
The Eigen-distribution for Multi-branching Trees
Weiguang Peng, Shohei Okisaka, Wenjuan Li and Kazuyuki Tanaka

Abstract—In the present work, we extend the studies on
eigen-distribution for uniform binary trees to balanced multi-
branching trees. We show that for such general trees, an eigen-
distribution is still equivalent to Ei-distribution with respect to
alpha-beta pruning algorithms and the uniqueness of eigen-
distribution holds, although the uniqueness fails if we are
restricted to directional algorithms.

Index Terms—randomized complexity, alpha-beta pruning
algorithms, balanced trees, uniform trees, AND-OR trees.

I. INTRODUCTION

THIS study is a continuation of Liu and Tanaka [2]
which investigated uniform binary AND-OR trees. We

extend the study to a multi-branching case. By balanced
multi-branching, we mean that all the nonterminal nodes at
the same level have the same number of children and all
paths from root to leaf are of the same length. It should
be noted that the balancedness makes no restriction on the
number of children for nodes at different levels. Because
of the page limit of this paper, we mostly concentrate on
T h
n , an n-branching tree with height h. We here notice that

the argument for the uniform binary trees T h
2 cannot be

generalized to T h
n (n > 2) directly, since T h

n inevitably
corresponds to a non-uniform binary tree.

We quickly review the basics of game trees. An AND-
OR tree (OR-AND tree, respectively) is a tree whose root is
labeled AND (OR), and sequentially the internal nodes are
level-by-level labeled by OR-node and AND-node (AND-
node and OR-node) alternatively except for leaves. Each leaf
is assigned with Boolean value 0 or 1, via an assignment.
By evaluating a tree, we are trying to compute the Boolean
value of the root. The cost of computation is the number of
leaves that are queried during the computation, regardless of
the remaining unqueried leaves.

An algorithm tells how to proceed to evaluate a tree. The
performance of algorithms makes a significant effect on the
cost of computation. Among all these algorithms, alpha-
beta pruning algorithm is known as one of the classical and
effective algorithms [1] [5]. In this paper, we only consider
alpha-beta pruning algorithms.

A randomized algorithm is a distribution over a family of
deterministic algorithms. For a randomized algorithm, cost is
computed as the average cost over the corresponding family
of deterministic algorithms. Yao’s principle [10] indicates the
relation between randomized complexity and distributional

Manuscript received December 7, 2015; revised January 14, 2016. This
work was supported in part by the Grants-in-Aid for Science Research
(Japan): No. 2654001 and No. 15H03634.

W. Peng (e-mail: pwgmath@gmail.com), S. Okisaka (e-mail: shohei.
okisaka@gmail.com), W. Li (e-mail: sb2m701@math.tohoku.ac.jp) and K.
Tanaka (e-mail: tanaka@math.tohoku.ac.jp) are with the Mathematical In-
stitute, Tohoku University, Japan.

complexity as follows,

min
AR

max
ω

cost(AR, ω)︸ ︷︷ ︸
Randomized complexity

= max
d

min
AD

cost(AD, d).︸ ︷︷ ︸
Distributional complexity

where AR ranges over randomized algorithms, ω ranges
over assignments for leaves, d ranges over distributions
on assignments and AD ranges over deterministic algo-
rithms. This result provides a new perspective to analyze
randomized algorithms. Saks and Wigderson [6] showed
that for any n-branching tree, the randomized complexity
is Θ((n−1+

√
n2+14n+1
4)h), where h is the height of tree.

Recently, several works have been done for uniform binary
trees. Based on Saks and Wigderson [6], Liu and Tanaka
[2] proposed the concept of eigen-distribution on assign-
ments. They claimed that an eigen-distribution among the
independent distributions (ID) is actually independently and
identically distributed (IID). Suzuki and Niida [8] proved a
stronger result by fixing the probability of root.

Liu and Tanaka [2] also introduced a reverse assigning
technique to formulate sets of assignments for T h

2 , namely
1-set and 0-set, in the case that assignments to leaves are cor-
related distributed (CD). They showed that E1-distribution
(a distribution on 1-set such that all deterministic algorithms
have the same cost) is a unique eigen-distribution (the Liu-
Tanaka Theorem). Suzuki and Nakamura [7] furthermore
studied certain subsets of deterministic algorithms on T h

2

and proved that the eigen-distribution w.r.t. a “closed” subset
of alpha-beta pruning algorithms is unique, but for a set of
directional algorithms, it is not unique.

In this study, we proceed to balanced multi-branching
case. In Section III, we investigate the relation between
eigen-distribution and Ei-distribution for multi-branching
trees. In Section IV, we mainly show that the uniqueness
of eigen-distribution holds for the set of alpha-beta pruning
algorithms, although the uniqueness does not hold for the set
of directional algorithms.

II. PRELIMINARY

For simplicity, we just consider n-branching trees, but
most of our results also hold for general balanced multi-
branching trees.

