
 

  
Abstract— An aim of this paper is to propose the explicit 
formulas for evaluating performance characteristics of 
Moving Average control chart (MA) for the first order of 
autoregressive of serial dependence Poisson process. The 
characteristics of the control chart is frequently measured as 
Average Run Length (ARL) which means that the average 
of observations are taken before a system is signaled to be 
out-of-control. These proposed explicit formulas of ARL are 
simple and easy to implement for practitioner. The 
numerical results show that MA chart performs better than 
others when the magnitudes of shift are moderate and large. 
 

Keywords— Average Run Length, Moving Average control 
chart, Integer-valued Autoregressive. 
 

I. INTRODUCTION 

TATISTICAL Quality Control (SQC) is widely used in 
industries to monitor the quality of Poisson counting 

process. In manufacturing industry, for instance, the number 
of nonconformities of a unit of a product process is of 
interest, while in service industry the number of complaints 
of customers within certain period of time is an important 
quality characteristic. The marginal distribution of count 
processes can often be modelled by Poisson distribution, 
where   denotes the average of the Poisson distribution. 

Let tN  be a process of count data, which is assumed to be 

stationary with Poisson distributed marginals in the state of 
statistical control. Most prominent are two charts of 
Shewhart type, namely c chart and u chart, which both 
monitor the marginal distribution of the process  tN . For a 

detailed description, consult Montgomery (2009) [1]. 
Count data are often occurred in manufacturing industries 

because of ease of data collection [2-3]. One particular area 
where these counts can be useful is in process monitoring to 
detect shift of a process from an in-control state to various 
out-of-control states.  
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Hence, quality losses can be reduced and prevented through 
corrective actions to put the process back in a normal state. 
Often, the c chart has been for monitoring count data. 

Although originally developed for independent count data 
have also been discussed in literatures. Shewhart control 
chart use only the information in the last sample and ignore 
information given by the entire data sequence. Thus, the c 
chart are known to have poor performance in detecting 
small shift in process mean. In the past few decades, 
Exponentially Weighted Moving Average control chart 
(EWMA) was introduced by Robert [4]. It is effective chart 
for detecting small and moderate shifts. Cumulative Sum 
control chart (CUSUM) was introduced by Page [5]. It is 
sensitive to small shift for process mean. Recently, Khoo [6] 
studied MA chart for monitoring the fraction of non-
conforming observations and showed that MA chart is more 
efficient than p chart. Mostly, the count process assumed 
that the count data are independent and identically 
distributed (i.i.d.). However, observations could be serially 
autocorrelated and it may adversely affect the performance 
of the control charts under this assumption of independence. 
Generally, the Integer-valued time series occur in many 
situations, for example counts of events in consecutive 
points of time, the number of births at a hospital in 
successive months, the number of road accidents in a city in 
successive months and big numbers even for frequently 
traded stocks. Because of the broad field of potential 
applications, a number of time series models for counts have 
been proposed in many literatures. McKenzie [7] introduced 
the first order integer-valued autoregressive (INAR(1)) 
model. The statistical properties of  INAR(1) are discussed 
in McKenzie [8], Al-Osh and Alzaid [9].  

