

Abstract— LFFT is a proven heuristics-based iterated search

mechanism for 2D rectangular packing problems, and, in

particular, for bounding box packing and stock cutting

problems. It had also been applied to area-minimization

problems in the past, and while the preliminary results were

promising, they were still suboptimal because of the problem

space complexity. Recent advances in 2D packing points out a

new direction, namely, a reduction-based approach that uses

dynamic programming to reduce a problem into a more

manageable set of stock cutting problem instances. Inspired by

the recent advances, we introduce in this paper a multi-stage

reduction mechanism for handling the area minimization

problem using dynamic programming and an extended version

of LFFT. The results for benchmark problems are good as the

new approach is able to improve on the state-of-the-art results

in majority of the test cases.

Index Terms— area minimization, two dimensional packing

problems

I. INTRODUCTION

wo-dimensional rectangular cutting and packing (2D-CP)

problems are well-known problems where rectangular

pieces need to be placed in a single container box without

overlapping. Depending on the problem requirement, the

goal is to either maximize the total packed area given a fixed

size container (called the bounding box packing problem), or,

alternatively, to minimize the size of the container box for

holding all pieces (called the area minimization problem

(AM)
1
). The problem has practical applications in a number

of manufacturing and job allocation problems, for instance,

in VLSI floor planning problems and in metal or paper

cutting. A variation of the area minimization problem is

called the stock-cutting problem (SC), where all rectangles

need to be packed into a container of fixed width, with the

objective of minimizing the height of the container while

packing all rectangles. This paper focuses mainly on AM

problems but contains references to SC.

2D-CP problems are NP-complete problems (one can

easily realize this by noting that both AM and SC are

two-dimensional extension of the well-known NP-complete

problem of one-dimensional bin packing). Because of this,

most proposed solutions focused on finding approximate

Manuscript received Jan 8, 2016; revised 20 Jan, 2016
This work was supported by the Research Grants Council of Hong Kong

(Project Ref No. UGC/FDS14/E01/14)

C.-K. Chan is with the Hang Seng Management College, Shatin, Hong
Kong (e-mail: chanck@ hsmc.edu.hk).

D. Wu is with the Hang Seng Management College, Shatin, Hong Kong

Y-L Wu was with the Chinese University of Hong Kong. The is currently
serving as the CEO of Easy-Logic Technology Ltd.

1 Also called the RPAMP problem

solutions using various combinations of heuristic and

meta-heuristics approaches [1][5]. Two of the well-known

and still commonly used heuristics are the Bottom-Left (BL)

and Bottom-Left-Fill (BLF) heuristics, with time

complexities of O(𝑛 log 𝑛) and O(𝑛3) respectively . In

practice, BL and BLF are rarely used on their own. Instead,

they are either coupled with meta-heuristics algorithms (e.g.,

genetic algorithm or simulated annealing), or that they are

embedded into higher-level search mechanisms. Such

examples can be found in both SC (e.g., [8][9]) and AM (e.g.,

[10]) problems.

In recent years, a number of works based on advanced

search mechanisms coupled with various heuristics have

appeared. Our current work is the result of the confluence of

two different lines of approaches proposed in the past decade.

The first one is based on an idea which we label here as the

pseudo-packing-based approaches. This approach can be

traced back to the Least-Flexibility-First (LFF) principle first

proposed in [2], which was later enhanced as the LFFT

algorithm in [3]. LFF and LFFT are deterministic 2D packing

algorithms originally designed for bounding-box packing

problems, but can be adapted for other types of packing as

well. The pseudo-packing-based mechanism is a tree-based

search mechanism that places each rectangle temporarily on

each candidate location (called a move) in turn for evaluation.

Each move is evaluated iteratively using a fast evaluation

heuristics that pseudo-packs the remaining rectangles for

evaluation purpose. The evaluation heuristics employed by

LFF and LFFT are the well-known BL heuristics and a new

tightness heuristics respectively. This approach turned out to

be very successful, especially for stock-cutting problems, but

also for other types of 2D packing in general, as demonstrated

by well-known benchmark problem instances.