In this study, we restrict ourselves to alpha-beta pruning
algorithms. It should be noted that such a algorithm is both
depth-first and deterministic. Depth-first means that when the
algorithm evaluates the value of a certain node, it would not
stop querying the leaves under this node until it knows the
value of the node. An algorithm is directional if it queries the
leaves in a fixed order, independent from the query history
[4]. A typical directional algorithm SOLVE evaluates a tree
from left to right [4]. We denote AD the set of all alpha-
beta pruning algorithms, and Adir the set of all directional
algorithms.

First, we define a node-code for T h
n as follows.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Definition 1 (Node-code). Given a tree T h
n , a node-code is

a finite sequence over {0, 1, · · · , n− 1}.
• The node-code of root is the empty sequence ε.
• For a nonterminal node with node-code v, the node-code

for its n children are in the form of v0, v1, · · · , v(n−1)
from left to right.

We often identity “node” with “node-code”.
Then the assignment for T h

n is a function ω :
{0, 1, · · · , n − 1}h → {0, 1}. The set of assignments is
denoted as Ω(T h

n). If T h
n is clear from the context, then

we just denote it as Ω.
Let C(A, ω) denote the cost of an algorithm A under an

assignment ω. Given a set of assignments Ω, d a distribution
on Ω and A ∈ AD, then the average cost by A with respect
to d is defined by C(A, d) =

∑
ω∈Ω d(ω) · C(A, ω).

The concept of “transposition” has been introduced to
investigate T h

2 in [7]. We extended this notion to n-branching
trees. To start with, we introduce the transposition of node.

Definition 2 (Transposition of node, an extension of Defini-
tion 4 in [7]). For T h

n , suppose u is an internal node. For
i < n, by trui (v), we denote the i-th u-transposition of a
node v in T h

n , which is defined as follows

• The 0-th u-transposition of v is itself, that is, tru0 (v) =
v.

• For i ∈ {1, · · · , n− 1}, trui (v) is defined by

trui (v) =

u(i− 1)s if v = uis,

uis if v = u(i− 1)s,

v otherwise

where s is a finite sequence over {0, 1, · · · , n− 1}.

Definition 3 (Transposition of assignment). For T h
n , suppose

that u is an internal node, ω is an assignment. The i-th u-
transposition of ω, denote trui (ω), is defined by trui (ω)(v) =
ω(trui (v)), where v is a leaf of T h

n .

Example 1. Fig. 1 shows an example of T 2
3 with assignment

ω = 000100111. For transposition of node, if u = 0 and

1 2

00 01 02 10 11 12 20 21 22
 0 0 0 1 0 0 1 1 1

0

Fig. 1. An example of T 2
3

i = 1, then tr0
1(00) = 01, tr0

1(01) = 00, and for other
v, tr0

1(v) = v. For transposition of assignment, trε2(ω) =
000111100, and tr1

1(ω) = 000010111.

Definition 4 (Transposition of algorithm). For T h
n , suppose

that u is an internal node, and A an algorithm in AD. For
each assignment ω and the query history (α1, · · · , αm) of
(A, trui (ω)), the i-th u-transposition of A, denote trui (A), has
the query history (β1, · · · , βm) such that βj = trui (αj) for
each j ≤ m.

Note that C(A, trui (ω)) = C(trui (A), ω).

Definition 5 (Equivalent assignment class, closeness, con-
nectness). For T h

n , any assignments ω, ω′, we denote ω ≈ ω′
if ω′ = trui (ω) for some u, i. An assignment ω is equivalent
to ω′ if there exists a sequence of assignments 〈ωi〉i=1,··· ,s
such that ω ≈ ω1 ≈ · · · ≈ ωs ≈ ω′ for some s ∈ N. Then
we denote [[ω]] as the equivalent assignment class of ω.
• A set Ω of assignments is closed if Ω =

⋃
ω∈Ω [[ω]].

• A set Ω of assignments is connected if for any assign-
ments ω, ω′ ∈ Ω, there exists a sequence of assignments
〈ωi〉i=1,··· ,s in Ω such that ω ≈ ω1 ≈ · · · ≈ ωs ≈ ω′.
• Given A ⊆ AD, A is closed (under transposition) if for
any A ∈ A, each internal node u and i < n, trui (A) ∈ A.

Definition 6 (i-set for n-branching trees, adapted from [2]).
Given T h

n , i ∈ {0, 1}, i-set consists of assignments such that
• the root has value i,
• if an AND-node has value 0 (or OR-node has value 1), just
one of its children has value 0 (1), and all the other n − 1
children have 1 (0).

Note that i-set is closed and connected for i∈{0, 1}.

Definition 7 (i∗-set, i′-set). Given T h
n , i ∈ {0, 1},

• i∗-set is the set of all assignments ω such that ω(ε) = i
and ω /∈ i-set.
• A closed set Ω of assignments is called an i′-set if it is
not i-set and for any ω ∈ Ω, ω(ε) = i.

Definition 8 (Ei-distribution from [2]). Suppose A is a
subset of AD. A distribution d on i-set is called an Ei-
distribution w.r.t. A if there exists c ∈ R such that for any
A ∈ A, C(A, d) = c.

