



Abstract— The scope of application of linear optimization

techniques in decision problems is expanded by using some

existing and some newly described modeling techniques for

logical phenomena. The current practice is to model Boolean

logic relations such that the values of these expressions are

constrained to be TRUE. There are situations though in

decision making, where the statuses of the logical relations need

to be resolved within the context of the solution, rather than

being pre-assigned. The techniques specified here show how

this requirement can be met with logical expressions that can

assume either TRUE or FALSE values. It is now possible to

specify all possibilities and consequences due to the value of the

logical expression, as part of the problem itself. It thus enables

modeling of nested If-Then-Else conditions as declarative

programs. The relevance of these techniques is demonstrated on

a scheduling problem.

Index Terms— Logic, Mixed-integer linear programming

(MILP), Optimization, Production Scheduling

I. INTRODUCTION

n many of the linear optimization problems involving

continuous and discrete variables, a subset of the

governing constraints may have logical expressions to

describe specific structural or operational requirements or

situations. The formulation of the optimization problem for

these problems is facilitated through logical constructs

which have either a TRUE or FALSE status. In some

problems the relevant expression models a pre-assigned

status like TRUE or FALSE. For example, Logical OR is

TRUE. In some other cases there is a need though to depict a

conditional choice based on the outcome of a previous

decision or occurrence of an event. In these cases a subset of

logical expressions could carry either a TRUE or FALSE

value which cannot be assigned apriori but has to be decided

as part of the optimal solution search. In the above example,

depending on the TRUE or FALSE state of the logical OR,

consequent decisions may differ. In certain temporal

decision making problems like scheduling, the status of a

decision at a certain time step needs to be carried forward in

time to avoid the choice of a subsequent decision which is

incompatible with the earlier decision. In evolving solutions

of such optimization problems one needs different

Manuscript received January 08, 2016 for review.

Dhananjay Karandikar is working at Tata Consultancy Services, Pune,

Maharashtra, India. email: dhananjay.karandikar@tcs.com.

K.P.Madhavan is Professor Emeritus, Chemical Engineering

Department, Indian Institute of Technology, Bombay, Mumbai 400 076,

Maharashtra, India. email: kp_madhavan@yahoo.com.

approaches for incorporation of logical constraints in

optimization algorithms.

The literature is replete with approaches for translation of

logical expressions with pre-defined TRUE or FALSE status

into algebraic constraints. Logical expressions of this type

will be referred to as “Closed Logical Expressions or CLE”.

In this paper the focus is on modeling what will be referred

to as “Open Logical Expressions or OLE”, viz. expressions

with no pre-defined status, into algebraic expressions for use

in linear optimization MIP or MILP solvers.

II. SURVEY

Solving a discrete optimization problem involves two

steps viz. modeling and solution search. Further discrete

optimization problems may have purely logical entities or

mixed logical and continuous entities. Three methodologies

covering these aspects are cited, viz the MILP, GDP and

MLLP. For casting the logic constrained problem as a

standard MILP problem, binary variables are used to model

decisions having values as TRUE or FALSE. Methods for

systematically converting the logical relations involving the

binary decisions to a constraint form are given by Cavalier et

al. [1] and Mitra et al. [4]. Broadly, the methods involve

either (a) converting each type of logical relation directly to

an equation form using a standard lookup table giving the

equations for each type of logical relationship or (b)

transforming a proposition to a conjunctive normal form

(CNF) or a disjunctive normal form (DNF) and deriving

constraints based on these. For the case involving mixed

logical and linear constraints, two methods, the Big M

constraints and the convex hull using disaggregated

variables are used as shown by Raman and Grossmann [7].

Table I gives various commonly occurring logical relation

names, their logical expressions and their equivalent

equation forms.

