
 

Abstract— LFFT is a proven heuristics-based iterated search 

mechanism for 2D rectangular packing problems, and, in 

particular, for bounding box packing and stock cutting 

problems. It had also been applied to area-minimization 

problems in the past, and while the preliminary results were 

promising, they were still suboptimal because of the problem 

space complexity. Recent advances in 2D packing points out a 

new direction, namely, a reduction-based approach that uses 

dynamic programming to reduce a problem into a more 

manageable set of stock cutting problem instances. Inspired by 

the recent advances, we introduce in this paper a multi-stage 

reduction mechanism for handling the area minimization 

problem using dynamic programming and an extended version 

of LFFT. The results for benchmark problems are good as the 

new approach is able to improve on the state-of-the-art results 

in majority of the test cases. 

 

Index Terms— area minimization, two dimensional packing 

problems 

I. INTRODUCTION 

wo-dimensional rectangular cutting and packing (2D-CP) 

problems are well-known problems where rectangular 

pieces need to be placed in a single container box without 

overlapping. Depending on the problem requirement, the 

goal is to either maximize the total packed area given a fixed 

size container (called the bounding box packing problem), or, 

alternatively, to minimize the size of the container box for 

holding all pieces (called the area minimization problem 

(AM)
1
).    The problem has practical applications in a number 

of manufacturing and job allocation problems, for instance, 

in VLSI floor planning problems and in metal or paper 

cutting. A variation of the area minimization problem is 

called the stock-cutting problem (SC), where all rectangles  

need to be packed into a container of fixed width, with the 

objective of minimizing the height of the container while 

packing all rectangles. This paper focuses mainly on AM 

problems but contains references to SC. 

2D-CP problems are NP-complete problems (one can 

easily realize this by noting that both AM and SC are 

two-dimensional extension of the well-known NP-complete 

problem of one-dimensional bin packing). Because of this, 

most proposed solutions focused on finding approximate 
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1 Also called the RPAMP problem 

solutions  using  various   combinations   of   heuristic    and  

meta-heuristics approaches [1][5]. Two of the well-known 

and still commonly used heuristics are the Bottom-Left (BL) 

and Bottom-Left-Fill (BLF)  heuristics, with time 

complexities of O(𝑛 log 𝑛) and O(𝑛3) respectively . In 

practice, BL and BLF are rarely used on their own. Instead, 

they are either coupled with meta-heuristics algorithms (e.g., 

genetic algorithm or simulated annealing), or that they are 

embedded into higher-level search mechanisms. Such 

examples can be found in both SC (e.g., [8][9]) and AM  (e.g., 

[10]) problems.  

In recent years, a number of works based on advanced 

search mechanisms coupled with various heuristics have 

appeared. Our current work is the result of the confluence of 

two different lines of approaches proposed in the past decade. 

The first one is based on an idea which we label here as the 

pseudo-packing-based approaches. This approach can be 

traced back to the Least-Flexibility-First (LFF) principle first 

proposed in [2], which was later enhanced as the LFFT 

algorithm in [3]. LFF and LFFT are deterministic 2D packing 

algorithms originally designed for bounding-box packing 

problems, but can be adapted for other types of packing as 

well. The pseudo-packing-based mechanism is a tree-based 

search mechanism that places each rectangle temporarily on 

each candidate location (called a move) in turn for evaluation. 

Each move is evaluated iteratively using a fast evaluation 

heuristics that pseudo-packs the remaining rectangles for 

evaluation purpose. The evaluation heuristics employed by 

LFF and LFFT are the well-known BL heuristics and a new 

tightness heuristics respectively. This approach turned out to 

be very successful, especially for stock-cutting problems, but 

also for other types of 2D packing in general, as demonstrated 

by well-known benchmark problem instances. 

Since then, this idea of utilizing a pseudo-packing-based 

mechanism in combination with a fast heuristics for iterated 

greedy evaluation appeared in a number of subsequence 

works. For example,  a search mechanism called A1 that is 

similar in concept to the one adopted by LFFT was employed 

in [11]. This work differs from LFFT in that they employed a 

different (and more complex) distance-based heuristic for the 

iterated greedy evaluation part. Hence, the packing densities 

have been improved, but at a trade-off of higher time 

complexities. Later on, a Best fit Algorithm (BFA) was 

proposed in [13]. While also based on a similar 

pseudo-packing-based mechanism, this work introduced a 

new evaluation heuristics called BFA, which calculates the 

“smooth degree” of candidate packing positions. BFA has 

been applied to bounding box packing problems.   

