ≤ lim sup
n→∞

λn <
2α

L2
,

then the sequence {xn} defined by the GPA ((5)) con-
verges in norm to the unique minimizer of CMP (3).
Since the Lipschitz continuity of the gradient ∇f implies
that it is actually 1

L -inverse strongly monotone (ism) [1],
its complement can be an averaged mapping (that is, it
can be expressed as a proper convex combination of the
identity mapping and a nonexpansive mapping). Conse-
quently, the GPA can be rewritten as the composite of a
projection and an averaged mapping, which is again an
averaged mapping. This shows that averaged mappings
play an important role in the GPA. Recently, Xu [28] used
averaged mappings to study the convergence analysis of
the GPA, which is hence an operator-oriented approach.

Very recently, Ceng and Al-Homidan [4] proposed and an-
alyzed an implicit iterative algorithm for finding a com-
mon element of the solution set ∩M

j=1GMEP(Θj , φj , Bj)
of a finite family of GMEPs, the solution set
∩N
i=1VI(C,Ai) of a finite family of variational inequali-

ties and the solution set Ξ of CMP (3).

Motivated and inspired by the above facts, we introduce
a relaxed explicit extragradient-like scheme for finding
a common element of the set of solutions of the CMP
(3) for a convex functional f : C → R with L-Lipschitz
continuous gradient ∇f , the set of solutions of a finite
family of GMEPs and the set of solutions of a finite fam-
ily of variational inequalities for inverse-strongly mono-
tone mappings in a real Hilbert space. Under suitable
control conditions, we establish the strong convergence
of the proposed relaxed extragradient-like scheme to the
same common element of the above three sets, which is
also the unique solution of a variational inequality de-
fined over the intersection of the above three sets. Our
results improve and extend the corresponding ones given
by some authors recently in this area.

2 Main Results

In this section, the general composite explicit scheme for
a nonexpansive mapping T : H → H (see (3.5) in [9])
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and the general composite explicit one for a strict pseu-
docontraction (see (3.3) in [23]) are extended to develop
the multistep relaxed explicit extragradient-like one for
finding a common element of the set of solutions of the
CMP (3) for a convex functional f : C → R with L-
Lipschitz continuous gradient ∇f , the set of solutions of
a finite family of GMEPs and the set of solutions of a fi-
nite family of variational inequalities for inverse-strongly
monotone mappings in a real Hilbert space.

To see this, we first recall the following definition:

Definition 1 A mapping F : C → H is said to be

(i) monotone if

⟨Fx− Fy, x− y⟩ ≥ 0, ∀x, y ∈ C;

(ii) η-strongly monotone if there exists a constant η > 0
such that

⟨Fx− Fy, x− y⟩ ≥ η∥x− y∥2, ∀x, y ∈ C;

(iii) α-inverse-strongly monotone if there exists a con-
stant α > 0 such that

⟨Fx− Fy, x− y⟩ ≥ α∥Fx− Fy∥2, ∀x, y ∈ C.

Let M,N be two integers. Throughout the remainder of
this section, we always assume the following:

• F : C → H is a κ-Lipschitzian and η-strongly mono-
tone operator with positive constants κ, η > 0;

• and f : C → R is a convex functional with L-
Lipschitz continuous gradient ∇f ;

• For each i = 1, ..., N , Ai : C → H is ηi-inverse
strongly monotone, and for each j = 1, ...,M , Bj :
C → H is µj-inverse strongly monotone;

• A is a γ̄-strongly positive bounded linear operator on
H with γ̄ ∈ (1, 2) and V : C → H is an l-Lipschitzian
mapping with l ≥ 0;

• For each j = 1, ...,M , Θj : C×C → R is a bifunction
satisfying the following conditions:

(A1) Θj(x, x) = 0 for all x ∈ C;

(A2) Θj is monotone, i.e., Θj(x, y) + Θj(y, x) ≤ 0
for any x, y ∈ C;

(A3) Θj is upper-hemicontinuous, i.e., for each
x, y, z ∈ C,

lim sup
t→0+

Θj(tz + (1− t)x, y) ≤ Θj(x, y);

(A4) Θj(x, ·) is convex and lower semicontinuous
for each x ∈ C,

and φj : C → R ∪ {+∞} is a proper lower semi-
continuous and convex function with the following
restrictions:

(B1) for each x ∈ H and r > 0, there exists a
bounded subset Dx ⊂ C and yx ∈ C such that
for any z ∈ C \Dx,

Θj(z, yx)+φj(yx)−φj(z)+
1

r
⟨yx−z, z−x⟩ < 0;

(B2) C is a bounded set;

• µ and γ are real numbers such that 0 < µ < 2η
κ2 and

0 ≤ γl < τ with τ = 1−
√
1− µ(2η − µκ2);

• PC(I − λn∇f) = snI + (1− sn)Tn where Tn is non-
expansive, sn = 2−λnL

4 ∈ (0, 1
2 ) and {λn} ⊂ (0, 2

L )
with limn→∞ λn = 2

L ;

