
 

 

Abstract: Recently we have proposed a new method 

combining interior and exterior approaches to solve 

linear programming problems. This method uses an 

interior point, and from there connected to the vertex of 

the so called station cone which is also a solution of the 

dual problem. This allows us to determine the entering 

vector and the new station cone. Here in this paper,  we 

present a new modified algorithm for the case, when at 

each iteration we determine a new interior point. The 

new building interior point moves toward the optimal 

vertex. Thanks to the shortened from both inside and 

outside, the new version allows to find quicker the 

optimal solution. The computational experiments show 

that the number of iterations of the new modified 

algorithm is significantly smaller than that of the second 

phase of the dual simplex method. 

 

Keywords Linear programming, simplex method, station 

cone 

I. INTRODUCTION 

Inventing linear programming by Danzig [4] in 1947 is 

recognized as one of the greatest mathematical discoveries 

of the 20th century. Since then, thousands of papers and 

monographs have appeared and dedication to this important 

mathematical field [see 1, 5, 12, 13]. Great sense of 

Danzig’s simplex method is probably not in the 

mathematical difficulty level, which is at the level of broad 

application in all areas of human life. Therefore any 

extension or modification of the simplex algorithm toward 

better are welcome. 

    In 1979 Khachian has opened a new horizon for the linear 

programming as prove that the linear programming problem 

be solved in polynomial time [7]. Khachian’s ellipsoid 

method gives a bound of  arithmetic operations on 

number with  digits. Despite its major theoretical 

advance, the ellipsoid method had little practical impact as 

the simplex method is more efficient for many classes of 

linear programming problems [1,8,12,13]. 

    Other important invention of the linear programming was 

in 1984, when Kamarkar [6] proposed a new projective 

method for linear programming which requires  

operations. Kamarkar’s algorithm not only improved 

Khachian's theoretical worst-case polynomial bound but in 

fact provides practical test results better than the simplex 

method. There are several important open problems in the 

theory of linear programming. One of them is the question : 

To be or not a variations of simplex algorithm that run in 

polynomial time? 

    In [3] Chu N.N, Duong P.C and Hue L.T have proposed a 

new algorithm combining interior and exterior approaches 

to solve linear programming problems. This method can be 

viewed as a variation of simplex method in combination 

with interior approach. Here in this paper,  we present a new 

modified algorithm for the case, when at each iteration we 

determine a new interior point. The new building interior 

point moves toward the optimal vertex. Thanks to the 

shortened from both inside and outside, the new version 

allows to find quicker the optimal solution.  

    The paper is organized as follows. In section 2 we 

introduce the concept of station cone which is fundametal 

important for the construction of the algorithm. In section 3, 

we describe the criterion of selecting the leaving variables. 

The section 4 proposes the selecting rule for entering 

vectors. The section 5 describes the ogirinal algorithm in 

[3]. The new modified algorithm is presenting in section 6. 

The section 7 presents the computational experiments. 

Finally, some discussions have been made in section 8. 

II. STATION CONE  

For the convenience of the reader, we would like to briefly 

present here the concept station cone [3]. Consider a linear 

programming problem in the matrix form 

 
max  ,

: ,  0 ,

c x

x P x Ax b x   
       (2.1) 

Where xn m n m nc ,A A ,b , x .     Let  

1 2 mA ,A ,...,A denote the row vectors.Through this paper we  

suppose that (2.1) and its dual problem are nondegenerated. 

We also suggest the feasible region  of (2.1) has strict 

interior points. For simplicity of argument, we assume that 

the matrix A has full column rank n and n < m. 

    Let     1 2
, ,..., 1,2,...,n nI i i i m  such that the 

vectors ,  i nA i I are linear independent. This means the 

vector ,  i nA i I  establish a basis of . Therefore any 

vector n

lA    can be expressed as a linear combination of 

the vectors i nA ,i I . Let 
kli be the  linear coefficient of the 

vector lA in the basis ,  
ki k nA i I , then 

1

,   1,2,..., ,  1,2,..., .
k k

n

lj li i j

k

a a j n l m


     

Consider the system of homogeneous linear inequalities 

0,   . 
ki k nA x i I        (2.2) 

We indeed need to introduce the following definition. 
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Definition 1.  Thelinear inequality 

0       lA x           (2.3) 

is called the consequent linear inequality of the system  (2.2) 

if and only if all the solutions of the system (2.2) satisfy the 

linear inequality (2.3). 

We need the following well known result in theory of linear 

inequalities.  

Theorem 2.1[2].  The linear inequality (2.3) is a consequent 

linear inequality of the system (2.2) if and only if 

                 
k k k

n

l li i li k n

k 1

A A , 0, i I 


    

Definition 2.   Let polyhedral cone M be defined by system  

       
1 1 2 2

,  , ...., ,
n ni i i i i iA x b A x b A x b    

where 
1 2
, ,...,

ni i iA A A are linear independent. Then M is 

called a station cone if the vector c is a nonnegative linear 

combination of the vectors 
1 2
, ,..., .

ni i iA A A  The vertex x* is 

called a station solution and the  vectors 
1 2
, ,...,

ni i iA A A  is 

called a basis of a station cone. 