Since then, this idea of utilizing a pseudo-packing-based

mechanism in combination with a fast heuristics for iterated

greedy evaluation appeared in a number of subsequence

works. For example, a search mechanism called A1 that is

similar in concept to the one adopted by LFFT was employed

in [11]. This work differs from LFFT in that they employed a

different (and more complex) distance-based heuristic for the

iterated greedy evaluation part. Hence, the packing densities

have been improved, but at a trade-off of higher time

complexities. Later on, a Best fit Algorithm (BFA) was

proposed in [13]. While also based on a similar

pseudo-packing-based mechanism, this work introduced a

new evaluation heuristics called BFA, which calculates the

“smooth degree” of candidate packing positions. BFA has

been applied to bounding box packing problems.

However, there is a drawback with the

pseudo-packing-based approaches when applied to

area-minimization problems. That is, the original LFF

Chi-Kong Chan, Dongyang Wu and Yu-Liang Wu

Multi-stage Pseudo-packing-based Mechanism

for Area-minimization Rectangular Packing

T

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

principle, including the pseudo-packing-based mechanism

which was adopted by the subsequence works, was originally

designed for the bounding box packing problem. To adapt it

for area-minimization, one needs to repeatedly restart the

mechanism using containers of increasing sizes, until all

pieces can be packed. In the original LFF and LFFT

approaches (and also [11]), for instance, because of

time-efficiency considerations, this was simply done by

attempting squares containers of increasing sizes. Needless

to say, this approach was sub-optimal; as candidate solutions

involving containers with aspect ratios other than the default

1:1 squares were simply not considered (the aspect ratio is the

respective ratio of a container’s length and width).

The solution to this problem seems to be found in the

second line of approaches, namely the reduction-based

approaches [5][6]. This line of research, which appeared

more recently, makes use of two-stage algorithms that first

locate a promising set of aspect ratios (or container width

values), and then computes the best packing results

accordingly using various heuristics. A good example is the

AMRHC mechanism [6]. This work divides the AM problem

into two smaller sub-problems. First, a 2D-knapsack problem

(KP) for determining a promising set of container widths is

solved. Then, for each candidate width, a packing solution is

found by treating it as a stock-cutting problem. A family of

algorithms (more precisely, various combinations of

algorithms for KP and SC) were studied in [6]. In practice,

however, a combination that uses dynamic programming for

KP and a heuristics called BFDH* for stock-cutting was

reported to be the most effective. Like [11], this approach can

achieve higher packing density than LFFT because it can

extend the problem search space to other aspect ratios. Note

that, however, this was also achieved at a price of increased

time complexity.
2
 Very recently, an approach named DRA

was proposed in [15]. Like AMRHC, DRA is also a

two-stage reduction approach, but it employs an extended

version of BFA for stock cutting evaluation. However, DRA

also has a large time complexity.
3

Our current paper is inspired by these recent advances.

Our approach is a multi-stage reduction mechanism utilizing

an iterated pseudo-packing-based procedure. A dynamic

programming process is first performed to produce a set of

promising candidate widths, which are then subjected to one

or more rounds of packing or further evaluation using LFFT,

treating each case as independent stock-cutting problem.

Note that DP and LFFT are selected because of their

demonstrated performance for the respective sub-problems.

The remaining of the paper is organized as follows. In

Section two we define the 2-D packing problems, and present

the basic LFFT algorithm. Section three proposes an

extension of LFFT for area-minimization problems using DP

and a multi-stage extension of LFFT. Section four presents

the experiment results. Section five concludes.

II. 2D-CP PROBLEM AND THE LFFT PRINCIPLE

A. Problem description

The 2-D rectangular packing area-minimization problem

2 As noted in [6], their running time for the benchmark problem sets

exceeded those of LFFT despite using a faster machine.
3 The worst case time complexity of DRA is O(n10), according to [15].

(AM) can be stated as follows. Given a set of n rectangular

pieces, and a bounding container box b, we need to place all

pieces into b without overlapping, with the objective of

minimizing the area of b. In this work, we assume that the

aspect ratio of the container b (i.e., width(b) / length(b))

is not fixed. The rectangles can be rotated by 90 degrees if

necessary.

Another problem that is closely related to AM is the

two-dimensional stock cutting (SC) problem [4][8][9].