III. THE EQUIVALENCE OF EIGEN-DISTRIBUTION AND
Ei-DISTRIBUTION FOR MULTI-BRANCHING TREES

In this section, at first we show that any alpha-beta pruning
algorithm on a closed set of assignments with uniform
distribution (i.e., the same probability) has the same cost,
then give some technical lemmas to show that the average
cost on 1-set is larger than the average cost on any i′-
set. Based on these results, we investigate the equivalence
of eigen-distribution and Ei-distribution for multi-branching
trees. In the following sections, we denote A as a nonempty
closed subset of AD.

Definition 9 (Definition 6 in [7]). Suppose that p1, · · · , pm
are non-negative real numbers such that their sum is 1,
Ω1, · · · ,Ωm are disjoint non-empty subsets of assignments.
We say that d is a distribution on p1Ω1 + · · ·+ pmΩm if for
each 1 ≤ j ≤ m, there exists a distribution dj on Ωj such
that d = p1d1 + · · ·+ pmdm.

For T h
2 , Suzuki and Nakamura [7] applied a version of

no-free-lunch theorem from [9] to study the equivalence of
eigen-distribution and E1-distribution. We can easily see that
this theorem also works in the case of n-branching trees as
we state below.

Lemma 1. For T h
n , suppose p1, · · · , pm and Ω1, · · · ,Ωm

as in Definition 9. Assume that each Ωj is connected. Then
there exists c ∈ R such that for each distribution d on p1Ω1+
· · ·+ pmΩm,

∑
A∈A C(A, d) = c holds.

Proof: See Lemma 1 in [7].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Following is a technical lemma to show that for any closed
subset of assignments with uniform distribution, all alpha-
beta pruning algorithms have the same cost.

Lemma 2. For T h
n , suppose p1, · · · , pm and Ω1, · · · ,Ωm

as in Definition 9 and moreover each Ωj is closed. Let
dunif(p1Ω1 + · · · + pmΩm) denote the distribution p1d1 +
· · · + pmdm, where each dj is the uniform distribution on
Ωj . Then there exists c ∈ R such that for any algorithm
A ∈ AD, C (A, dunif(p1Ω1 + · · ·+ pmΩm)) = c.

Proof: To begin with, we handle the case m = 1. We
prove this case by induction on height h.
• For case h= 1. Since Ω1 is closed,

∑
ω∈Ω1

C(trεi (A), ω)=∑
ω∈Ω1

C(A, ω). Then C(A, dunif(Ω1))= C(trεi (A), dunif(Ω1)).

• For the induction step, we show the case h+1 by induction
on the number n of children under the root of tree T , which
is obtained from T h

n by cutting off some subtrees connecting
the root.

(1) For n = 1, it is obvious.
(2) For induction step, T is divided into T0 and T ′ as

shown in Fig. 2, where T0 = T h
n is the left-most subtree

under the root, and T ′ denotes the rest part.

0 1 n-1

T0
T’

root

Fig. 2. An illustration of division of T

Then Ω1 can be represented by Ω1 =
⊔

ω0∈W {ω0} ×
Ω′ω0

(disjoint union), where ω0 is an assignment for the left-
most subtree T0, W is a closed set of assignments for T0

and Ω′ω0
= {ω′ : ω0ω

′ ∈ Ω} is a closed set for T ′.
To compute C(A, dunif(Ω1)), we may assume that A

evaluates T0 first since Ω1 is closed. Then C(A, dunif(Ω1))
can be represented by

1
|Ω1| ·

∑
ω0∈W

∑
ω′∈Ω′ω0

[
C(A0, ω0) + C(A′ω0

, ω′)
]
,

where A0 is an algorithm for T0, A′ω0
is an algorithm for T ′

which is applied after A evaluates the subtree T0 under the
assignment ω0. If the algorithm stops before A′ω0

starts, we
set C(A′ω0

, ω′) = 0 for each ω′ ∈ Ω′ω0
.

Thus, C(A, dunif(Ω1)) can be computed as

1
|Ω1|

∑
ω0∈W

[
|Ω′ω0
|C(A0, ω0) +

∑
ω′∈Ω′ω0

C(A′ω0
, ω′)

]
. (∗∗)

It is observed that W can be partitioned as W =
W1

⊔
· · ·
⊔
Wk such that each Wj is closed and connected,

then for any ω, ω′ ∈ Wj , Ω′ω = Ω′ω′ . So we let aj =| Ω′ω |
for ω ∈ Wj . Also by induction hypothesis in (2), we know
that for any ω0 ∈Wj ,

∑
ω′∈Ω′ω0

C(A′ω0
, ω′) is a constant or

0 and then we denote it by bj . Thus, (**) can be replaced
by

1
|Ω1|

k∑
j=1

∑
ω0∈Wj

[aj · C(A0, ω0) + bj]

= 1
|Ω1|

k∑
j=1

[
aj ·

∑
ω0∈Wj

C(A0, ω0) + bj |Wj |

]
.

By induction hypothesis,
∑

ω0∈Wj
C(A0, ω0) is a con-

stant, say ej , when we fix some j. Therefore

C(A, dunif(Ω1)) = 1
|Ω1|

k∑
j=1

[aj · ej + bj · |Wj |] .