Mostly, the performance of control chart when the 
process is in-control is usually characterized by in-control 
Average Run Length (ARL0) - an average of times before 
the control chart gives a false alarm as the in-control process 
has gone to out-of-control process. Conversely, the 
performance under out-of-control situation is Average of 
Delay Times (ADT) –average times between process goes 
out-of-control and control chart giving an alarm that the 
process has gone out-of-control. Ideally, the value of ARL0 
of an acceptable chart should be sufficient large and the 
value of ADT should be minimum. Most researches for 
evaluating the ARL0 and ADT for control charts have been 
studied in the literature. A basic approach that is often used 
to test other methods is Monte Carlo (MC) simulation. 
Roberts [5] studied the ARL for EWMA charts by using 
simulations for processes following a normal distribution 
that can be used to find the ARL for a variety of parameter 
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values. Crowder [10] studied numerical quadrature methods 
to solve the exact Integral Equations (IE) for the ARL for 
the normal distribution. Brook and Evans used an 
approximate formula for the ARL of EWMA chart by using 
a finite-state Markov Chain Approach (MCA). Areepong 
and Novikov [11] derived explicit formulas for ARL of 
Exponentially Weighted Moving Average control charts. 
Recently, Areepong [12] studied explicit formulas for ARL 
of MA chart for monitoring the number of defective 
products. In the literature one can find at least four 
numerical procedure for evaluating average run length. 
Monte Carlo (MC) is simple to program and based on a 
large number of sample trajectories so it is very time 
consuming to run. Moreover, it is difficult to use for 
optimization though it is convenient to control accuracy of 
analytical approximations. Integral Equation (IE) is the most 
advanced method currently available but it requires 
intensive programming to implement even for the case of 
Gaussian distribution and also for the continuous 
observations. Markov Chain Approach (MCA) is considered 
a popular technique. It is based on approximation of matrix 
inversions. In addition there no theoretical results on 
accuracy of this procedure in terms of rate of convergence. 
Martingale approach is simple and convenient used to 
approximate but it could be implemented for the case of 
light-tailed distributions or the moment generating function 
exits. In this paper we suggest to explicit formula for 
evaluate ARL of moving average control chart when 
observation are Poisson count process. The results show that 
the performance of MA chart is good when the magnitudes 
of shift are moderate and large. 

II. CONTROL CHARTS  

1. Integer Valued Autoregressive for Poisson Count Data 

In case of measurement data, it is common to directly 
model the autocorrelation structure of the process, 
especially with models of the ARMA family. There are 
several different approach to model count processes, which 
have an integer structure, in the literature. Because the 
conventional autoregressive moving average (ARMA) 
recursion includes a scalar multiplication, it cannot applied 
to the count data. To adapt the ARMA model to the integer-
valued case. Therefore, Steutel and Van Harn [13] proposed 
a probabilistic operation, so called binomial thinning, as an 
adequate alternative to scalar multiplication. Weiβ [14-15] 
reviews different thinning operations and summarizes 
essential properties of the specific thinning operations. It 
was successfully applied to define the integer-valued 
ARMA models. Let N  be a discrete random variable with 

range  0, ..., n  and [0,1]   be a parameter. Then, the 

binomial thinning operation is 

1

N

i

i

N X


              (1) 

where 
i

X  are i.i.d. Bernoulli random variables, which are 

independent of N  and ( 1) .
i

P X    We say N   arise 

from N  by binomial thinning, and   is the binomial 
operator. 

The first integer-valued ARMA model, the INAR(1)  

model, was introduced by McKenzie [8]. Alzaid and Al-Osh 
[9] derived a number of important statistical properties of 
these models, which are the discrete analogue of the usual 
AR(1) model. The INAR(1) process is defined by the 
recursion. 

1 .t t tN N            (2) 

where 
t

N  is the observable count at time t  and the 

innovations 
t
  are i.i.d. count data. The INAR(1) model is 

the best fitting model for Poisson marginal. If t  follows 

the Poisson distribution with mean (1 )   that is 

( (1 ))Poi    and if the initial count 
0

N  is distributed as 

( ),Poi   then tN  is stationary and distributed as ( ).Poi   

According to the above situation, it can be modelled as 
Poisson INAR(1) model. The expectation and variance of 
INAR(1) model are as follows: 

   
1

.
t t

E N V N






          (3) 

 
2. The Moving Average Control Chart 
A moving average control chart is a type of memory 

control chart based on unweighted moving average. 

Suppose individual observations, 
1 2
, , ...,N N

 
are collected 

moving average of width w  at time i  is defined as 
(Montgomery, 2009, [1]) 

1 1
...

.i i i w

i

N N N
MA

w

  
  


     

  (4) 

For period ,i w  for period ,i w  we do not have w  

observations to calculate a moving average of width .w  For 
these periods the average of all observations up to period i  
defines the moving average. When the process is in-control, 

the mean and variance (for i w ) of 
i

MA  are   

 
 

1
iE MA







            (5) 

and  

 
2

2

i (1 )

w (1 )

;

; i .
iV MA

i w

w














 

 


       (6) 

If a target value for the process mean is 0

0
1

,



 then, for 

periods  ,i w  centerline and 3  control limit are given by 

0 0

0 0

/
1 (1 )

UCL LCL H
w

 

 
 

 
      (7) 

For periods ,i w  the limits of the MA chart are 

0 0

0 0

/
1 (1 )

.UCL LCL H
i

 

 
 

 
      (8) 

The characteristics for statistical process control charts is 
Average Run Length (ARL). It is the average of observation 
s are taken before the first point signal out of control and the 
expectation of an alarm time about a possible change. 
Ideally, an acceptable ARL0 of in-control process should be 
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enough large and a small ADT when the process is out-of-
control, so-called Average of Delay Time (ADT).  