Again, given n rectangular pieces, we need to pack the

rectangles into a strip of material of fixed base-line width

without overlapping. The goal here is to minimize the height

of the strip used to pack all pieces.

B. The LFFT Principle

The Least Flexibility First Principle with Tightness

Evaluation (LFFT) is a 2D-CP mechanism. The basic

principle is to pack the least flexible rectangles, which are the

longer ones, into one of the least flexible packing locations,

which are the corners. Here, a corner can be formed by any

packed rectangles or the sides of the container box. The LFFT

principle is realized using a pseudo-packing-based algorithm

(LFFT-PsP) which is illustrated in Figure 1. The rectangles

are packed in steps. In each step, the q longest remaining

rectangles are evaluated at each of the corners in turns (line 4).

Here, q is a parameter for controlling the size of the

search-space at each step: large q should produce better

solutions but at a trade-off of longer execution time. (This

feature will be useful in the multi-stage strategy for AM

problems, described in the next section). A to-be-packed

rectangle and a fitting corner constitutes a move (line 3).

Each move m is pseudo-packed in turn (line 5), and then

evaluated using an iterated greedy evaluation procedure

(LFFT-IGE) as follows (lines 6, 10-16): in each iteration of

LFFT-IGE, we first re-compute an updated list of remaining

moves (line 11), and each move 𝑚′ is evaluated using a fast

evaluation heuristic (line 12) and the best one is

pseudo-packed. The fast evaluation heuristic chosen for

LFFT is a tightness heuristic which will be described in the

next subsection. The iterated evaluation procedure repeats

until no more moves is possible. The resulting packing

density then serves as the score for the original move m that

was being evaluated (line 15), and the score is passed back to

LFFT-PsP (line 6). These steps repeat until all moves

belonging to the longest q rectangles have been evaluated,

and the best move is selected. The algorithm repeats until no

more moves is possible.

 Note that the iterated greedy evaluation procedure

(LFFT-IGE) can also function as a 2D-CP packing

mechanism on its own. For example, it can be applied

directly for very large problems where the LFFT-PsP

algorithm is not suitable, or it can be used as a procedure for

evaluating candidate packing moves as described above.

C. A Tightness heuristics for fast evaluation

LFFT attempts to pack a rectangle into the best fitting corners.

This idea is approximated using an eight points tightness

heuristic, which is illustrated in Figure 2. For each candidate

move, we look at the points that are immediately adjacent to

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

each corner of the candidate rectangle. That is, suppose a

rectangle has the corners {(𝑥0 , 𝑦0), (𝑥0 , 𝑦1), (𝑥1 , 𝑦1),

(𝑥1 , 𝑦0)}, we check whether the 8 corner adjacent points

{(𝑥0 , 𝑦0 − δ), (𝑥0 − δ , 𝑦0), (𝑥0 − δ , 𝑦1), (𝑥0 , 𝑦1 + δ)

(𝑥1, 𝑦1 + δ), (𝑥1 + δ, 𝑦1), (𝑥1 + δ, 𝑦0),), (𝑥1, 𝑦0 − δ),)} are

occupied. The fitness of each move is then defined as the

number of corner adjacent points that is not located in open

space (that is, not in packed area, and not exceeding the

container boundary). In Figure 2, the fitness of moves A and

B are four and five respectively.

D. LFFT for Stock Cutting (LFFT-SC)

LFFT can be adapted quite easily for stock-cutting problems.

The idea is illustrated in Figure 3 as the LFFT-SC mechanism.

We start with a minimal container with base width w. The

LFFT-PsP algorithm is applied repeatedly with increasing

container height, until a packing solution is found.

Alternatively, for very large problem instances, the faster

LFFT-IGE procedure can be used to replace LFFT-PsP (step

4 of Figure 3).

E. Computational Complexity of LFFT

The placement of a rectangle in each step of the algorithm

will occupy one or more corners, and, at the same time, also

generates a few new corners. Therefore, the number of

corners at any time should be proportional to n, where n is the

total number of rectangles, and the length of the move list in

each step is bounded by O(q * n), where q is the parameter as

mentioned above. In our implementation, the packed

rectangles are stored using a k-d tree data structure [14],

which provides a fast O(log n) region search operations. As a

result, the complexities of LFFT-IGE and LFFT-PsP are

O(qn
2
log n), and O(qn

4
log n) respectively.