For the case m > 1, there exists ci such that
C(A, dunif(Ωi)) = ci for 1 ≤ i ≤ m. It follows that
C (A, dunif(p1Ω1 + · · ·+ pmΩm)) = p1c1 + · · ·+ pmcm.

By our Lemma 2 and analogy to Lemma 2 in [7], we have

Lemma 3. For any T h
n , suppose that p1, · · · , pm and

Ω1, · · · ,Ωm as in Definition 9 and each Ωj is closed and
connected, d is a distribution on p1Ω1 + · · ·+ pmΩm. Then
the following (i), (ii) and (iii) are equivalent:
(i) min

A∈A
C(A, d)=max

d′
min
A∈A

C(A, d′), where d′ is a distribu-
tion on p1Ω1 + · · ·+ pmΩm.

(ii) There exists c ∈ R such that for any A ∈ A, C(A, d) =
c holds.

(iii) min
A∈A

C(A, d) =
∑

m≥j≥1

pjC(A, dunif(Ωj))

Our goal of this section is to investigate the relation of
eigen-distribution and E1- distribution w.r.t. A. To show this,
we first need to consider the relation between average cost
over 1-set and cost over any closed sets. We start with the
base case of height 2, and then extend to general height h.

Part I: The case for height 2

In this part, we only consider AND-OR trees T 2
n .

Definition 10 (The corresponding subset of 1∗-set). For an
AND-OR tree T 2

n and any ω ∈ 1-set, ω can be represented
in the form of

n︷ ︸︸ ︷
0 · · · 0︸ ︷︷ ︸

a0

1 0 · · · 0︸ ︷︷ ︸
b0

· · ·
n︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
ai

1 0 · · · 0︸ ︷︷ ︸
bi

· · ·
n︷ ︸︸ ︷

0 · · · 0︸ ︷︷ ︸
an−1

1 0 · · · 0︸ ︷︷ ︸
bn−1

.

Then the corresponding subset of 1∗-set for ω is defined by

Λω = {0a01u00a11u1 · · · 0an−11un−1 : ui ∈ {0, 1}bi}\{ω}

Since by Lemma 2, the average cost does not depend on an
algorithm, we may only consider SOLVE. By the definition
of SOLVE, we can directly get the following lemma.

Lemma 4. For any ω, ω′ ∈1-set, if C(SOLVE, ω) =

C(SOLVE, ω′), then
n−1∑
i=0

bi =
n−1∑
i=0

b′i and | Λω |=| Λω′ |.

For any ω ∈ 1-set, if C(SOLVE, ω) = k, then we
have | Λω |= 2n

2−k − 1. We can write 1∗-set =⊔
n≤k≤n2

⊔
ω ∈ 1-set,

C(SOLVE, ω) = k

Λω . Thus, for any A ∈ AD, | 1∗-set |=

∑
n≤k≤n2 | {ω ∈ 1-set : C(A, ω) = k} | ·(2n2−k − 1).
For simplicity, we denote C(ω) = C(SOLVE, ω) and

C(Ω) = C(A, dunif(Ω)), where A ∈ AD and Ω is closed.
Following is a key technical lemma for the next theorem.

Lemma 5. For any non-negative integers a1, · · · , an,
b1, · · · , bn and c1, · · · , cn, if b1 > b2 > · · · > bn and

c1 < c2 < · · · < cn, then

n∑
k=1

ak·ck
n∑

k=1

ak

>

n∑
k=1

ak·bk·ck
n∑

k=1

ak·bk
.

Proof: It is enough to show that

(
n∑

k=1

ak ·ck)(
n∑

k=1

ak ·bk)−(
n∑

k=1

ak ·bk ·ck)(
n∑

k=1

ak) > 0 (∗)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Left side of (∗) =
n∑

k,l=1

ck · ak · al · bl −
n∑

k,l=1

ck · ak · bk · al

=
∑

1≤k<l≤n
ck · ak · al(bl − bk)−

∑
1≤k<l≤n

cl · ak · al(bl − bk)

=
∑

1≤k<l≤n
(ck − cl) · ak · al · (bl − bk)

Since ck − cl < 0 and bl − bk < 0, (∗) holds.

Theorem 1. C(1∗-set) < C(1-set).

Proof: Since 1∗-set and 1-set are closed, we fix the algo-
rithm as SOLVE. By the construction of 1-set and 1∗-set, for
any assignment ω in 1-set expect ω̂ = 0 · · · 0︸ ︷︷ ︸

n−1

1 · · · 0 · · · 0︸ ︷︷ ︸
n−1

1

︸ ︷︷ ︸
n×n

,

there exists at least one assignment ω′ of 1∗-set such that
C(ω) = C(ω′). By Lemma 4, for those assignments of 1-set
that have the same cost w.r.t. SOLVE, their corresponding
subsets of 1∗-set are of the same cardinality. Thus, we
compute the average cost on 1∗-set by

C(1∗-set) =
1

| 1∗-set |
∑

ω∈1∗-set

C(ω)

=

∑n2

k=n k· | {ω ∈ 1-set : C(ω)=k} | ·(2n2−k − 1)∑n2

k=n | {ω ∈ 1-set : C(ω)=k} | ·(2n2−k − 1)
.