 
3. The Explicit Formula for Evaluate Average Run 

Length  for Moving Average Control Chart 
The ARL values of Moving Average control chart can be 

derived. Let ,ARL n  then 
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The solution can be obtained by central limit theorem, 

then the explicit formula of 
0

ARL for MA chart   

0 0 0
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     (9)        

The explicit formula of  ADT  can be written as follows: 
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  (10) 

III. NUMERICAL RESULTS 

The numerical results for ARL0 and ADT for MA chart 
was calculated from Equation (9) and Equation (10). The 
parameter values for MA chart following moving average 
control charts consider w  = 2, 3, 4, 5, 10 and 15. The in-

control parameter are 
0

1,  3   and 0 0.2   and out-of-

control parameter values are 
1

  and shift parameters (δ) = 

0.1, 0.2, 0.3, …,1.5). The results shows that the MA chart 
proposed are sensitive to only some of the out-of-control 
situations considered. Table I shown average run length for 

0
1   and ARL0 = 370 of MA chart, the results shows that 

when small shifts are δ ≤ 0.5 the MA chart have the 
performance when w  = 15. For moderate shifts (0.6 ≤ δ ≤ 
0.8), the performance of MA chart with w =10 is superior to 
others. For the shift sizes (0.9 ≤ δ ≤ 1.0), the performance of 
MA chart with w  = 5 is the best control chart. For large 
shifts (δ > 1.5) the MA chart have the performance when w  

= 4. Table II show the average run length for 
0

3   and 

ARL0 = 370 of MA chart, the results show that when small 
shifts, δ ≤ 0.3 the MA chart have the better performance 
when w  = 15. For moderate shifts (0.4 ≤ δ ≤ 0.5) the MA 
chart have good performance when w  = 10. For magnitude 
of shifts (0.6 ≤ δ ≤ 0.7), the MA chart have good 
performance when w = 5. For parameter shift (0.8 ≤ δ ≤ 0.9) 
the MA chart have the performance when w  = 4. For 
parameter shifts (δ ≤ 1.0) the MA chart have good 
performance when w  = 3. For large shifts (δ > 1.5) the MA 
chart have good performance when w  = 2. The average run 
length for MA chart was shown that for the shift increasing 
MA performs better as the value of ( w ) decreases. So the 
average run length for MA chart show when shifts increase 
MA performs better as the values of w  decrease. Table III 
and IV show that the numerical results for ARL0 and ADT 
for MA chart present in a similar manner. For desired 
ARL0=500, the parameter of H = 3 and 3.0905 of MA 

chart are used 
0

 = 1 and 3, respectively. The results when 

ARL0 = 370 are in good agreement with the results when 
ARL0 = 500. Therefore, use of the proposed formulas for 
ARL0 and ADT for MA chart are simply to calculate, time 
saving and easy to implement which greatly reduce 
computation times, and useful to practitioners. 

IV. CONCLUSIONS 

 We derived the explicit formulas for average run length 
of moving average control chart (MA) for Poisson counting 
process. The INAR(1) model is a simple but well  
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interpretable model for correlated process of Poisson counts 
data. We derived explicit formula of moving average 
control chart for evaluate average run length. The result 
show that when out - of - control for the shift increasing 
MA performs better as the value of ( w ) decreases. 
Consequently, calculations with explicit formulas is simple 
and very fast with computational times of less than 1 
second.  