Table I: Equivalent logical and linear expressions
Logical expression Equivalent linear expression

Logical OR

nxxxx321  1......321  nxxxx

Logical AND

nxxxx321  1,.....1,1 21  nxxx

Exclusive OR

nxxxx321  1......321  nxxxx

Implication

21 xx  or (21 xx ) 021  xx

Extended Formulations for Representation of

Logic Based Optimization Problems

Dhananjay Karandikar, K.P.Madhavan

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016

mailto:dhananjay.karandikar@tcs.com
mailto:kp_madhavan@yahoo.com

The B&B or B&C solver technique of progressing

through the search may not always be the best strategy in

solution search. Rather, integer variables can be managed

separately, allowing them to take only integer values.

Modeling techniques other than MILP involve treating the

discrete decisions as logical identities and apply logical

processing methods on these identities. Logical inference

methods and (or) constraint programming are used to

process the logical identities. Continuous variables are

processed using mathematical techniques. The Generalized

Disjunctive Programming (GDP) model developed by

Raman and Grossman [7] after papers handling logic in

optimization [5], [6] and the Mixed Logical Linear

programming (MLLP) model by Hooker and Osorio [3] are

examples of this approach. These logic based techniques are

designed with a motivation to reduce the solution time,

notably by separating concerns for logical and continuous

variables, as also giving a formal model for the optimization

problem statement.

This paper describes techniques for modeling OLE using

MILP so as to remove limitation of CLE. The methods given

in Table I above are insufficient to model these requirements

for MILP. It is possible though, to meet these requirements,

using techniques given in section III below. It thus enables

modeling of nested If-Then-Else conditions as declarative

programs.

III. MODELING TECHNIQUES

The following sub-sections describe the modeling of

various types of logical relations. In all the equations below,

x1, x2, … xn are the input variables and z represents the result

of an expression. All the variables in this section below

(along with any new subscripts added) are binary variables.

If the logical expression is TRUE, then z gets set to a value

of 1 else 0.

A. At Least m TRUE

The requirement here is to check if at least m of the n

variables are TRUE. Equation (1) models the requirement.

1)1(...

...

321

321





mzmnxxxx

mzxxxx

n

n (1)

The first inequality in (1) forces z to be 0 if less than m

variables are TRUE. The second inequality forces z to be 1

if m or more variables are TRUE.

B. At Max m TRUE with all 0 inclusive

The requirement here is to check if at max m of the n

variables are TRUE. There are two cases possible for this

condition, one being that when all inputs are 0, z should be 0

and the other case when even if all inputs are 0, z should still

be 1. Equation (2) models the latter requirement. The former

is seen in the next section.

mzmnxxxx

zmxxxx

n

n





)1)((...

)1)(1(...

321

321 (2)

The first inequality in (2) forces z to be 1 if m or less

variables are TRUE. The second inequality forces z to be 0

if more than m variables are TRUE.

C. At Max m TRUE with all 0 exclusive

The requirement here is to check if at max m of the n

variables are TRUE. Equation (3) models the requirement.

An auxiliary variable z2 is used here and also requires more

constraints.

1

)1(...

1...

)1)((...

)1)(1(...

2

2321

2321

321

2321











zz

znxxxx

zxxxx

mzmnxxxx

zzmxxxx

n

n

n

n

(3)

For the “At max m true with all 0 exclusive” case, the

value of z v/s the number of TRUE variables is a non-

monotonic function. It is 0, when all the variables are 0, then

1 till m variables are TRUE and then 0 if more than m

variables are TRUE. To model this, a superposition

principle is employed. The condition that all variables are

FALSE is detected in the variable z2. The value of this is

subtracted from z, required only for the case where it is to be

enforced to 0 in the inequality 1.

D. Exactly equal to m

)),(()5

integers negative-non are
2

,
1

)4

)1(
21

)3

)1(
21

)2

21
...

321
)1

mmnMaxC

yy

zyy

zCyy

yym
n

xxxx









(4)

 y1 and y2 are positive integer variables. Under any

condition, only one of these can be positive. Constraints 2

and 3 in (4) detect if y1 or y2 is positive and sets z to 0. If y1

and y2 are both 0, constraint 3 enforces z to 1. Thus z

becomes 1 only when summation is equal to m else it

remains 0.