The average cost on 1-set can be calculated by

C(1-set) =

∑n2

k=n k· | {ω ∈ 1-set : C(ω) = k} |∑n2

k=n | {ω ∈ 1-set : C(ω)=k} |
.

Thus by Lemma 5, we show that C(1∗-set) < C(1-set)
Furthermore, we provide a new method to show the

relation between average cost on i-set for i ∈ {0, 1} and
the average cost on any i′-set. Recall that the costs over 0-
set and 1-set were studied in [3].

Theorem 2 (Theorem 7 in [3]).
C(0-set) = n2+4n−1

4 , C(1-set) = n(n+1)
2 .

Lemma 6. For any connected 1′-set Ω, C(Ω) < C(1-set).

Proof: We can find an assignment in Ω in the form of
ω = 0a01b0 · · · 0an−11bn−1 where for each i < n, ai+bi =n.

Let M = max{C(ω) : ω ∈ Ω}. Since Ω is closed and
connected, we can show M = n+

∑n−1
i=0 ai. We claim that

C(Ω) ≤ M + n

2
. (?)

The inequality (?) implies that C(Ω) < C(1-set) because
M < n2 and C(1-set) = n2+n

2 (by Theorem 2).
To show (?), we denote the reverse order of an assignment

ω by ωR. For example, if ω = 100110011, ωR = 110011001.
Since Ω is closed, the map

ω 7→ ωR is a bijection on Ω. (‡)

Moreover it is easy to show C(ω) + C(ωR) ≤ M + n for
any ω ∈ Ω.

By (‡), we have C(Ω) =

∑
ω∈Ω

C(ω)

|Ω| =

∑
ω∈Ω

C(ω)+
∑

ω∈Ω

C(ωR)

2|Ω| .

Thus, C(Ω) ≤ (M+n)|Ω|
2|Ω| = M+n

2 .

Lemma 7. If Ω = Ω1

⊔
· · ·
⊔

Ωk, where each Ωi is closed

and pairwise disjoint, then C(Ω) =
k∑

i=1

|Ωi|
|Ω| C(Ωi).

By Lemma 6 and 7, we get the following theorem.

Theorem 3. For any 1′-set Ω, C(1-set) > C(Ω).

Given sets of assignments 〈Ωi〉0≤i≤n−1, we define Ω0 ×
· · · × Ωn−1 = {ω0 · · ·ωn−1 : ωi ∈ Ωi for i < n}. For any
assignment ω of any 0′-set, we represent ω = ω0 · · ·ωn−1,
where each ωi is the assignment of i-th subtree. We denote
ω` as the first ωi such that ωi = 0n and ωL as the last ωi

such that ωi = 0n in ω.
Thus for ω ∈ Ω0×· · ·×Ωn−1 such that ω(ε) = 0, we have

C(SOLVE, ω) =
∑`

i=0 C(SOLVE, ωi). That is, the problem
of computing C(SOLVE, ω) turns into searching for the first
0n-segment that appears in ω.

Lemma 8. For any connected 0′-set Ω, C(Ω) < C(0-set).

Proof: For ω ∈ Ω, let ω = ω0 · · ·ωn−1. First, if ωi is
in the form of ωi = 0ai1ui, the reverse order of ωi can be
denoted as ωR

i = 0bi1vi where ai + bi ≤ n − 1, ui and vi
sequence over {0, 1}. Otherwise, ωR

i = ωi = 0n.
We denote ω′ = ω0

R · · ·ωn−1
R, ω′′ = (ω′)

R and ω′′′ =
ωR. Since the tree is an AND-OR tree of height 2 and ω(ε) =
0, the computation for ω will stop immediately after it finds
the first 0n-segment in ω. Then, we have

C(ω) =
∑

i<` ai + `+ n,

where the first 0n-segment appears in ω`,
∑

i<` ai counts the
number of 0’s that has been searched in the form of 0ai1ui
before ω`, ` counts the number of 1’s that has been searched
in the form of 0ai1ui before ω` and n is the cost of ω`.

Through the same approach, we can compute
C(ω′) =

∑
i<` bi + `+ n,

C(ω′′) =
∑

i>L ai + (n− L− 1) + n
C(ω′′′) =

∑
i>L bi + (n− L− 1) + n.

Here denote C̃(ω) = C(ω) + C(ω′) + C(ω′′) + C(ω′′′).

Then, C̃(ω) =
∑

i/∈[`,L]

(ai + bi) + 2[n− (L− `)− 1] + 4n.

Since ai + bi ≤ n− 1 for each i, we have∑
i/∈[`,L]

(ai + bi) ≤ (n− 1)[n− (L− `)− 1].

Thus,
C̃(ω) ≤ (n− (L− `)− 1) · (n+ 1) + 4n ≤ n2 + 4n− 1.

Since Ω is an 0′-set, we have C̃(ω) < n2 + 4n− 1.

