
 

  
Abstract—In this paper, approximation of the average run 

length (ARL) for long memory process by numerical integral 
equation (NIE) method on CUSUM control chart is presented. 
The Gauss-Legendre quadrature rule was used to approximate 
the NIE. In addition, we compared the efficiency of the ARL 
between NIE and explicit formulas for autoregressive 
fractionally integrated moving average. The ARFIMA(p,d,q) 
model used exponential distribution of white noise. The results 
shown that NIE method alternative to explicit formulas 
because ARL values by using NIE and explicit formulas in 
good agreement. 
 

Index Terms—Cumulative Sum (CUSUM) Control Chart, 
Autoregressive fractionally integrated moving average 
(ARFIMA), numerical integration equation (NIE), explicit 
formulas, average run length (ARL). 
 

I. INTRODUCTION 
HE CUSUM control chart is based on the charting of 
cumulative sum of previous observations which allows 

us to use all the information about the process to make more 
accurate decisions. This control chart alternatively is also an 
effective method for quick shift identifications to detect 
small changes in the process control.  CUSUM control chart 
was first proposed by Page [1] and has been studied by 
many researchers; in particular, see [2]-[8]. 

Average Run Length (ARL) is the expected number of 
observation taken from an in-control process until the control 
chart falsely signals out-of-control. ARL, as a common 
characteristic, is used to compare the performance of control 
charts. When ARL is large enough to keep the level of false 
alarms at an acceptable level, ARL is defined as acceptable. 

The methods to evaluate ARL including Monte Carlo 
simulations (MC), Markov Chain approach (MCA) and 
numerical integral equation approach (NIE), have been 
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discussed in literatures. Roberts [9] was the first person who 
introduced the ARL for EWMA control chart by using a 
simulation to estimate the ARL. This model was 
numerically evaluated by Robinson and Ho [10] who used 
Edgeworth expansion for the probability density function 
(pdf) and cumulative distribution function (cdf) of the 
process. The NIE was used by Crowder [11] to find the 
ARL for Gaussian distribution. Lucas and Saccucci [12] 
evaluated the ARL by using a finite-state MCA 
approximation. Recently, Sukparungsee and Novikov [13] 
used the Martigale approach to derive approximate 
analytical formulas of ARL and Average Delay (AD) in the 
case of Gaussian distribution and some Non-Gaussian 
distribution. Later, Areepong and Novikov [14] derived the 
explicit formulas of ARL and AD for EWMA control chart 
with Exponential distribution. The explicit formulas of ARL 
was recently presented by Mititelu et al. [15] who used 
Fredholm Integral Equation for one-sided EWMA control 
chart with Laplace distribution and CUSUM control chart 
with Hyperexponential distribution. 

The model of autoregressive fractionally integrated 
moving average (ARFIMA) processes have fractional 
differencing parameter (d) which are used to model a long-
memory. These processes were introduced by Granger and 
Joyeux [16] and Hosking [17], a detailed description of long 
memory processes can be found in; e.g. [18]-[20]. The long-
memory process is involved in a number of applications 
including finance and economics, environmental sciences 
and engineering. Control chart was selected to combine the 
long-memory process with time series. The control chart is 
necessary as it is a number of time series following 
ARFIMA models. Caballero et al. [21] performed a number 
of tests on the analysis of daily time series of mid-latitude 
near-surface air temperature by plotting long-range 
dependent processes. Pan and Chen [22] studied control 
chart for autocorrelated data using ARFIMA model to 
monitor the long memory air quality data in order to 
compare with ARIMA model. As a result, the residual 
control charts using ARFIMA models are more appropriate 
than those using ARIMA models. The exponential white 
noise was coordinate with time series. Jacob and Lewis [23] 
analyzed autoregressive moving average process order (1,1) 
denoted by ARMA(1,1) when observations are 
exponentially distributed with exponential white noise. The 
exponential white noise was also used to analyze the 
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autoregressive model as proposed by Mohamed and Hocine 
[24].  