However, there is a drawback with the 

pseudo-packing-based approaches when applied to 

area-minimization problems. That is, the original LFF 
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principle, including the pseudo-packing-based mechanism 

which was adopted by the subsequence works, was originally 

designed for the bounding box packing problem. To adapt it 

for area-minimization, one needs to repeatedly restart the 

mechanism using containers of increasing sizes, until all 

pieces can be packed.  In the original LFF and LFFT 

approaches (and also [11]), for instance,  because of 

time-efficiency considerations, this was simply done by 

attempting squares containers of increasing sizes. Needless 

to say, this approach was sub-optimal; as candidate solutions 

involving containers with aspect ratios other than the default 

1:1 squares were simply not considered (the aspect ratio is the 

respective ratio of a container’s length and width).  

The solution to this problem seems to be found in the 

second line of approaches, namely the reduction-based 

approaches [5][6]. This line of research, which appeared 

more recently, makes use of two-stage algorithms that first 

locate a promising set of aspect ratios (or container width 

values), and then computes the best packing results 

accordingly using various heuristics. A good example is the 

AMRHC mechanism [6].  This work divides the AM problem 

into two smaller sub-problems. First, a 2D-knapsack problem 

(KP) for determining a promising set of container widths is 

solved. Then, for each candidate width, a packing solution is 

found by treating it as a stock-cutting problem. A family of 

algorithms (more precisely, various combinations of 

algorithms for KP and SC) were studied in [6]. In practice, 

however, a combination that uses dynamic programming for 

KP and a heuristics called BFDH* for stock-cutting was 

reported to be the most effective. Like [11], this approach can 

achieve higher packing density than LFFT because it can 

extend the problem search space to other aspect ratios. Note 

that, however, this was also achieved at a price of increased 

time complexity.
2
 Very recently, an approach named DRA 

was proposed in [15]. Like AMRHC, DRA is also a 

two-stage reduction approach, but it employs an extended 

version of BFA for stock cutting evaluation. However, DRA 

also has a large time complexity.
3
 

Our current paper is inspired by these recent advances.  

Our approach is a multi-stage reduction mechanism utilizing 

an iterated pseudo-packing-based procedure. A dynamic 

programming process is first performed to produce a set of 

promising candidate widths, which are then subjected to one 

or more rounds of packing or further evaluation using LFFT, 

treating each case as independent stock-cutting problem.  

Note that DP and LFFT are selected because of their 

demonstrated performance for the respective sub-problems. 

The remaining of the paper is organized as follows. In 

Section two we define the 2-D packing problems, and present 

the basic LFFT algorithm. Section three proposes an 

extension of LFFT for area-minimization problems using DP 

and a multi-stage extension of LFFT. Section four presents 

the experiment results. Section five concludes. 

II. 2D-CP  PROBLEM AND THE LFFT PRINCIPLE 

A. Problem description 

The 2-D rectangular packing area-minimization problem 

 
2 As noted in [6], their running time for the benchmark problem sets 

exceeded those of LFFT despite using a faster machine. 
3 The worst case time complexity of DRA is O(n10), according to [15]. 

(AM) can be stated as follows.  Given a set of n rectangular 

pieces, and a bounding container box b, we need to place all 

pieces into b without overlapping, with the objective of 

minimizing the area of b. In this work, we assume that the 

aspect ratio of the container b (i.e., width(b) / length(b)) 

is not fixed. The rectangles can be rotated by 90 degrees if 

necessary. 

Another problem that is closely related to AM is the 

two-dimensional stock cutting (SC) problem  [4][8][9]. 

Again, given n rectangular pieces, we need to pack the 

rectangles into a strip of material of fixed base-line width 

without overlapping. The goal here is to minimize the height 

of the strip used to pack all pieces.  

B. The LFFT Principle 

The Least Flexibility First Principle with Tightness 

Evaluation (LFFT) is a 2D-CP  mechanism. The basic 

principle is to pack the least flexible rectangles, which are the 

longer ones, into one of the least flexible packing locations, 

which are the corners. Here, a corner can be formed by any 

packed rectangles or the sides of the container box. The LFFT 

principle is realized using a pseudo-packing-based algorithm  

(LFFT-PsP) which is illustrated in Figure 1. The rectangles 

are packed in steps. In each step, the q longest remaining 

rectangles are evaluated at each of the corners in turns (line 4). 