• For n = 0, 1, · · · , ΛN
n : C → C is a mapping defined

by ΛN
n (x) = PC(I − λN,nAN ) · · ·PC(I − λ1,nA1)(x)

for all x ∈ C, where the sequence {λi,n}∞n=0 is con-
tained in [ai, bi] ⊂ (0, 2ηi) and limn→∞ λi,n = λi, for
each i = 1, ..., N ;

• For n = 0, 1, · · · , ∆M
n : C → C is a mapping defined

by ∆M
n (x) = T

(ΘM ,φM )
rM,n (I−rM,nBM ) · · ·T (Θ1,φ1)

r1,n (I−
r1,nB1)(x) for all x ∈ C, where the sequence
{rj,n}∞n=0 is contained in [cj , dj ] ⊂ (0, 2µj) and
limn→∞ rj,n = rj , for each j = 1, ...,M , and the

mapping T
(Θ,φ)
r : H → C is defined as follows:

T (Θ,φ)
r x := {y ∈ C : Θ(y, z) + φ(z)− φ(y)

+
1

r
⟨y − x, z − y⟩ ≥ 0,∀z ∈ C}.

• {αn} ⊂ [0, 1] and {sn} ⊂ (0,min{ 1
2 , ∥A∥−1})

We note that, since {λi,n} ⊂ [ai, bi] ⊂ (0, 2ηi), it is not
difficult to see that ΛN

n : C → C is a nonexpansive map-
ping for all n ≥ 0. On the other hand, since {rj,n} ⊂
[cj , dj ] ⊂ (0, 2µj), we also have that ∆M

n : C → C is a
nonexpansive mapping for all n ≥ 0.

For arbitrarily given x0 ∈ C, we propose a multistep re-
laxed explicit extragradient-like scheme, which generates
a sequence {xn} in an explicit way:


un = ΛN

n (xn)
vn = ∆M

n (un)
yn = αnγV (xn) + (I − αnµF )Tn(vn),
xn+1 = PC [(I − snA)Tn(vn) + sn yn], ∀n ≥ 0,

(6)
where {αn} and {sn} satisfy the following conditions:

(C1) {αn} ⊂ [0, 1], {sn} ⊂ (0, 1
2 ) and αn → 0, sn → 0

as n → ∞;
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(C2)
∑∞

n=0 sn = ∞.

Then we can establish the strong convergence of {xn} as
n → ∞ to the point x̃ ∈ Ω := ∩M

j=1GMEP(Θj , φj , Bj) ∩
∩N
i=1VI(C,Ai) ∩ Ξ , which is also the unique solution to

the VIP

⟨(A− I)x̃, p− x̃⟩ ≥ 0, ∀p ∈ Ω . (7)

Theorem 2 Assume that the set

Ω := ∩M
j=1GMEP(Θj , φj , Bj) ∩ ∩N

i=1VI(C,Ai) ∩ Ξ

is nonempty. Let {xn} be the sequence generated by the
explicit scheme (6). If {xn} is weakly asymptotically reg-
ular (i.e., the sequence {xn+1 − xn} converges weakly to
0), then {xn} converges strongly to a point x̃ ∈ Ω, which
is the unique solution of the VIP (7).

3 Concluding Remarks

We introduced a multistep relaxed explicit extragradient-
like scheme for finding a common element of the set of
solutions of CMP (3), the set of solutions of finitely many
GMEPs and the set of solutions of finitely many VIPs
by virtue of Korpelevich’s extragradient method [24], the
general composite explicit schemes for a nonexpansive
mapping T : H → H (see [9]) and the general composite
explicit one for a strict pseudocontraction T : H → H
(see [23]). Our Theorem 2 improve and extend results in
[9, 23] in the following aspects.

• The problem of finding a common solution x̃ ∈
∩M
j=1GMEP(Θj , φj , Bj) ∩ ∩N

i=1VI(C,Ai) ∩ Ξ in our
Theorem 2 is more general and more flexible than
the one of finding a fixed point of a nonexpan-
sive mapping T : H → H in [9], and the one
of finding a fixed point of a strictly pseudocon-
tractive mapping T : H → H in [23]. It
is worth pointing out that the problem of find-
ing x̃ ∈ ∩M

j=1GMEP(Θj , φj , Bj) ∩ ∩N
i=1VI(C,Ai) ∩

Ξ includes as a special case the one of finding
x̃ ∈ ∩M

j=1GMEP(Θj , φj , Bj) ∩ ∩N
i=1Fix(Ti) ∩ Ξ for

finitely many strict pseudocontractions Ti : C →
C, i = 1, ..., N and that the one of finding x̃ ∈
∩M
j=1GMEP(Θj , φj , Bj)∩∩N

i=1Fix(Ti)∩Ξ for finitely
many strict pseudocontractions Ti : C → C, i =
1, ..., N generalizes the fixed point problems in [9, 23]
from the domain H of the nonexpansive or strictly
pseudocontractive mapping to the domain C and
from one nonexpansive or strictly pseudocontractive
mapping to finitely many strictly pseudocontractive
mappings, and extends the fixed point problems in
[9, 23] to the setting of CMP (3) and finitely many
GMEPs.
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