III. MULTI-STAGE REDUCTION STRATEGY FOR

AREA-MINIMIZATION PROBLEMS

A. Multi-stage reduction Strategy

LFFT, with its Pseudo-packing-based algorithm, was

originally a mechanism designed for the bounding-box

packing problem. To adapt it for area minimization problems,

where the problem spaces are much larger, we can utilize a

multi-stage reduction approach, explained as follows. The

idea is that, starting from a wide range of possible values of

container widths, we incrementally reduce the number of

candidate widths according to a multi-stage reduction

schedule. Each stage would employ a successively more

complex (and accurate) algorithm to cut down on the number

of candidate widths, so that only the ones that deem most

promising are retained. Finally, each of the remaining widths

 A B

 Fig. 2. The Tightness heuristics

Pseudo-packing-based Packing Algorithm (LFFT-PsP)

Input: 1. A set of rectangles. 2. The parameter q.

1. Repeat the following steps (2 – 9) until all rectangles are successfully packed, or that there are no more legal moves.

2. Let L be the list of the remaining longest q rectangles that are not yet packed.

3. Generate an updated list M of (rectangle, corner) pairs, where rectangle is in L, and corner is a corner location that the current

rectangle can be placed without overlapping. Each (rectangle, corner) pair constitutes a move.

4. For each move m=(r, c) in M

5. Pseudo-pack m by temporarily placing rectangle r at the corner c

6. Evaluate move m using the Iterated Greedy Evaluation Procedure (LFFT-IGE), and use the resulting packing density as the

 score of m.

7. Undo move m

8. End for-each

9. Select the move in M with the highest score and pack it permanently. Update L and M.

Iterated Greedy Evaluation Procedure (LFFT-IGE)

10. Repeat until all remaining rectangles have been pseudo-packed, or that no more move is possible

11. Let 𝑀′ be the updated list of remaining moves.

12. For each move 𝑚′ in 𝑀′, evaluate its fitness using a fast evaluation heuristics (e.g., the tightness heuristics).

13. Select the move in 𝑀′with the highest fitness values. Pseudo-pack this move.

14. End-Repeat

15. Compute the resulting packing density

16. Undo all pseudo-packed rectangles in steps 10-14.

Fig. 1. The LFFT Pseudo-Packing-based Packing Algorithm and the Iterated Greedy Evaluation Procedure

 .

LFFT procedure for Stock-cutting (LFFT-SC)

Input: 1. A set of rectangles. 2. Container width w.

Initialization:

1. Let rect_area be the sum of the areas of all rectangles

2. Let h = ⌈𝑟𝑒𝑐𝑡_𝑎𝑟𝑒𝑎 / 𝑤⌉

Procedure:

3. Repeat until all rectangles are successfully packed.

4. Execute LFFT-PsP or LFFT-IGE to pack the rectangles,

with container width w and height h.

5. If all rectangles can be packed successfully

6. Quit.

7. else

8. Let h = ⌈ℎ × (1 + 𝛿)⌉

Fig. 3. Procedure for adapting LFFT for stock cutting

 .

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

after reduction are packed using a stock-cutting mechanism

(e.g., LFFT-SC) and the best solution is selected.

 An example reduction schedule is depicted in Figure 4. In

this example, the schedule to be followed is determined by

the number of rectangles (n). In all cases, the first stage

utilizes a dynamic programming (DP) algorithm for

suggesting a promising set of candidate widths (discussed in

the next subsection), which are then passed to the next stage.

Depending on n, the next few stages either employ LFFT-SC

with LFFT-PsP, or LFFT-SC with the less complex

LFFT-IGE algorithm. Different values for the parameter q

are used in the various stages to keep the running time

manageable. In each case, the rectangles are trial-packed

using containers of each suggested width in turns, and the

widths that produce the best results are kept. For example,

given a problem with 150 rectangles. We first employ the DP

procedure to produce a list of the 100 most promising width

values (stage 1). For each of these widths, we employ

LFFT-SC with LFFT-IGE to pack the rectangles. The 20

width values that produce the best results are passed to stage

3, which performs 20 rounds of packing using LFFT-SC with

LFFT-PsP and with q=1. The best 3 results are then

re-analyzed using LFFT-SC with LFFT-PsP, but this time

using q=5 (which produces better results but the expected

running time is 5 times as long than the previous stage for

each problem instance). The best packing result is then

reported. Note that this schedule has been tuned with a goal

that the whole packing process can be completed in

reasonable time using a single contemporary PC computer,

after referencing the running time of a number of related

approaches reported in the literature for common benchmark

problems (see Section IV for details).