Here, q is a parameter for controlling the size of the 

search-space at each step: large q should produce better 

solutions but at a trade-off of longer execution time. (This 

feature will be useful in the multi-stage strategy for AM 

problems, described in the next section).  A to-be-packed 

rectangle and a fitting corner constitutes a move (line 3). 

Each move m is pseudo-packed in turn (line 5), and then 

evaluated using an iterated greedy evaluation procedure 

(LFFT-IGE) as follows (lines 6, 10-16): in each iteration of 

LFFT-IGE, we first re-compute an updated list of remaining 

moves (line 11), and each move 𝑚′ is evaluated using a fast 

evaluation heuristic (line 12) and the best one is 

pseudo-packed. The  fast evaluation heuristic chosen for 

LFFT is a tightness heuristic which will be described in the 

next subsection. The iterated evaluation procedure repeats 

until no more moves is possible. The resulting packing 

density then serves as the score for the original move m that 

was being evaluated (line 15), and the score is passed back to 

LFFT-PsP (line 6). These steps repeat until all moves 

belonging to the longest q rectangles have been evaluated, 

and the best move is selected. The algorithm repeats until no 

more moves is possible. 

 Note that the iterated greedy evaluation procedure 

(LFFT-IGE) can  also function as a 2D-CP packing 

mechanism on its own. For example, it can be applied 

directly for very large problems where the LFFT-PsP 

algorithm is not suitable, or it can be used as a procedure for 

evaluating candidate packing moves as described above. 

C. A Tightness heuristics for fast evaluation 

LFFT attempts to pack a rectangle into the best fitting corners. 

This idea is approximated using an eight points tightness 

heuristic, which is illustrated in Figure 2. For each candidate 

move, we look at the points that are immediately adjacent to 
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each corner of the candidate rectangle. That is, suppose a 

rectangle has the corners {( 𝑥0 ,  𝑦0 ), ( 𝑥0 ,  𝑦1 ), ( 𝑥1 ,  𝑦1 ), 

(𝑥1 , 𝑦0 )}, we check whether the 8 corner adjacent points 

{( 𝑥0 ,  𝑦0 − δ ), (𝑥0 − δ ,  𝑦0 ), (𝑥0 − δ ,  𝑦1 ), (𝑥0 ,  𝑦1 + δ  ) 

(𝑥1, 𝑦1 + δ), (𝑥1 + δ, 𝑦1), (𝑥1 + δ, 𝑦0),), (𝑥1, 𝑦0 − δ),)} are 

occupied. The fitness of each move is then defined as the 

number of corner adjacent points that is not located in open 

space (that is, not in packed area, and not exceeding the 

container boundary). In Figure 2, the fitness of moves A and 

B are four and five respectively. 

D. LFFT for Stock Cutting (LFFT-SC) 

LFFT can be adapted quite easily for stock-cutting problems. 

The idea is illustrated in Figure 3 as the LFFT-SC mechanism. 

We start with a minimal container with base width w. The 

LFFT-PsP algorithm is applied repeatedly with increasing 

container height, until a packing solution is found. 

Alternatively, for very large problem instances, the faster 

LFFT-IGE procedure can be used to replace  LFFT-PsP (step 

4 of Figure 3).  

E. Computational Complexity of LFFT 

The placement of a rectangle in each step of the algorithm 

will occupy one or more corners, and, at the same time, also 

generates a few new corners. Therefore, the number of 

corners at any time should be proportional to n, where n is the 

total number of rectangles, and the length of the move list in 

each step is bounded by O(q * n), where q is the parameter as 

mentioned above. In our implementation, the packed 

rectangles are stored using a k-d tree data structure [14], 

which provides a fast O(log n) region search operations. As a  

result, the complexities of LFFT-IGE and LFFT-PsP are 

O(qn
2
log n), and O(qn

4
log n) respectively. 

III. MULTI-STAGE REDUCTION STRATEGY FOR 

AREA-MINIMIZATION PROBLEMS 

A. Multi-stage reduction Strategy 

LFFT, with its Pseudo-packing-based algorithm, was 

originally a mechanism designed for the bounding-box 

packing problem. To adapt it for area minimization problems, 

where the problem spaces are much larger, we can utilize a 

multi-stage reduction approach, explained as follows.  The 

idea is that, starting from a wide range of possible values of 

container  widths, we incrementally reduce the number of 

candidate widths according to a multi-stage reduction 

schedule. Each stage would employ a successively more 

complex (and accurate) algorithm to cut down on the number 

of candidate widths, so that only the ones that deem most 

promising are retained. Finally, each of the remaining widths  

    A      B 

 Fig. 2. The Tightness heuristics 

Pseudo-packing-based Packing Algorithm (LFFT-PsP) 

Input: 1. A set of rectangles. 2. The parameter q. 