E. OR Logic

The OR logic states that if any one of the variables is

TRUE then the result is TRUE else FALSE. The equivalent

equation form of this proposition is given by the following

methods. Equation (5) gives the method by Williams, after

generalizing it from two variables to n variables, (Cavalier

et.al. [1] call this as the substitution method).

0

....

0

0

......

2

1

21









zx

zx

zx

zxxx

n

n

(5)

The first constraint in (5) is active when all the input

variables are 0. These enforce z to be 0. The rest of the

constraints are active when that particular variable is 1. It

enforces z to be 1.

Another method is given in (6).

nzxxxx

zxxxx

n

n





...

...

321

321 (6)

In (6), the first constraint is active when all the inputs are

0, and enforces z to be 0. The second constraint is active

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016

when any one of the inputs is 1 and enforces z to be 1.

The substitution method will generate tighter bounds in

the branch and bound solution method at the cost of

additional constraints. It is straightforward to generate the

NOR constraints from (5) and (6) above just by replacing z

by 1-z. A generalization of (6) is the condition that at least m

of the n variables should be TRUE which was discussed in

section A. If value of m is set to 1 in (1), it becomes the OR

Logic

F. And Logic

The AND logic states that for the output to be TRUE, all

the inputs should be TRUE. Equation (7) is a method by

Williams [8] after generalizing it for n inputs.

0

....

0

0

1......

2

1

21









zx

zx

zx

nzxxx

n

n

(7)

The first constraint in (7) is active when all the inputs are 1

and enforces z to be 1. The remaining constraints are active

when the input is 0, which enforces the output to 0.

The AND logic can also be expressed with the following

constraints.

1...

...

321

321





nzxxxx

nzxxxx

n

n (8)

In (8), the first constraint is active when not all the variables

are 1, and enforces z to be 0. The second constraint is active

when all the variables are 1 and enforces z to be 1. Please

note that the AND logic is a generalization of (1) with m set

to n.

G. Exclusive OR

The Ex-Or is a special case of (4) as described in section

D (Exactly equal to m TRUE), with m set to 1 or B (At max

m TRUE), again with m set to 1.

H. Notation

For expressing any of the logical relations mentioned

above, a letter ‘C’ is added to the relationship name to

indicate a ‘Comprehensive’ relationship, i.e. one which is

not constrained to be TRUE only. For example CAND

indicates a Comprehensive AND relationship and is different

from the AND relationship given in Table I.

IV. APPLICATION

A. Application to a Production Scheduling Problem

This section shows the application of the above proposed

methods for extending features of a problem in production

planning, known as the Continuous Setup Lot-sizing and

Scheduling Problem (CSLP) described by Drexl and Kimms

in [2]. First, the important features of the CSLP are

mentioned and in the subsequent section, the extended CSLP

model is described.

a) It is a small bucket problem with only one product

allowed per time slot.

b) The quantity of the production per time slot can be any

value within the prescribed capacity constraints.

c) Switching cost between products is considered as a part

of the objective function

d) This is different than the Discrete Lot-Sizing and

Scheduling Problem (DLSP). In the DLSP, either no

production happens in a time slot or it is to the full

capacity.

1) The extended CSLP optimization model

Following are details of the production planning activity

for the problem type considered here:

a) A single workstation manufactures multiple discrete

products.

b) Capacity allocation should be done to meet the specified

demand to the maximum possible value.

c) If switching occurs between products within a family,

no setup cost or time is spent.

d) The switching state should be carried forward if the

workstation is idle in between two products of the same

family.

Table II lists the various constants and Table III lists the

variables used for the model.