Thus C(Ω) = 1
4|Ω|

∑
ω∈Ω

C̃(ω) < n2+4n−1
4 = C(0-set).

By Lemma 7 and 8, we obtain the relation between average
cost on the 0-set and any 0′-set.

Theorem 4. For any 0′-set Ω, C(0-set) > C(Ω).

Using similar proof ideas in Theorem 3 and 4, we can also
show the relations for OR-AND trees. Hence, we can get a
more general statement as follows.

Theorem 5. Given T 2
n which can be either AND-OR tree or

OR-AND tree, for any i′-set Ω, C(i-set) > C(Ω).

Part II: The general case for height h

In this part, we extend the study to height h ≥ 2. To
simplify the notation, throughout the rest part, we denote
C(i-set) by C∧,hi (C∨,hi , respectively) for AND-OR trees
(OR-AND trees, respectively) of height h. For any i′-set Ω,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

we denote C(Ω) by C∧,hΩ (C∨,hΩ , respectively) for AND-
OR trees (OR-AND trees, respectively) of height h. Let i-
set(∧, h) denote i-set for AND-OR trees T h

n and i-set(∨, h)
denote the i-set for OR-AND trees T h

n .
Note that for any AND-OR (OR-AND) tree T h+1

n , we
can easily get n OR-AND (AND-OR) subtrees T h

n under
the root of T h+1

n . The following lemma shows the relation
of cost between them.

Lemma 9. C∧,h+1
1 = nC∨,h1 , C∧,h+1

0 = C∨,h0 + n−1
2 C∨,h1 ,

C∨,h+1
1 = C∧,h1 + n−1

2 C∧,h0 , and C∨,h+1
0 = nC∧,h0 .

Proof: We fix the algorithm as SOLVE. 0-set(∧, h+

1) can be represent as 0-set(∧, h+ 1)=
n−1⊔
k=0

Ωk such that

Ωk = (1-set(∨, h))
k × 0-set(∨, h) × (1-set(∨, h))

n−(k+1).
Let m0 = |0-set(∨, h)| and m1 = |1-set(∨, h)|.

C∧,h+1
0 =

∑
ω∈0-set(∧,h+1)

C(ω)

| 0-set(∧, h+ 1) |
=

n−1∑
k=0

∑
ω∈Ωk

C(ω)

n ·m0 · (m1)n−1

=

n−1∑
k=0

∑
ω0···ωn−1∈Ωk

∑
i<k

C(ωi)

n ·m0 · (m1)n−1︸ ︷︷ ︸
(a)

+

n−1∑
k=0

∑
ω0···ωn−1∈Ωk

C(ωk)

n ·m0 · (m1)n−1︸ ︷︷ ︸
(b)

Since ωk ∈ 0-set(∨, h), ωi ∈ 1-set(∨, h), i 6= k,

(b) =

n−1∑
k=0

∑
ω∈0-set(∨,h)

(m1)n−1 · C(ω)

n ·m0 · (m1)n−1
=

∑
ω∈0-set(∨,h)

C(ω)

m0
.

Also (a) can be calculated as n−1
2m1
·

∑
ω∈1-set(∨,h)

C(ω). Thus,

C∧,h+1
0 = (a) + (b) = C∨,h0 +

n− 1

2
C∨,h1 .

In the same way, we can get other equalities.

Theorem 6. For i′-set Ω, C∧,hi > C∧,hΩ and C∨,hi > C∨,hΩ .

Proof: Since Ω is closed, we can fix the algorithm as
SOLVE. We show this by induction on height h. By Theorem
5, the base case h = 2 holds.

For h > 2, let Ω = Ω1 t · · · t Ωk, where for each
i ∈ {1, · · · , k}, Ωi = [[ω0

i]] × · · · × [[ωn−1
i]] and ωj

i is an
assignment of the j-th subtree under the root of T h

n .

• First, we show C∧,h+1
1 > C∧,h+1

Ω , where Ω is a 1′-set.

C∧,h+1
Ω = 1

|Ω|
∑
ω∈Ω

C(ω) = 1
|Ω|

k∑
i=1

∑
ω∈Ωi

C(ω)

= 1
|Ω|

k∑
i=1

n−1∑
m=0

∏
j 6=m

|[[ωj
i]]|

∑
wj

i∈[[ωj
i]]

C(wj
i)

= 1
|Ω|

k∑
i=1

n−1∑
m=0
| Ωi | C∨,h[[ωm

i]] =
k∑

i=1

|Ωi|
|Ω|

n−1∑
m=0

C∨,h[[ωm
i]].

By induction hypothesis, C∨,h[[ωm
i]] < C∨,h1 . Thus,

C∧,h+1
Ω <

k∑
i=1

|Ωi|
|Ω|

n−1∑
m=0

C∨,h1 = nC∨,h1 = C∧,h+1
1 .

• Next, we show C∧,h+1
0 > C∧,h+1

Ω , where Ω is a 0′-set.