1.  Repeat the following steps (2 – 9) until all rectangles are successfully packed, or that there are no more legal moves. 

2.     Let L be the list of the remaining longest q rectangles that are not yet packed.  

3.  Generate an updated list M of (rectangle, corner) pairs, where rectangle is in L, and corner is a corner location that the current 

rectangle can be placed without overlapping.  Each (rectangle, corner) pair constitutes a move. 

4.  For each move m=(r, c) in M 

5.   Pseudo-pack m by temporarily placing rectangle r at the corner c   

6.   Evaluate move m using the Iterated Greedy Evaluation Procedure (LFFT-IGE), and use the resulting packing density as the   

       score of m. 

7.   Undo move m 

8.  End for-each 

9.  Select the move in M with the highest score and pack it permanently. Update L and M. 

 

Iterated Greedy Evaluation Procedure (LFFT-IGE) 

10. Repeat until all remaining rectangles have been pseudo-packed, or that no more move is possible 

11.    Let 𝑀′ be the updated list of remaining moves.  

12.  For each move 𝑚′ in 𝑀′, evaluate its fitness using a fast evaluation heuristics (e.g., the tightness heuristics). 

13.  Select the move in 𝑀′with the highest fitness values. Pseudo-pack this move. 

14. End-Repeat 

15. Compute the resulting packing density 

16.  Undo all pseudo-packed rectangles in steps 10-14. 

 
Fig. 1.  The LFFT Pseudo-Packing-based Packing Algorithm and the Iterated Greedy Evaluation Procedure 

 

 

 

 .  

LFFT procedure for Stock-cutting  (LFFT-SC) 

 

Input: 1. A set of rectangles. 2. Container width w. 

Initialization: 

1.  Let rect_area be the sum of the areas of all rectangles 

2.    Let  h = ⌈𝑟𝑒𝑐𝑡_𝑎𝑟𝑒𝑎 / 𝑤⌉ 
 

Procedure: 

3.   Repeat until all rectangles are successfully packed. 

4.  Execute LFFT-PsP  or LFFT-IGE to pack the rectangles, 

with container width w and height h. 

5.  If all rectangles can be packed successfully 

6.    Quit.  

7.  else  

8.     Let h = ⌈ℎ × (1 + 𝛿)⌉ 
 
Fig. 3.  Procedure for adapting LFFT  for stock cutting 

 

 

 

 

 

 .  
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after reduction are packed using a stock-cutting mechanism 

(e.g., LFFT-SC) and the best solution is selected. 

 An example reduction schedule is depicted in Figure 4. In 

this example, the schedule to be followed is determined by 

the number of rectangles (n).  In all cases,  the first stage 

utilizes a dynamic programming (DP) algorithm for 

suggesting a promising set of candidate widths (discussed in 

the next subsection), which are then passed to the next stage. 

Depending on n, the next few stages either employ LFFT-SC 

with LFFT-PsP, or LFFT-SC with the less complex 

LFFT-IGE algorithm. Different values for the parameter q 

are used in the various stages to keep the running time 

manageable. In each case, the rectangles are trial-packed 

using containers of each suggested width in turns, and the 

widths that produce the best results are kept. For example, 

given a problem with 150 rectangles. We first employ the DP 

procedure  to produce a list of the 100 most promising width 

values (stage 1). For each of these widths, we employ 

LFFT-SC with LFFT-IGE to pack the rectangles. The 20 

width values that produce the best results are passed to stage 

3, which performs 20 rounds of packing using LFFT-SC with 

LFFT-PsP and with q=1. The best 3 results are then 

re-analyzed using  LFFT-SC with LFFT-PsP, but this time 

using q=5 (which produces better results but the expected 

running time is 5 times as long than the previous stage for 

each problem instance). The best packing result is then 

reported. Note that this schedule has been tuned with a goal 

that the whole packing process can be completed in 

reasonable time using a single contemporary PC computer, 

after referencing the running time of a number of related 

approaches reported in the literature for common benchmark 

problems (see Section IV for details). 