B. Dynamic programming method for 2D-CP problem

reduction

For all problem size n, the first stage of the proposed

reduction schedule relies on a dynamic programming (DP)

procedure for reducing the initial set of possible width values

into a more manageable set of promising widths for further

evaluation. The DP procedure we use is adopted from an

approach described by Bortfeldt in [6] for the Interval Subset

Sum Problem (ISSP). The problem can be stated as follows.

Given a set of rectangles, and a maximum length 𝑝𝑚𝑎𝑥 , we

want to determine the number of combinations of no more

than 𝑝𝑚𝑎𝑥 rectangles whose widths add up to various values.

More specifically, we want to know the most frequently

occurring sum of rectangle widths, for combinations of no

more than 𝑝𝑚𝑎𝑥 rectangles. The idea is that those frequently

occurring sum-of-widths should also serve as good indicators

for promising container widths for the area minimization

problem. A good explanation for an implementation of a

dynamic programming procedure for ISSP problem is

provided in [6], so we shall not repeat the details here. For

now, it is sufficient to note that the abovementioned DP

procedure has a worst case complexity of O(wmaxn
2
), where

wmax is the largest possible sum-of-widths and n is the number

of rectangles. In our implementation, the DP procedure

finishes within one minute in all problem instances.

IV. EXPERIMENTS

We implemented the LFFT mechanism (LFFT-PsP,

LFFT-IGE, LFFT-SC) as well as the DP procedure on a 3.2

GHz PC with 8 gigabytes memory.
4
 The proposed method

are tested using 33 publicly available 2D-CP problem

instances, including nine well-known MCNC and GSRC

benchmark problems, as well as 24 more recent RPAMP

problem instances from [6]. Note that our focus is on

medium to large problem sets with 50 or more rectangles. For

this reason, several smaller MCNC and GSRC problems are

not included (with the exception of ami33 and ami49, which

are included due to their popularity in the 2-D packing

literature).

We compared our result with three of the state-of-the-art

approaches at the time of writing, namely, the AMHRC

results by Bortfeldt [6], and the DRA and DRA* results

published recently by K. He et al. [15]. The results are given

in Table 1, where the leading approaches are highlighted

using bold fonts. We see that both LFFT and DRA performed

very well for the MCNC and GSRC problems, with both

approaches producing the best results in four instances, while

AMHRC produced the best result in the remaining one

problem. For the 24 new RPAMP problem instance, LFFT

turns out to be far superior. Out of all 24 problems, LFFT is

4 Inter(R) Core(TM) i5-4460 3.20 GHz with 8.00 gigabytes RAM,

running Windows 7.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

n<100

DP (𝑝𝑚𝑎𝑥=10)

Output: best 200

widths

LFFT-SC with

LFFT-IGE
Output: best 50

widths

LFFT-SC with

LFFT-PsP (q=1)

Output: best 20

widths

LFFT-SCwith

LFFT-PsP (q=5)

Output: best 5 widths

LFFT-SC with

LFFT-PsP (q=10)

Output: best packing

result

100 ≤ n<200

DP (𝑝𝑚𝑎𝑥=20)

Output: best 100

widths

LFFT-SC with

LFFT-IGE
Output: best 20

widths

LFFT-SC with

LFFT-PsP (q=1)

Output: best

3widths

LFFT-SC with

LFFT-PsP (q=5)

Output: best packing

result

200 ≤ n<300

DP (𝑝𝑚𝑎𝑥=40)

Output: best 80

widths

LFFT-SC with

LFFT-IGE
Output: best 3

widths

LFFT-SC with

LFFT-PsP (q=1)

Output: best packing

result

300 ≤ n≤ 500

DP (𝑝𝑚𝑎𝑥=60)