For ω = ω0 · · ·ωn−1 of T h+1
n , we denote ω̃ =

ωn−1 · · ·ω0. Similar with Lemma 8, let ` (L, respectively)

denotes the minimum (maximum) number such that ω` (ωL,
respectively) assigns 0 to all the leaves of `-th (L-th) subtree
under the root. Then C∧,h+1

Ω can be computed by
1
|Ω|

∑
ω∈Ω

C(ω) = 1
2|Ω|

∑
ω∈Ω

[C(ω) + C(ω̃)]

= 1
2|Ω|

k∑
i=1

| Ωi |
[
C∨,h

[[ω0
i]]

+ · · ·+ C∨,h
[[ω`

i]]
+ C∨,h

[[ωL
i]]

+ · · ·+ C∨,h
[[ωn−1

i]]

]
.

By induction hypothesis,

C∧,h+1
Ω <

k∑
i=1
|Ωi|[`C∨,h1 +2C∨,h0 +(n−L−1)C∨,h1]

2|Ω|

≤ 1
2|Ω|

k∑
i=1

| Ωi |
[
(n− 1)C∨,h1 + 2C∨,h0

]
= n−1

2 C∨,h1 + C∨,h0 = C∧,h+1
0 .

Theorem 7. For any T h
n , C∧,h1 > C∧,h0 .

Proof: We show that for h ≥ 1,

C∧,h1 = C∨,h0 , C∨,h1 = C∧,h0 and
n+ 1

2
C∨,h1 > C∨,h0 , (♠)

which implies C∧,h+1
1 > C∧,h+1

0 by Lemma 9.
We prove (♠) by induction on height h. For h = 1,

C∧,11 = C∨,10 = n, C∨,11 = C∧,10 = n
2 .

For the induction step, the first two equalities follows
from Lemma 9 and n+1

2 C∨,h+1
1 = n+1

2 C∧,h1 + n2−1
4 C∧,h0 >

(n+1)2

4 C∧,h0 > nC∧,h0 = C∨,h+1
0 .

By Theorem 6 and 7, we have the following theorem.

Theorem 8. For an AND-OR tree T h
n , any closed but not

1-set Ω, C(1-set) > C(Ω).

By Lemma 3 and Theorem 8, we can easily show that

Lemma 10. For an AND-OR tree T h
n and d an eigen-

distribution w.r.t. A, then d is a distribution on the 1-set.

Theorem 9. Assume an AND-OR tree T h
n , d is a probability

distribution on the assignments, A is a closed subset of AD.
Then the following two conditions are equivalent.

a) d is an eigen-distribution w.r.t. A.
b) d is an E1-distribution w.r.t. A.

Proof: By Lemma 10, d is an eigen-distribution on 1-
set. Thus the equivalence holds by Lemma 3.

Remark 1. (1) For the case OR-AND tree, eigen-distribution
is equivalent to E0-distribution w.r.t. A.
(2) The above remark and Theorem 9 also hold for balanced
multi-branching trees.

IV. EIGEN-DISTRIBUTION w.r.t AD IS UNIQUE

To start with, we investigate the relation of Ei-distribution
and uniform distribution for n-branching trees. By Theorem
9, and an argument similar to Theorem 7 in [7], we can show
the following

Corollary 1. For any tree T h
n , there are uncountably many

eigen-distributions w.r.t. Adir.

Next we show the uniqueness of eigen-distribution w.r.t
AD.

Theorem 10. For any AND-OR tree T 2
n , E1-distribution

w.r.t. AD is unique.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

Proof: For simplicity, we consider T 2
3 as shown in Fig.3.

1 2

00 01 02 10 11 12 20 21 22

1 2 3 4 5 6 7 8 9

0

Labels :

Fig. 3. T 2
3 with label on leaves

Let d be an E1-distribution for T 2
3 . Suppose ω1 =

001001001, ω2 = 001001010 with probability p1 = d(ω1)
and p2 = d(ω2). We start with showing that p1 = p2.

We consider a directional algorithm A denoted as
123456789, and a non-directional algorithm A′ denoted as︷ ︸︸ ︷
123456789, which probes the left-most two subtrees with
label 123456, and then the algorithm proceeds as follows
• if the cost of evaluating the left-most two subtrees is 6,

it exchanges the searching order of 8 and 9;
• otherwise, it continues as in A.

Thus, if the assignment for T 2
3 is in the form 001001ω′,

where ω′ ∈ {001, 010, 100}, then the right-most subtree is
searched as 798, otherwise 789.

Then we have

C(A, d) = C(A, ω1)p1+C(A, ω2)p2+· · · = 9p1+8p2+ · · ·︸︷︷︸
r1

C(A′, d) = C(A′, ω1)p1+C(A′, ω2)p2+· · · = 8p1+9p2+ · · ·︸︷︷︸
r2

Using the two given algorithms A and A′, the values of r1

and r2 are equal. Since d is an E1-distribution, C(A, d) =
C(A′, d). Thus p1 = p2. By the same argument, we can show
that for any assignments ω and ω′, d(ω) = d(ω′) = 1

27 .
The general case T 2

n can be treated similarly.

Remark 2. We can also show that for any OR-AND tree T 2
n ,

E0-distribution w.r.t. AD is unique.