A number of studies using the explicit formulas or 
numerical integral equation method of ARL on control chart 
have been conducted. ARL was estimated using an integral 
equation technique and MCA to evaluate EWMA and 
CUSUM control charts in case the first order AR(1) process 
had additional random error. Suriyakat et al. [25] used an 
integral equation technique to solve the ARL for EWMA 
control chart for AR(1) process with exponential white noise. 
Busaba et al. [26] analyzed the explicit formulas of ARL for 
CUSUM control chart in case of, a stationary first order 
AR(1) process with exponential white noise. The numerical 
integral equations of ARL and solution to the numerically 
using the Gauss-Legendre numerical integration equations 
was derived by Petcharat et al. [27] when observations are 
first order of moving average process, MA(1), with 
exponential white noise. Recently, Phanyaem et al [28] 
presented the numerical integration equation of ARL for 
CUSUM control chart with the p order autoregressive and 
the q order moving average, ARMA(p,q) process with 
exponential distribution white noise. 

In this paper, we approximated ARL0 and ARL1 using the 
numerical integral equation (NIE) method with Gauss-
Legendre quadrature rule on CUSUM control chart for long 
memory process with ARFIMA model. In section II, the 
characteristic of ARFIMA model with exponential 
distribution white noise is derived and proposed in the 
general form of ARFIMA model. Section III describes the 
characteristics of ARL for long memory process on 
CUSUM chart. The NIE for ARL will be described in 
section IV. The comparisons of ARL between NIE and 
explicit formulas were presented in section V. 

II. ARFIMA MODEL WITH EXPONENTIALWHITE NOISE 
The model of an autoregressive fractionally integrated 

moving average process of a time series denoted by 
ARFIMA(p,d,q), with the p order autoregressive, the d order 
fractional difference and the q order moving average 
processes, are represented in the operator notation form. [16] 
and [17] 

 
( )(1 ) ( )d

t tB B X Bµ ξΦ − = + Θ ,  ~ ( ).t Expξ α  (1) 
 

where 2
1 2(B) (1 ... )p

pB B Bφ φ φΦ = − − − −  and 
2

1 2(B) ( ... )q
qB B Bθ θ θΘ = − − −  are autoregressive and 

moving-average operators, respectively; B  is the backward 
shift operator i.e., ( )p

t t pB X X −= and µ  is a constant. 

The term (1 )dB−  is generalized this expression to 
fractional differences defined by the binomial 
expansion.[17] 

 
2

0

1(1 ) ( ) 1 (1 ) ...
2!

∞
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k
B B dB d d B  (2) 

 
If ( 0.5,0.5)d ∈ − , then tX  is a stationary, invertible 

process. The ARFIMA(p,d,q) process characteristic of long 
memory when the parameter (0,0.5)d ∈ , intermediate 

memory when ( 0.5,0)d ∈ −  and short memory when 0d =  
corresponding to a standard ARMA process.  

Then tX  is so-called the general form of the 
ARFIMA(p,d,q) process with exponential distribution white 
noise which is used in CUSUM control charts. 
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where tξ  is a white noise process assumed with exponential 
distribution, Assume the initial value of ARFIMA(p,d,q) 
process 1 2, ,..,t t t qξ ξ ξ− − −  and 1 1,..., , ,...− − − −t t p t pX X X  = 1, 

iφ  is an autoregressive coefficient , 1, 2,...,i p= ; 1iφ <

and  
iθ  is moving average coefficient 1, 2,...,i q= ; 1iθ < ,  

 

III. AVERAGE RUNG LENGTH OF ARFIMA MODEL WITH 
EXPONENTIAL WHITE NOISE ON CUSUM CONTROL 
CHART 

The CUSUM chart was first introduced by Page [1] to 
detect a small shifting in the mean of a process and widely 
implemented in statistical process control. 