Table II: Constants and indices for the model
Symbol Description

N Maximum number of products made at the workstation

FCL Forecast length or the total number of time slot considered for

the problem

Fmax The number of product families at the workstation

F Set {1… Fmax } of all product family identifiers

i Index to a product that can vary from 1 to N

k Index to a time slot identifier that can vary from 1 to FCL

f Index to a family that can vary from 1 to Fmax

Ii Maximum inventory capacity for product i

Ci Maximum production capacity for product i

Cii Some small positive number

Ri Revenue due to product i

CPi Cost of production for product i

CIi Cost of storing product i in any time slot

CSWij Cost of switching from product i to product j

eispec(k) Specified demand on product i in time period k

TS The set {1… FCL } of all timeslots

P The set {1… N } of all products made

Pf A set of all products belonging of family f. It is a subset of the

set {1… N }

fP
~

The complement of Pf i.e. all members of set {1… N } except

the members of set Pf

Table III: Variables for the model
Symbol Description

ui(k) Amount of product i to be produced in time slot k

U(k) Vector of length N for the quantity to be produced for all

products in time slot k. This vector will have only one non-

zero entity.

mi(k) Available inventory of product i at the end of time slot k

M(k) Vector of length N for available inventory of all products

at the end of time slot k

ei(k) Demand that can be met by the system for product i in

time slot k, and can range from 0 to the target eispec(k)

E(k) Vector of length N for the demand actually met ei(k), in

time slot k.
sORf(k) A binary variable used for the switching logic and has a

value of 1 if any product in the family f is being produced

in a time slot k.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II,
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016

Symbol Description

sNORf(k) An intermediate binary variable used in the switching logic

and has a value of 1 if any family other than family f does

not produce anything in time slot k.

sANDf(k) An intermediate binary variable used in the switching logic

and has a value of 1 if sNORf(k) and sORf(k-1) are both 1.

swANDij(k) Switching variable between family i and family j at time

slot k.

Mass Balance Equations

Mass balance equations are the basis of developing a

predictive model. Assume the inventory at the output for any

product at the end of a period k is given by m1(k). Let u1(k)

be the amount of product produced in period k, e1(k) be the

demand or material drawn from the inventory. Equation (9)

describes the basis of derivation for the mass balance

relations for the product.

)()()1()(1111 kekukmkm 
(9)

Using the same concept for future time periods, and

aggregating the above equation for all the products at the

workstation, the predictive model for the entire system till

the Nth period is shown in (10). The matrices A, B and D are

the coefficients of m(k), u(k) and e(k) respectively.

Concisely this is represented as follows:

)()()1()(
~~~~

kEDkUBkMAkM   (10) 

Capacity constraints for components 

The total capacity requirement by all products taken 

together should not exceed the available capacity of the 

workstation in any time slot. The relations are shown in (11). 

TSkCku

TSkCku

TSkCku

NN 





      )(

...

        )(

        )(

22

11

 
(11) 

Demand Constraints 

The demand value is considered a decision variable here. 

Value for a demand on a product will be specified. Due to 

capacity constraints, it may not be possible to meet all the 

specified demand. This variable should lie within 0 at a 

minimum and the specified demand value at a maximum as 

shown in (12) and (13). 

 

TSkPikei  ,        0)(  
(12) 

TSkPikkei  ,       )(e)( ispec
 

(13) 

Big M Constraints 

These are used to detect if production for a particular 

product in a particular time slot is done or not. Upper and 

lower bounds are set as shown in (14) and (15). The lower 

bound may be required if this problem is for non-discrete 

systems to ensure that uib does not remain 0 when production 

is 0. The binary variable is used as an indicator variable for 

conveying the TRUE or FALSE state of production. 

}1,0{)(,,

        )()(





kuTSkPi

kuCku

ib

ibii  (14) 

}1,0{)(,,

            )()(





kuTSkPi

kukuC

ib

iibii  (15) 

One product Constraints 

These are used to limit the production to only one product 

per time slot. The constraint, as shown in (16) is an 

inequality constraint since there need not be any product 

scheduled for production in the time slot. 

}1,0{)(,       1)(
1




kuTSkku ib

N

i

ib  
(16) 

Switching Constraints 

Logic to meet the switching requirements is described in 

the following steps: 

1) Define a variable sORf(k), for each family f in each time 

slot k, which is true if any of the following two 

conditions are true, expressed in (17) to (20) below. 

a. Any product in family f for a particular time slot is 

scheduled 

b. There are two clauses to this second conditional 

statement and are given below: 

i. No product in any other family (indicated by fF

~

 in 

(17) below) for a particular time slot is 

scheduled, sNORf(k), AND  

ii. Any product in the family f in the previous time slot 

is scheduled, sORf(k-1).  

The result of the two clauses is the value of the variable 

sANDf(k). Considering the fact that (16) states that at a 

maximum only one product can be scheduled, it may so 

happen that in a particular time slot, there is no product 

being scheduled at all. The additional condition, b, is added 

to carry forward the state of the previous time slot if there is 

no production in the current timeslot. For doing this, it is 

first necessary to verify that any other family product is not 

being produced. Further it is also necessary to check if the 

same family was true (not necessarily being produced since 

the state might be carried forward from its previous time 

slot) in the previous time slot. 

 

}1,0{)(,}....2{  ,

                 ))(()(
~






ksNORFCLkFf

kuCNORksNOR

f

ib

Fi

f

f
 

(17) 

}1,0{)( ),( ),(             

 },....2{  ,                                    

 ))1(),(()(







ksORksNORksAND

FCLkFf

ksORksNORCANDksAND

fff

fff

 
(18) 

}1,0{)( ),(          

,}....2{  ,                         

             ))(),(()(








ksANDksOR

FCLkFf

ksANDkuCORksOR

ff

fib
Fi

f
f

 (19) 

 }1,0{)(  1  ,         

    ))(()(






ksORkFf

kuCORksOR

f

ib
Fi

f
f  (20) 

2) Define switching between consecutive time slots 

between families using AND logic. A binary switching 

variable swANDij(k) shows the switching status between 

family i in time slot k and family j in time slot k+1. If 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016



 

this variable has a value of 1, then this switching has 

occurred else not. This is expressed as follows in (21): 

}11{                            

    ))1(),(()(

...FCL-F, ki,j

ksORksORCANDkswAND jiij




 (21) 

Minimum and Maximum constraints on the input: 

The minimum value for any input variable is 0 and the 

maximum value is the production capacity of the 

workstation for that product as described in (22) and (23).  

TSkPiCku ii  ,        )(  (22) 

TSkPikui  ,        0)(  (23) 

Minimum and Maximum constraints on inventory 

Minimum constraint on the inventory is 0 and the 

maximum constraint is the inventory capacity for that 

product. More complex scenarios like shared inventory 

capacity within all products is not considered for 

convenience. These constraints are shown in (24) and (25). 

 

TSkPikmi  ,        0)(  (24) 

TSkPiIkm ii  ,        )(  (25) 

Objective Function 

The objective is to maximize the profit which is the 

difference between the revenue and the cost due to 