In other words, the solutions of the system of linear 

inequalities that create the station cones satisfy the 

inequality *, ,c x c x , whereas x* is the vertex of the 

station cones. This is equal to the fact that the inequality 
*, ,c x c x  is the consequent inequality of the system of 

the linear inequalities, which formulate the station cone. 

This also means that the vector c is the nonnegative linear 

combination of the basic vectors of the station cone.  

We have the following result. 

Theorem 2.2[3].  If the station solution x* satisfies all the 

constraints of the problem (2.1) then x* is an optimal 

solution.  

III. SELECTING THE LEAVING VECTOR   

In this section, for convenience, we will repeat  the rule for 

selecting the leaving vector[3].  Let 
1 2
, ,...,

ni i iA A A  be the 

basis of the station cone and 

0

1 1

,  ,    1,2,...
k k

n n

k i j kj i

k k

c A A A j m 
 

     

Then from definion 2.1 follows that 

    0,   1,2,...ko k n    . 

We assume that all ko  are strictly positive, i.e.  

    0 0,  1,2,...,k k n   . 

It is obvious that 

0 00,  1,2,..., ;  0,  1,...,k kk n k n m       is a basis 

solution of the dual problem of (2.1): 

   min  , \ , 0T Tb A c         (3.1) 

where mR . The assumption 0 0,  1,2,...,k k n   means 

that the dual problem (3.1) is nondegenerated. 

So we have proved the following. 

Theorem 2.3 [3].   Let 
1 2
, ,...,

ni i iA A A  be the basis of the 

station cone. Suppose we replaced
ri

A by sA . Then 

1 1 1
,..., , , ,...,

r r ni i s i iA A A A A
 

is the basis of the station cone if 

the leaving vector
ri

A was chosen by condition 

0 0 ,min   0,   0.             r k
rsksk

rs ks


 

 
    (3.4) 

Theorem 2.4[3].  Among the coefficients ks , k = 1, 2,..., n  

at least one rs exists such that 0rs 
 
. 

IV. SELECTING THE ENTERING VECTOR  

The idea of algorithm in [3] is moving from one vertex kx  

of a station cone
kM to another vertex 

 k 1
x


of another 

station cone
k 1M 

 with a better value of the objective 

function. The movement depends on the cutting 

hyperplane s sA x b which will be defined by the 

intersection of the feasible polytope P and the segment 

connecting the vertex kx of the station cone
kM and the 

given interior point O P. The movement stops when the 

vertex kx of the station cone 
kM  becomes a feasible point.  

    Let O be a strict interior point of P. Denoted 

by 0 ,  1,2,...,i i n the projections of  onto  facets of the 

station cone . Let ,  1,2,...,iH i n be the intersection 

points of the boundary of  

P and the segments 0,  0 ,  1,2,...,i i n . Then the new point 

will be calculated by the following  

formula 

1

1
*

1

n

i

i

O H O
n 

 
  

  
        (4.1) 

It is obvious that  in (4.1) is the barycenter of the 

polytope 1 2, ,..., ,0.nH H H Let us connect the point  with 

vertex  of the station cone . Let  denote the 

intersection point of P and , such that 

, Then the inequality with 

 will be chosen as entering variable. This means 

the inequality will enter the next station cone 

( if  for some 1 2, ,..., ,0.nH H H  then we can 

choose any , …, ). The point 
kz will be 

calculated as follows. 

Denote  1,2,...,I m such that Ai kx > bi, i = 1, 2, …, m, 

we have to find ,  i i I   such that ,  ,i i iA z b i I   i.e. 

  ( (1 ) ) ,  0 1,  .k

i i i i iA O x b i I         

Therefore

 max (1 ) ,  ,  0 1,  i Ik

s i i i i i i i iz O x A z b             

will define the cutting hyperplane s sA x b and As is the 

entering vector into the next station cone Mk+1. If  k

i iA z b  

for  1 2, ,..., ki i i i  then we can choose any  1 2, ,...., ki i i i . 

Theorem 2.5[3].  Let kx be a vertex of Mk at step k. 

Suppose kx is a unique optimal solution of ,c x , Mk. 

Then 
1, ,k kc x c x  . 
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Remark 2.1. The assumption kx is a unique optimal solution 

of ,c x  on Mk which is equivalent to the assumption that 

the vector  c is a strict positive linear combination of the 

basis vectors of Mk i.e. 0 0,  1,2,...,k k n    . This means 

the dual problem (3.1) of (2.1) is nondegenerated.  

V. INTERIOR EXTERIOR ALGORITHM 

For convernience, we will describe here the algorithm was 

proposed in [3]. 

1. Initialization 

Determine the starting station cone . Calculate the point 

 by formula (4.1). 

Let: . 

2. Step  

If the vertex   of the station cone  is a feasible point of 

P, then  is an optimal solution. In the contrary case, select 

the inequality  for entering the station cone and 

define the inequality  for leaving the station cone. 