The recursive equation of CUSUM control chart based on 
ARFIMA(p,d,q) process and defined as: 

 
1 0max(0, ), 1, 2,... , .−= + − = =t t tY Y X a Y ut  (4) 

 
where tY  is the CUSUM value of a statistic,  tX  is a 

sequence of ARFIMA(p,d,q) process, Y0 is an initial value,  
a is a reference value of CUSUM chart. 

The corresponding stopping time ( bτ ) for the CUSUM 
chart is described by equation (4) is defined as: 

 
{ }inf 0; , .= > > >b tt Y b b uτ  (5) 

 
where b is a constant parameter known as the upper 

control Limit (UCL). 
The ARL of ARFIMA(p,d,q) process on upper-sided 

CUSUM chart denoted by ( )C u  can be written in the form  
 

(( .) )∞= bC Eu τ  (6) 
 

where E∞  be the expectation corresponding to an initial 
value u 

 

IV. NUMERICAL INTEGRAL EQUATION (NIE) METHOD OF 
ARL ON CUSUM CONTROL CHART 

The ARL of ARFIMA(p,d,q) process by using the 
Fledhom integral equation of second kind [15].  
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This section presents the numerical integral equation 
(NIE) method to compute the solutions equation (6) for 
ARL of ARFIMA(p,d,q) process on CUSUM chart. Let cP  
and cE  are the probability measurement and the expectation, 
respectively, which correspond to an initial value 0 .Y u=  

The solution of integral equations is as follows: 
 

      1 1 1( ) 1 E [ {0 } ( )] P { 0} (0).Y YC Cu I Y Cb Y Y= + < < + =  (7) 
 

Therefore, the integral equation of ARFIMA(p,d,q) 
process can be written in the form 
 

( ) ( )( )

0

( ) 1 (1 ) (0).tt

b
a u Xu a X yC u e C y e dy e Cαα αα − − −− + −= + + −∫  (8) 

 
The integral equation (8) can be rewritten as follow 

 

0
= 1 (0) ( ) ( ) (( ) )+ − − + + − −∫

b
t tC F a u X C y f y a u XC u dy (9) 

where ( ) 1 uF u e λ−= − and ( )( ) udF uf u e
du

λλ −= =
 

 
According to the elementary quadrature rule, the integral 

0

( )
b

f y dy∫ can be approximated from a sum of areas of 

rectangles where the integral ( f ) value is chosen by base 

/b m  with heights at the midpoints of intervals of length 
/b m  beginning at zero. Then, with the division points 

10 ...≤ ≤ ≤ ≤ma a b  and weights / 0= ≥jw b m on the 

interval [0, ]b ,we obtain 
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with 1 = ;  = 1,2,..., ,
2

 − 
 

j
ba j j m
m

  

where ( )W y  is a  weight function., aj is a set of point and 
wj is a weight define different quadrature rules. 

Let ( )C u denotes the NIE of ( )C u  then the integral 
equation in equation (8) can be approximated by 
 

      

1

1
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The above equation is a system of m linear equations in 
the m unknowns 1 2( ), ( ),..., ( )mC a C a C a   , which can be  
rearranged as 
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It can be written for the matrix form as 
 

1 1 1× × × ×= +m m m m mC 1 R C  (12) 
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and (1,1, ,1)mI diag=  is the unit matrix order .m  

Therefore, 1 1 1× × × ×= +m m m m mC 1 R C , or equivalently 

1 1( )× × ×− =m m m m m1 R C 1 . If it exists 1(1 )−
×− m mR , then the 

solution of matrix equation in equation (12) is as follow 
 

1
1 1( )−

× × ×= −m m m mC 1 R 1  (13) 
 

Solving set of equations for the approximate values of 

1 2( ), ( ),..., ( )mC a C a C a   , the NIE for function ( )C u  is 
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V. COMPARISON OF ANALYTICAL RESULTS WITH 
NUMERICAL INTEGRAL EQUATION (NIE) METHOD 