operations. Equation (26) gives the calculation. 

 

)(*

)](*)[()(*    max

max max

1 1 1

1 1

kswANDCSW

kuCICPkeRrev

ij

F

i

F

j

FCL

k

ij

iii

N

i

FCL

k

ii





  

 





 (26) 

 

 
 

2) Some observations about the model 

a) At least one method to model the same requirements 

without using the developments mentioned in this paper 

can be depicted. Instead of modeling the switching cost 

between families, a switching between individual 

products can be modeled. The switching matrix will 

have a bigger size. Further the number of variables used 

to model the switching will also be of the order of n2, 

where n is the number of products. In the model 

developed here the switching variables reduce and are 

of the order of f2, where f is the number of families and 

in most cases will be much less than n. Thus this method 

reduces the number of variables required for modeling.  

b) An example of the possibilities based on the outcome of 

the logical relation being modeled as part of the 

problem can be cited. The values of sORf for any two 

consecutive time slots are taken which can be 0 or 1. 

These values affect the value of the switching variable 

sANDij, and are modeled as part of the problem itself. 

c) Switching in CSLP has a loose formulation. The value 

of xjt as shown by Drexl and Kimms in [2] can have a 

value of 1 when there is a positive difference between 

the yjt and yj(t-1) . But it can also be 1 when these two are 

equal and not indicating a switching condition, and 

specifically when no production is being done in that 

time slot. This is due to the inequality constraints. The 

model presented here is a tighter formulation with 

switching modeled to be true only when it truly occurs. 

 

 

3) Simulation and Results 

The above model was implemented in MATLAB. After 

the problem is formulated, a call is made to an MILP 

optimizer. Two freeware solvers viz. COIN CBC and 

LPSolve were used for this purpose. Two solvers were used 

to verify the consistency of the results. 

Two test cases with different input data were considered and 

are shown below in tabular form. For each test case, details 

of the input data are given and then results are shown along 

with a discussion on the results. The objective of both the 

test cases is to maximize the profit of the system, which is 

defined to be a difference between the revenue and cost. In 

the first test case the demand is much greater than the 

available capacity. The aim is to check the products selected 

and sequence of their allocation. In the second case, the 

demand is much less than the available capacity. Here the 

aim is to check the sequence and time slots where the 

products are allocated as also the carryover of the switching 

state during idle time. 

 

Setup Details 

a) The workstation produces seven different types of 

products. Products are identified serially by alpha-

numeric characters P1 to P7. 

b) All products are discrete type. 

c) There are three families within the products. Products 

P1 to P3 belong to family 1, products P4 and P5 belong 

to family 2 and products P6 and P7 belong to family 3. 

Families are identified serially by alpha-numeric 

characters F1 to F3. 

d) Time slots are used to model the problem as described 

above. Six time slots are used for the cases below. 

These are identified by alpha-numeric characters T1 to 

T6. 

e) There is no cost for switching from one product to 

another within a family. The cost of switching from one 

product to another between families has a cost and is 

given in the data for the test cases below. 

f) Among the various parameters, production capacity and 

inventory capacity are considered to have the same 

values across all time slots. Specified demand, 

production cost, inventory cost and revenue, which have 

a direct impact on the profitability, are kept different. 

 

Test Case 1 

Table IV to Table VIII present the data and results for this 

case. The demand is greater than the capacity. It is set to 150 

units for all the products with a deadline of period 7. The 

maximum production capacity of the workstation is set to 

150 units for all the products across all timeslots. No 

inventory holding cost is considered, while maximum 

inventory capacity is a total of 1000 units of any product 

type for each period. 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016



 

Table IV: Test Case 1, Parameter Set 1 
Parameter\ 

Product Id 
P1 P2 P3 P4 P5 P6 P7 

Production 

cost 
10 11 12 13 14 14 14 

Revenue 20 19 18 17 16 15 14 

 

Table V: Test Case 1, Parameter Set 3 
Switching Cost  F1 F2 F3 

F1 0 2 1 

F2 2 0 2 

F3 1 2 0 

 

Table VI: Test Case 1 Production Allocation 
Parameter\ 

TimeSlot 