 

B. Dynamic programming method for 2D-CP problem 

reduction  

For all problem size n, the first stage of the proposed 

reduction schedule relies on a dynamic programming (DP) 

procedure for reducing the initial set of possible width values 

into a more manageable set of promising widths for further 

evaluation. The DP procedure we use is adopted from an 

approach described by Bortfeldt in [6] for the Interval Subset 

Sum Problem (ISSP). The problem can be stated as follows.  

Given a set of rectangles, and a maximum length 𝑝𝑚𝑎𝑥 , we 

want to determine the number of combinations of no more 

than 𝑝𝑚𝑎𝑥  rectangles whose widths add up to various values. 

More specifically, we want to know the most frequently 

occurring sum of rectangle widths, for combinations of no 

more than 𝑝𝑚𝑎𝑥 rectangles. The idea is that those frequently 

occurring sum-of-widths should also serve as good indicators 

for promising container widths for the area minimization 

problem. A good explanation for an implementation of a 

dynamic programming procedure for ISSP problem is 

provided in [6], so we shall not repeat the details here. For 

now, it is sufficient to note that the abovementioned DP 

procedure has a worst case complexity of O(wmaxn
2
), where 

wmax is the largest possible sum-of-widths and n is the number 

of rectangles. In our implementation, the DP procedure 

finishes within one minute in all problem instances.  

IV. EXPERIMENTS 

We implemented the LFFT mechanism (LFFT-PsP, 

LFFT-IGE, LFFT-SC) as well as the DP procedure on a 3.2 

GHz PC with 8 gigabytes memory. 
4
 The proposed method 

are tested using 33 publicly available 2D-CP problem 

instances, including nine well-known MCNC and GSRC 

benchmark problems, as well as 24 more recent RPAMP 

problem instances from [6].  Note that our focus is on 

medium to large problem sets with 50 or more rectangles. For 

this reason, several smaller MCNC and GSRC problems are 

not included (with the exception of ami33 and ami49, which 

are included due to their popularity in the 2-D packing 

literature).    

We compared our result with three of the state-of-the-art 

approaches at the time of writing, namely, the AMHRC 

results by Bortfeldt [6], and the DRA and DRA* results 

published recently by K. He et al. [15]. The results are given 

in Table 1, where the leading approaches are highlighted 

using bold fonts. We see that both LFFT and DRA performed 

very well for the MCNC and GSRC problems, with both 

approaches producing the best results in four instances, while 

AMHRC produced the best result in the remaining one 

problem. For the 24 new RPAMP problem instance, LFFT 

turns out to be far superior. Out of all 24 problems, LFFT is 

 
4  Inter(R) Core(TM) i5-4460 3.20 GHz with 8.00 gigabytes RAM, 

running Windows 7. 

 
Stage 1 Stage 2  Stage 3  Stage 4  Stage 5  

n<100 

DP (𝑝𝑚𝑎𝑥=10) 

Output: best 200 

widths  

LFFT-SC with 

LFFT-IGE  
Output: best 50 

widths 

LFFT-SC with 

LFFT-PsP (q=1) 

Output: best 20 

widths 

LFFT-SCwith 

LFFT-PsP (q=5) 

Output: best 5 widths 

LFFT-SC with 

LFFT-PsP (q=10) 

Output: best packing 

result 

100 ≤ n<200 

DP (𝑝𝑚𝑎𝑥=20) 

Output: best 100 

widths  

LFFT-SC with 

LFFT-IGE  
Output: best 20 

widths 

LFFT-SC with 

LFFT-PsP (q=1) 

Output: best 

3widths 

LFFT-SC with 

LFFT-PsP (q=5) 

Output: best packing 

result 

 

200 ≤ n<300 

DP (𝑝𝑚𝑎𝑥=40) 

Output: best 80 

widths  

LFFT-SC with 

LFFT-IGE  
Output: best 3 

widths 

LFFT-SC with 

LFFT-PsP (q=1) 

Output: best packing 

result 
  

300 ≤ n≤ 500 

DP (𝑝𝑚𝑎𝑥=60) 

Output: best 50 

widths  

LFFT-SC with 

LFFT-IGE  
Output: best 

packing results  

   