This section compares the NIE and explicit formulas 
values for ARL0 and ARL1 on CUSUM control chart. The 
ARL obtained from the NIE and explicit formulas denoted 
by ( )C u  and ( )C u , respectively. ( )C u  and ( )C u  are used 
for ARL from two methods which define the percentage of 
absolute different as:  
 

| ( ) ( ) |(%) 100%
( )
−

= ×




C u C uDiff
C u

 (15) 
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The comparison of performance between the NIE and 
explicit formulas of ARL is shown in table I. Process is in-
control which was a fixed ARL0 = 370. The results show that 
ARL0 of NIE close to explicit formulas and approach to 
370. The percentage of absolute different of NIE and the 
explicit formula was less than 0.2%. 

From table I and II, the comparison of performance 
between the NIE and explicit formulas of ARL are shown, 
which found fixed ARL0 = 370. The control chart was given 
a shift size (δ ) whereδ = 0.01, 0.03, 0.10, 0.30 and 0.50. 
For NIE we used m = 800 nods and fixed parameters  
a = 3, 3.5, φ1 = 0.10, - 0.10 and θ1 = 0.10 and θ2 = 0.20 for 
Long memory process with ARFIMA(1, 0.3, 2). The results 
were in good agreement with the numerical approximation 
with percentage of absolute difference less than 0.2%. 

VI. CONCLUSION 
In conclusion, from the above results, one can see that the 

numerical integral equation (NIE) method of 
ARFIMA(p,d,q) process with exponential white noise on 
CUSUM control chart can be successfully applied in real 
applications for different processes of data, for example in 
economics, agriculture. 
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TABLE I 
Comparison of ARL0 values for ARFIMA(1, 0.3, 2) process using NIE 
against explicit formulas when given u  = 1, θ1 = 0.10 and θ2 = 0.20 for 
ARL0 = 370. 

φ1 a b NIE Explicit 
Formulas 

Diff (%) 

0.10 3 3.29192 369.2882 370.0002 0.1928 
 3.5 2.705049 369.3982 370.0004 0.1630 

-0.10 3 3.159773 369.3113 370.0003 0.1866 
 3.5 2.5868 369.4221 370.0003 0.1565 
 
 
 

TABLE II 
Comparison of ARL1 values for ARFIMA(1, 0.3, 2) process using NIE 
against explicit formulas when given u  = 1, φ1 = 0.10, θ1 = 0.10,  
θ2 = 0.20 for ARL0 = 370. 

a b δ NIE Explicit Diff (%) 
3 3.29192 0.01 346.8406 347.5009 0.1904 
  0.03 307.0583 307.6282 0.1856 
  0.10 207.4936 207.8471 0.1704 
  0.30 85.3814 85.4672 0.1005 
  050 44.6340 44.6830 0.1098 

3.5 2.705049 0.01 347.6116 348.1718 0.1612 
  0.03 308.8895 309.3761 0.1575 
  0.10 211.2173 211.5251 0.1457 
  0.30 89.0993 89.2049 0.1185 
  050 47.1599 47.3028 0.3030 

 

TABLE III 
Comparison of ARL1 values for ARFIMA(1, 0.3, 2) process using NIE 
against explicit formulas when given u  = 1, φ1 = - 0.10, θ1 = 0.10,  
θ2 = 0.20 for ARL0 = 370. 

a b δ NIE Explicit Diff (%) 
3 3.159773 0.01 347.0446 347.6839 0.1842 
  0.03 307.5510 308.1039 0.1798 
  0.10 208.4944 208.8391 0.1653 
  0.30 86.3609 86.4753 0.1325 
  050 45.3127 45.3617 0.1081 

3.5 2.5868 0.01 347.7297 348.2677 0.1547 
  0.03 309.1599 309.6276 0.1513 
  0.10 211.7664 212.0632 0.1402 
  0.30 89.6664 89.7690 0.1144 
  050 47.6685 47.7139 0.0952 
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