 T1 T2 T3 T4 T5 T6 

Productio

n 

allocation 
F1 

P1 0 0 0 0 150 0 

P2 0 0 0 0 0 150 

P3 0 0 0 150 0 0 

F2 
P4 150 0 0 0 0 0 

P5 0 150 0 0 0 0 

F3 
P6 0 0 150 0 0 0 

P7 0 0 0 0 0 0 

Table VII: Test Case 1, Switching Plan 
 T1-T2 T2-T3 T3-T4 T4-T5 T5-T6 

F1-F1    1 1 

F2-F2 1     

F2-F3  1    

F3-F1   1   

 

Table VIII: Test Case 1, Logical variables 

 T1 T2 T3 T4 T5 T6 

Oring 

Variables 

F1    1 1 1 

F2 1 1     

F3   1    

Nor 

variables 

F1 N/A   1 1 1 

F2 N/A 1     

F3 N/A  1    

And 

variables 

F1 N/A    1 1 

F2 N/A 1     

F3 N/A      

Results Discussion for Test Case 1 

Following are the observations based on the results shown 

in Table VI, Table VII and Table VIII: 

a) Allocation is done only for products P1 to P6. 

b) The switching happens from family 2 to family 3 then to 

family 1. This sequence adds the least switching cost. 

Table VII shows only those rows which indicate a 

switching. 

c) Considering the lack of capacity as compared to the 

demand, product P7 demand is not met because this 

gives the least profit. 

d) The logical variable values are shown in Table VIII. 

The Oring variables for appropriate families have a 

value of 1 which corresponds to the production variable 

values shown in Table VI. 

e) The NOR and AND variables do not have much 

significance in this test case since there are no empty 

slots. Nevertheless, their values are as expected. 

Test Case 2 

For this test case, a nominal inventory cost of 1 unit is 

considered for all the products across all timeslots. Demand 

of 150 units is considered each only for P1 in timeslot 2, P2 

by timeslot 6 as also P5 by timeslot 6. All other products 

have no demand, making the demand in the system much 

less than the available capacity. 

Table IX: Test Case 2 Production Allocation 

Parameter\ 

TimeSlot 
 T1 T2 T3 T4 T5 T6 

Production 

allocation 
F1 

P1 0 150 0 0 0 0 

P2 0 0 0 0 150 0 

F2 P5 0 0 0 0 0 150 

 

Table X: Test Case 2, Logical variables 

 T1 T2 T3 T4 T5 T6 

Oring 

Variables 

F1  1 1 1 1  

F2      1 

F3       

Nor 

variables 

F1 N/A 1 1 1 1  

F2 N/A  1 1  1 

F3 N/A  1 1   

And 

variables 

F1 N/A  1 1 1  

F2 N/A      

F3 N/A      

 

Results Discussion for Test Case 2 

a) Allocation is done only for products P1, P2 and P5 as 

shown in Table IX.  

b) Switching cost is not an important value since only two 

families are selected. 

c) The Oring variables show the switching state being 

carried forward from time slot T2 to time slot T5 using 

the NOR and AND variables as seen in Table X. 

V. CONCLUSION 

Some existing and some new modeling techniques have 

been suggested to model optimization problems with logical 

and continuous variables. These techniques help remove the 

requirement on logical relations on always being constrained 

to be TRUE. The production planning example chosen for 

this study demonstrates the efficacy of this extended 

approach to modeling of logical relations occurring in linear 

optimization problems. With the application of these 

techniques the range of the problems that can be modeled 

can be widened. 

REFERENCES 

[1] T. M. Cavalier., P. M. Pardalos and A. L. Soyster, (1990). Modeling 

and integer programming techniques applied to propositional 

calculus, Computers Opns Res., Vol. 17, No. 6. 561-570 

[2] A. Drexl, A. Kimms, (1997). Lot sizing and scheduling - Survey and 

extensions,  European Journal of Operational Research 99,  221-235 

[3] J. N. Hooker, and M. A. Osorio, (1999). Mixed logical/linear 

programming, Discrete Applied Mathematics 96-97, 395-442 

[4] G. Mitra, C. Lucas, S. Moody, E. Hadjiconstantinou, (1994). Tools 

for reformulating logical forms into zero-one mixed integer programs, 

European Journal of Operational Research 72,  262-276 

[5] R. Raman, I.E.Grossmann, (1991). Relation between MILP modeling 

and logical inference for chemical process synthesis, Computers and 

Chemical Engineering 15, 73-84. 

[6] R. Raman, I.E.Grossmann, (1993). Symbolic Integration of logic in 

Mixed-Integer Linear programming techniques for process synthesis, 

Computers and Chemical Engineering 17,  909-927 

[7] R. Raman, I.E.Grossmann, (1994). Modeling and computational 

techniques for logic based integer programming, Computers and 

Chemical Engineering 18, 563-578 

[8] H. P. Williams, (1985). Model Building in Mathematical 

Programming, 2nd edn. Wiley, New York 
Date of modification: 16 March 2016, Erratum: DSLP changed to DLSP in 

section IV,A,d, only in online version 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2016 Vol II, 
IMECS 2016, March 16 - 18, 2016, Hong Kong

ISBN: 978-988-14047-6-3 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(revised on 16 March 2016) IMECS 2016