Output: best 50

widths

LFFT-SC with

LFFT-IGE
Output: best

packing results

Fig. 4. A multiple-stage reduction schedule for area-minimization problems

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

able to improve on the currently best-known results in 15

cases (or 63% of the problems), while DRA is the

second-best by leading in 6 of the problems (25%). The

overall packing density of LFFT for all problem instances is

also superior (99.3% for LFFT vs 99.1% for DRA vs 98.8%

for AMHRC), while the execution time is comparable. Note

that LFFT also has a relatively smaller complexity than

DRA.
5

 The detailed packing results for each problem

instance can be viewed at the hyperlink included in following

footnote.
6

V. CONCLUSION

The 2D rectangular packing area-minimization problems

(AM) are harder than traditional 2D packing problems due to

their larger problem space. In this paper, we proposed a

multi-stage reduction approach for AM problems by

extending a mechanism called LFFT, which is a proven

mechanism for 2D packing and stock-cutting. A dynamic

programming procedure and a scaled-down version of LFFT

are first employed according to a reduction schedule, which

reduce the problem to a smaller set of more manageable stock

cutting problem instances. One or more executions of LFFT

then follow for producing the final packing results, while

further reducing the number of candidate width values in

each execution. This approach has been evaluated using

publicly available problem instances and the results are

encouraging, with the extended LFFT mechanism

out-performing the currently best-known results in 63% of

the case tests.

REFERENCES

[1] Lodi, A., Martello, S., & Vigo, D. (1999). Heuristic and metaheuristic

approaches for a class of two-dimensional bin packing
problems. INFORMS Journal on Computing, 11(4), 345-357.

[2] Wu, Y. L., Huang, W., Lau, S. C., Wong, C. K., & Young, G. H.

(2002). An effective quasi-human based heuristic for solving the
rectangle packing problem. European Journal of Operational

Research, 141(2), 341-358.

[3] Wu, Y. L., & Chan, C. K. (2005). On improved least flexibility first
heuristics superior for packing and stock cutting problems.

In Stochastic Algorithms: Foundations and Applications (pp. 70-81).

Springer Berlin Heidelberg.
[4] Burke, E. K., Kendall, G., & Whitwell, G. (2004). A new placement

heuristic for the orthogonal stock-cutting problem. Operations

Research, 52(4), 655-671.
[5] Wetweerapong, J., & Remsungnen, T. (2010). Solving the Rectangular

Packing Problem by a New Bottom-Left Placement Method

Incorporated with a Multi-Start Local Search. Foundations of
Computing and Decision Sciences, 35, 127-141.

[6] Bortfeldt, A. (2013). A reduction approach for solving the rectangle

packing area minimization problem. European Journal of Operational

Research, 224(3), 486-496.

[7] Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved
typology of cutting and packing problems. European Journal of

Operational Research,183(3), 1109-1130.

[8] Burke, E. K., Kendall, G., & Whitwell, G. (2009). A simulated
annealing enhancement of the best-fit heuristic for the orthogonal

stock-cutting problem. INFORMS Journal on Computing, 21(3),

505-516.

5 The reported complexity for one execution of DRA, as reported in [15]

is O(n10). However, one must note that this is a worst case complexity,

assuming there can be up to O(n3) action spaces at any instance. Their
average case complexity should be around O(n8), assuming there are O(n)

action spaces at any time. In comparison, the average case complexity for

one execution of LFFT is O(n4 log n), also assuming there are O(n) valid
moves at any time.

6 Available at:
https://drive.google.com/a/hsmc.edu.hk/file/d/0B0jDBeaFyEu-QzlFQUkwYlZkOFU/view?pref=2&pli=1

[9] Leung, S. C., Zhang, D., Zhou, C., & Wu, T. (2012). A hybrid

simulated annealing metaheuristic algorithm for the two-dimensional
knapsack packing problem. Computers & Operations Research, 39(1),

64-73.

[10] H. Zhou and J. Wang, ACG- adjacent constraint graph for general
floorplans, ICCD 2004 pp 572-575

[11] Chen, M., & Huang, W. (2007). A two-level search algorithm for 2D

rectangular packing problem. Computers & Industrial Engineering, 53,
123-136.