Determine the new station cone  with the vertex 

.  

Go to next step . 

Remark. Except for the calculation for finding the entering 

variable, each step of the above algorithm is a simplex 

pivot. 

    With the assumption that the dual problem (3.1) of (2.1) 

is nondegenerated, then 

Theorem 2.6 [3].  The above algorithm produces an 

optimal solution after a finite number of iterations. 

VI. NEW MODIFIED ALGORITHM 

Unlike the algorithm in Section 5, in the section below, we 

will develop algorithms that at each iteration k will have to 

find new points Ok. The sequence of interior points Ok 

moves toward optimal vertex. And so we conduct parallel 

two asymptoticall, from outside to inside and from the 

inside out. The interior piont Ok will be defined as follows: 

 
  k

k 1 k k k k n

1
O O 1 z ,

2
      

 
Clearly that  Ok+1 is an interior point of  P. Let 

 
We noticed Ok+1 is also an interior point of the following 

problem 

max<c,x> 

.   (6.1) 

Obviously, the constraint  has eliminated 

part of the feasible region Pk . So the problem (6.1) has 

smaller feasible region after each iteration. 

    In [ 9,10 ] K. G.Murty has shown that from the interior 

point , can build the biggest sphere in Pk+1 with 

center  on the hyperplane , and the 

construction sphere requires polynomial computational 

complexity. Here for simplicity, instead of finding the 

center   of the biggest sphere, we find the point   

as in (4.5). Let . For convenience, we will call 

the algorithm which is described below as station cone 

algorithm.  

1. Initialization 

Determine the starting station cone . Calculate the point 

 by formula (4.1). Let: , , Ok=  .  

2. Step  

If the vertex   of the station cone  is a feasible point of 

Pk , then  is an optimal solution. In the contrary case, 

select the inequality  for entering the station cone 

and define the inequality  for leaving the station 

cone. Determine the new station cone  with the 

vertex . Calculate the points :  ,yk, Ok+1, . Let 

. 

Go to next step . 

VII. COMPUTATIONAL EXPERIENCES 

 

Table 1.     150 300, 200 700n m . 

n m Problem 

Iterations 

STATION 

CONE 
SIMPLEX 

 150 200 

1 1014 12367 

2 1251 14973 

3 957 11586 

150 250 

1 1245 14868 

2 1123 13834 

3 976 11676 

200 300 

1 2238 25476 

2 2153 24650 

3 2630 28314 

250 300 

1 3183 36429 

2 3242 37878 

3 3465 41568 

250 500 

1 5357 66946 

2 5403 63309 

3 5162 68936 

300 600 1 7746 108541 

350 700 1 10065 158096 

 

Table 2. n = 40, 100, 300, 400, 500;  m=200,1000 

n m Problem 

Iterations 

STATION 

CONE 

DUAL 

SIMPLEX 

   40 200 

1 184 1250 

2           196 1633 

3 212 1485 

100 200 

1 621 7654 

2 719 8547 

3 708 8288 

300 1000 1 7843  238321 

400 1000 2 11456  393562  

500 1000 3 18305 587656  
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The statione cone algorithm have been tested, using 

MatLab, on a set of randomly generated linear problems[11] 

of the form 

    
max  ,  

     ,

c x

Ax b






          (7.1) 

Where , A is the full matrix of ( n m ) 

with
ija is randomly generated from the interval [0,1), the 

vector b has been chosen such that the hyperplanes 

, ,  1,...,i iA x b i m  are tangent to the sphere(0, 1) with 

center at origin and radius r= 1.To ensure  that (7.1) has a 

finite optimal solution we add the constraints 

 1 ,   1,2,..., .ix i n      (7.2) 

The optimal solution and objective function value of ((7.1)-

(7.2)) have been retested by simplex  and dual algorithm 

from MatLab. We tested several hundreds of examples. Due 

to the limited framework of the article, here we print out 2 

table results. 

VIII. DISCUSSION 

1. The main purpose of the station cone algorithm is 

simultaneously approaching from inside out and outside in. 

From the outside is moving in from one to other station 

cone. From the inside out is the building sequence of 

interior points, such that each subsequent point near the 

optimal solution than the previous point. 

2. Each iteration of the statione cone algorithm is a simplex 

pivot. If we can figure out how to build point Ok so that 

their numbers are limited on by a polynimial, then we can 

construct a polynomial algorithm for linear programming. 

3. Test data is generated randomly. All input matrix are full 

density. This has made the tests take quite time, especially 

when m and n are large enough. 

4. Test results show that, with the increase of m and n, the 

number of iterations of the dual simplex rose much faster 

than the number of iterations of the station cone algorithm. 

In other words, the station cone algorithm has more 

advantages when m and n are large numbers. 

5. We believe that there is a class of linear programming 

which allow to construct a polynomial sequence of  interior 

points converging to the optimal solution. And we will try 

to find a such class of linear programming in future research 

work. 
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