Theorem 11. For any AND-OR tree T 2
n , E0-distribution

w.r.t. AD is unique.

Proof: For simplicity, we consider T 2
3 again. Let d be an

E0-distribution for T 2
3 . We partition 0-set as Ω1

⊔
Ω2

⊔
Ω3,

where for i ∈ {1, 2, 3}, Ωi is the collection of assignments
such that 000 is assigned to the i-th subtree of T 2

3 under the
root. By the same method in Theorem 10, we can show that
all the assignments in Ωi have the same probability and we
denote it as pi for i ∈ {1, 2, 3}.

For any A ∈ AD, C(A, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A,ω).
We consider a directional algorithm A denoted as

123456789 and a non-directional algorithm A′ denoted as︷︸︸︷
123 456789, which first evaluates the subtree with label
123, and then it proceeds as follows
• if the assignment for the subtree with label 123 is 000,

it continues as in A;
• otherwise, it exchanges the searching order of the sub-

trees with label 456 and 789.
Then, we have

C(A, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A, ω),

C(A′, d) =
∑3

i=1

∑
ω∈Ωi

pi · C(A′, ω).

By algorithms A and A′, we can calculate that∑
ω∈Ω2

C(A, ω) =
∑

ω∈Ω3
C(A′, ω),∑

ω∈Ω3
C(A, ω) =

∑
ω∈Ω2

C(A′, ω),∑
ω∈Ω1

C(A, ω) =
∑

ω∈Ω1
C(A′, ω),

45 =
∑

ω∈Ω2
C(A, ω) 6=

∑
ω∈Ω3

C(A, ω) = 63.

Therefore we have p2 = p3.
By the same argument, we can show p1 = p2.

Remark 3. For any OR-AND tree T 2
n , E1-distribution w.r.t.

AD is unique.

By induction, we can show that

Theorem 12. For any tree T h
n , Ei-distribution w.r.t. AD is

uniform. Thus eigen-distribution w.r.t. AD is unique.

V. CONCLUSION

This study extended the Liu-Tanaka Theorem to balanced
multi-branching trees. We showed that for any T h

n and a
probability distribution d on all assignments, the followings
three conditions are equivalent: an eigen-distribution, an Ei-
distribution and the uniform distribution on the i-set w.r.t.
AD.

Saks and Wigderson [6] proved that for T h
2 , the distribu-

tional complexity is equal to max
d

min
A∈Adir

C(A, ω). Suzuki

and Nakamura [7] remarked that it is indeed equal to
max

d
min
A∈A

C(A, ω) for any closed set of algorithms on T h
2 .

Similarly, using our arguments in Part III, we can conclude
that the equality still holds for any balanced multi-branching
tree.

VI. ACKNOWLEDGMENT

The authors would like to express sincere appreciations
to Prof. C.G. Liu (NPU, China), Prof. Y. Yang (NUS,
Singapore), Prof. K.M. Ng (NTU, Singapore) and Prof. T.
Suzuki (TMU, Japan) for their valuable discussions.

REFERENCES

[1] D. E. Knuth and R. W. Moore, “An analysis of alpha-beta pruning,”
Artificial Intelligence, vol. 6, no. 4, pp. 293-326, 1975.

[2] C. G. Liu and K. Tanaka, “Eigen-distribution on random assignments
for game trees,” Information Processing Letters, vol. 104, no. 2, pp.
73-77, 2007.

[3] C. G. Liu and K. Tanaka, “The computational complexity of game trees
by eigen-distribution,” Combinatorial Optimization and Applications,
Springer Berlin Heidelberg, pp. 323-334, 2007.

[4] J. Pearl, “Asymptotic properties of minimax trees and game-searching
procedures,” Artificial Intelligence, vol. 14, no. 2, pp. 113-138, 1980.

[5] J. Pearl, “The solution for the branching factor of the alpha-beta pruning
algorithm and its optimality,” Communications of the ACM, vol. 25, no.
8, pp. 559-564, 1982.

[6] M. Saks and A. Wigderson, “Probabilistic Boolean decision trees and
the complexity of evaluating game trees,” in Proc. 27th Annual IEEE
Symposium on Foundations of Computer Science, pp. 29-38, 1986.

[7] T. Suzuki and R. Nakamura, “The eigen distribution of an AND-OR tree
under directional algorithms,” IAENG International Journal of Applied
Mathematics, vol. 42, no. 2, pp. 122-128, 2012.

[8] T. Suzuki and Y. Niida, “Equilibrium points of an AND-OR tree: under
constraints on probability,” Annals of Pure and Applied Logic, vol. 166,
no. 11, pp. 1150-1164, 2015.

[9] D. H. Wolpert and W. G. MacReady, “No-free-lunch theorems for
search,” Technical Report SFI-TR-95-02-010, Santa Fe Institute, 1995.

[10] A. C. C. Yao, “Probabilistic computations: toward a unified measure
of complexity,” Proc. 18th Annual IEEE Symposium on Foundations of
Computer Science, pp. 222-227, 1977.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol I,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-19253-8-1
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2016