[12] Li, Y., Li, Y., & Zhou, M. (2011, December). A greedy algorithm for

wire length optimization. In Electronics, Circuits and Systems
(ICECS), 18th IEEE International Conference on (pp. 366-369), 2011

[13] K. He, W. Huang, and Y. Jin. "An efficient deterministic heuristic for

two-dimensional rectangular packing." Computers & Operations
Research 39.7 (2012): 1355-1363.

[14] J.L. Bentley, Multidimensional binary search trees used for associative

searching, Communication of ACM 18 (9) (1975) 509–517.
[15] K. He, P. Ji, and C. Li. "Dynamic reduction heuristics for the rectangle

packing area minimization problem." European Journal of

Operational Research 241.3 (2015): 674-685.

Fig. 5. Sample packing outputs: pcb146 (top left), Bortfeldt-

50-h07 (top right), Bortfeldt-50-h01 (Bottom)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

TABLE I

 RESULTS OF COMPARISON

Benchmarks
Instance AMRHC (Bortfeldt) [6] DRA (He et al.) [15] DRA* (He et al.) [15] LFFT

Name N density(%) t(s) density(%) t(s) density(%) t(s) density(%) t(s)

Well known
Benchmarks

(MCNC &
GSRC)

Ami33 33 99.01 116.00 98.77 198.80 98.46 799.23 98.056 2255

Ami49 49 98.58 1752.00 98.58 986.46 97.72 3636.98 98.266 1391

N100 100 98.72 1915.00 98.82 628.03 98.40 319.73 98.980 2230

N200 200 99.09 37.00 99.51 577.40 99.13 796.05 99.597 1826

N300 300 99.03 39.00 99.61 44.53 99.21 37.10 99.101 567

Rp100 100 99.06 59.00 99.13 348.10 98.83 424.97 99.133 2226

Pcb146 146 98.85 2250.00 99.01 1130.26 98.52 4525.28 99.081 3485

Rp200 200 99.11 14.00 99.53 1624.70 98.73 4958.69 99.275 4788

Pcb500 500 99.07 554.00 99.41 337.69 99.21 262.86 99.219 3687

RPAMP
50
[6]

1 50 98.65 2501 99.19 1027 98.33 2780 99.427 1141

2 50 97.74 1553 98.50 1279 98.26 3280 98.886 2932

3 50 98.60 1697 98.55 1161 98.20 2123 99.119 1864

4 50 99.70 1335 99.56 970 99.56 1335 99.598 1056

5 50 99.27 1420 99.48 1194 99.48 1528 99.115 1496

6 50 99.51 1410 99.51 892 99.51 1148 99.390 961

7 50 98.73 2972 98.03 1225 98.48 3083 99.372 1190

8 50 97.79 1556 97.12 1460 96.08 4835 98.867 5211

9 50 98.51 1785 97.73 1421 97.82 3442 99.135 2262

10 50 99.64 1362 99.51 945 99.71 1258 99.650 752

11 50 99.19 1410 99.02 1271 98.97 2306 99.332 2026

12 50 99.56 1434 99.50 1123 99.70 1625 99.193 1471

RPAMP
200
[6]

13 200 99.44 2936 99.74 1377 99.20 6767 99.552 1681

14 200 99.26 4019 99.42 2961 99.30 3602 99.644 2534

15 200 99.39 3771 99.63 1759 99.19 6312 99.620 1655

16 200 99.23 2321 99.73 1169 98.89 5774 99.369 817

17 200 99.20 1507 98.61 1673 98.00 7991 99.337 1668

18 200 99.01 1731 99.41 1047 98.84 6563 99.494 1632

19 200 99.61 9948 99.80 1030 99.41 7347 99.666 1963

20 200 99.13 3363 98.62 2225 98.30 5136 99.560 4968

21 200 99.50 6151 99.51 3438 99.40 3997 99.733 2224

22 200 99.47 2300 99.63 1557 99.31 1725 99.521 1591

23 200 98.75 1755 98.82 837 98.67 3481 99.364 1680

24 200 98.72 1886 99.50 877 98.89 3757 99.678 1171

Average 99.03 99.11 98.78 99.283

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