Fig. 4.  A multiple-stage reduction schedule for area-minimization problems 
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able to improve on the currently best-known results in 15 

cases (or 63% of the problems), while DRA is the 

second-best by leading in 6 of the problems (25%). The 

overall packing density of LFFT for all problem instances is 

also superior (99.3% for LFFT vs 99.1% for DRA vs 98.8% 

for AMHRC), while the execution time is comparable. Note 

that LFFT also has a relatively smaller complexity than 

DRA.
5

 The detailed packing results for each problem 

instance can be viewed at the hyperlink included in following 

footnote.
6
 

V. CONCLUSION 

The 2D rectangular packing area-minimization problems 

(AM) are harder than traditional 2D packing problems due to 

their larger problem space. In this paper, we proposed a 

multi-stage reduction approach for AM problems by 

extending a mechanism called LFFT, which is a proven 

mechanism for 2D packing and stock-cutting.  A dynamic 

programming procedure and a scaled-down version of LFFT 

are first employed according to a reduction schedule, which 

reduce the problem to a smaller set of more manageable stock 

cutting problem instances. One or more executions of LFFT 

then follow for producing the final packing results, while 

further reducing the number of candidate width values in 

each execution. This approach has been evaluated using 

publicly available problem instances and the results are 

encouraging, with the extended LFFT mechanism 

out-performing the currently best-known results in 63% of 

the case tests. 
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Fig. 5. Sample packing outputs: pcb146 (top left), Bortfeldt- 

50-h07 (top right),  Bortfeldt-50-h01 (Bottom) 
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TABLE I 

 RESULTS OF COMPARISON 

Benchmarks 
Instance AMRHC (Bortfeldt) [6] DRA (He et al.) [15] DRA* (He et al.) [15] LFFT 

Name  N density(%) t(s) density(%) t(s) density(%) t(s) density(%) t(s) 

Well known  
Benchmarks 

(MCNC & 
GSRC) 

 

Ami33 33 99.01 116.00 98.77 198.80 98.46 799.23 98.056 2255 

Ami49 49 98.58 1752.00 98.58 986.46 97.72 3636.98 98.266 1391 

N100 100 98.72 1915.00 98.82 628.03 98.40 319.73 98.980 2230 

N200 200 99.09 37.00 99.51 577.40 99.13 796.05 99.597 1826 

N300 300 99.03 39.00 99.61 44.53 99.21 37.10 99.101 567 

Rp100 100 99.06 59.00 99.13 348.10 98.83 424.97 99.133 2226 

Pcb146 146 98.85 2250.00 99.01 1130.26 98.52 4525.28 99.081 3485 

Rp200 200 99.11 14.00 99.53 1624.70 98.73 4958.69 99.275 4788 

Pcb500 500 99.07 554.00 99.41 337.69 99.21 262.86 99.219 3687 

RPAMP  
50 
[6] 

1 50 98.65 2501 99.19 1027 98.33 2780 99.427 1141 

2 50 97.74 1553 98.50 1279 98.26 3280 98.886 2932 

3 50 98.60 1697 98.55 1161 98.20 2123 99.119 1864 

4 50 99.70 1335 99.56 970 99.56 1335 99.598 1056 

5 50 99.27 1420 99.48 1194 99.48 1528 99.115 1496 

6 50 99.51 1410 99.51 892 99.51 1148 99.390 961 

7 50 98.73 2972 98.03 1225 98.48 3083 99.372 1190 

8 50 97.79 1556 97.12 1460 96.08 4835 98.867 5211 

9 50 98.51 1785 97.73 1421 97.82 3442 99.135 2262 

10 50 99.64 1362 99.51 945 99.71 1258 99.650 752 

11 50 99.19 1410 99.02 1271 98.97 2306 99.332 2026 

12 50 99.56 1434 99.50 1123 99.70 1625 99.193 1471 

RPAMP  
200 
[6] 

13 200 99.44 2936 99.74 1377 99.20 6767 99.552 1681 

14 200 99.26 4019 99.42 2961 99.30 3602 99.644 2534 

15 200 99.39 3771 99.63 1759 99.19 6312 99.620 1655 

16 200 99.23 2321 99.73 1169 98.89 5774 99.369 817 

17 200 99.20 1507 98.61 1673 98.00 7991 99.337 1668 

18 200 99.01 1731 99.41 1047 98.84 6563 99.494 1632 

19 200 99.61 9948 99.80 1030 99.41 7347 99.666 1963 

20 200 99.13 3363 98.62 2225 98.30 5136 99.560 4968 

21 200 99.50 6151 99.51 3438 99.40 3997 99.733 2224 

22 200 99.47 2300 99.63 1557 99.31 1725 99.521 1591 

23 200 98.75 1755 98.82 837 98.67 3481 99.364 1680 

24 200 98.72 1886 99.50 877 98.89 3757 99.678 1171 

Average     99.03   99.11   98.78   99.283   
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