V. DISCUSSION 

The good properties of MA chart are memory control 
chart then it is good for small and moderate shifts. Without 
loss of generality, this chart can be relax due to its 

feasibility with width  w of control limit. The performance 

of MA chart will be better as the values of  w  increases for 
small shift, however, the number of observations must be 
sufficient large. 
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TABLE II 
ARL OF  MA CHART FOR GIVEN 

0 = 3, 
0 = 0.2 AND ARL0 = 370 

CONSIDERING A CHANGE IN .  

  w=2 w=3 w=4 w=5 w=10 W=15 

0.0 370.40 370.40 370.40 370.40 370.40 370.40 
0.1 187.27 172.89 160.38 149.42 110.86 88.38 
0.2 83.96 69.85 59.56 51.81 31.99 25.11 
0.3 40.72 31.82 26.08 22.19 14.51 13.58 
0.4 22.14 16.85 13.77 11.88 9.35 10.33 
0.5 13.38 10.20 8.53 7.63 7.32 8.85 
0.6 8.85 6.89 5.98 5.60 6.25 7.79 
0.7 6.30 5.07 4.60 4.49 5.53 6.84 
0.8 4.77 3.99 3.78 3.82 4.94 5.94 
0.9 3.79 3.31 3.25 3.36 4.41 5.10 
1.0 3.14 2.85 2.88 3.03 3.93 4.36 
1.5 1.77 1.81 1.92 2.02 2.22 2.24 

TABLE I 
ARL OF MA CHART FOR GIVEN 

0 = 1, 
0 = 0.2 AND ARL0 = 370 

CONSIDERING A CHANGE IN .  

  w=2 w=3 w=4 w=5 w=10 W=15 

0.0 370.4 370.4 370.4 370.4 370.4 370.4 
0.1 217.63 211.06 204.84 198.94 173.84 154.56 
0.2 125.08 114.63 105.69 97.98 71.89 57.64 
0.3 74.32 64.70 57.21 51.27 34.49 27.74 
0.4 46.59 39.05 33.62 29.58 19.87 17.28 
0.5 30.89 25.25 21.46 18.80 13.41 12.94 
0.6 21.57 17.39 14.75 13.01 10.19 10.81 
0.7 15.77 12.65 10.78 9.66 8.41 9.60 
0.8 11.99 9.65 8.33 7.60 7.32 8.78 
0.9 9.43 7.65 6.72 6.26 6.59 8.14 
1.0 7.64 6.28 5.62 5.35 6.06 7.60 
1.5 3.66 3.27 3.23 3.33 4.44 5.34 

TABLE III 
ARL OF MA CHART FOR GIVEN 

0 = 1, 
0 = 0.2 AND ARL0 = 500 

CONSIDERING A CHANGE IN .  

  w=2 w=3 w=4 w=5 w=10 W=15 

0.0 500.11 500.11 500.11 500.11 500.11 500.11 
0.1 285.21 276.13 267.55 259.43 224.94 198.52 
0.2 159.07 145.14 133.29 123.09 88.71 69.89 
0.3 92.00 79.58 69.95 62.32 40.78 31.90 
0.4 56.35 46.84 40.02 34.96 22.63 19.02 
0.5 36.62 29.65 24.96 21.67 14.80 15.09 
0.6 25.13 20.04 16.81 14.67 10.98 11.35 
0.7 18.09 14.34 12.09 10.69 8.91 9.97 
0.8 13.58 10.78 9.20 8.28 7.67 9.07 
0.9 10.56 8.44 7.32 6.74 6.86 8.40 
1.0 8.46 6.85 6.06 5.60 6.28 7.84 
1.5 3.90 3.45 3.36 3.46 4.57 5.53 

 
TABLE IV 

ARL OF MA CHART FOR GIVEN 
0 = 3, 

0 = 0.2 AND ARL0 = 500 

CONSIDERING A CHANGE IN .  

  w=2 w=3 w=4 w=5 w=10 W=15 

0.0 500.11 500.11 500.11 500.11 500.11 500.11 
0.1 243.55 223.94 206.97 192.15 140.33 110.22 
0.2 104.94 86.60 73.30 63.32 37.78 28.66 
0.3 49.22 38.03 30.85 25.98 16.14 14.55 
0.4 26.03 19.53 15.74 13.40 9.99 10.76 
0.5 15.36 11.51 9.47 8.35 7.65 9.14 
0.6 9.95 7.60 6.49 5.99 6.48 8.04 
0.7 6.97 5.50 4.91 4.73 5.71 7.08 
0.8 5.19 4.27 3.97 3.98 5.11 6.16 
0.9 4.08 3.50 3.39 3.49 4.57 5.31 
1.0 3.34 2.97 2.98 3.13 4.08 4.54 
1.5 1.82 1.85 1.96 2.07 2.30 2.32 
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