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Interactve Decision Making for Multiobjective
Fuzzy Random Simple Recourse Programming
Problems and Its Application to Rainfed

Agriculture in Philippines

Hitoshi Yano and Rongrong Zhang

Abstract—In this paper, we formulate a multiobjective fuzzy —programming problem. From such a point of view, inexact

random simple recourse programming problem, in which fuzzy two-stage programming methods have been proposed [5],
random variables coefficients are involved in equality con- [10].

straints. In the proposed method, equality constraints with . .
fuzzy random variables are defined on the basis of a possibility ~AS an extension of two-stage programming methods for

measure and and a two-stage programming method. For a given multiobjective programming problems, Sakawa et al. [12]
permissible possibility level specified by the decision maker, a proposed an interactive fuzzy decision making method for
Parlf_to OptiTha”éy_CO”CEpt isénttrodubcteq. An in:_e:cacttive declisti_on multiobjective stochastic programming problems with simple
making metnoda IS propose O ODbtaln a satistactory solution . ] . .
from a?nong a Paretg ogtimal solution set. The proposgd method r_ecour§e. However, in the real World_deC|5|on making S'tl,Ja'
is applied to a farm planning problem in the Philippines, in tions, it seems to be natural to consider that the uncertainty
which it is assumed that an amount supplied of water resource iS expressed by not only fuzziness but also randomness
in dry season is represented as a fuzzy random variable. simultaneously. From such a point of view, interactive de-
Index Terms—multiobjective programming, simple recourse Cision making methods for multiobjective fuzzy random
programming, a possibility measure, fuzzy random variables, programming problems have been proposed [7], [8], in which
a satisfactory solution. chance constraint methods and a possibility measure are
applied to deal with fuzzy random variable coefficients [9].
In this paper, we focus on multiobjective fuzzy random
) . . simple recourse programming problems, where the coeffi-
During the past six decades, various types of stochasfignts of equality constraints are defined by fuzzy random

programming approaches have been proposed to deal Wifhiaples [9], and propose an interactive decision making
mathematical programming problems with random variablgethod to obtain a satisfactory solution from among a Pareto
coefficients. Such approaches can be classified into tygiimal solution set. In section II, using a possibility measure
groups, one is two-stage programming methods and the otpﬂr and a two-stage programming method, multiobjective
is chance constraints methods [1], [2], [3], [6], [14], [16]programming problems with fuzzy random variable coef-
[18]01In two-stage programming problems [1], [2], the firstficients are transformed into multiobjective fuzzy random
stage is to minimize the penalty cost for the violation of th@imple recourse programming problems, and a corresponding
equality constraints under the assumption that the decisipBreto optimality concept is introduced. To obtain a candi-
variables are fixed, and the second-stage is to minimize g of a satisfactory solution from among a Pareto optimal
original objective function and the corresponding penalig|ytion set, an interactive algorithm is developed. In section
cost. For chance constraint programming problems [13], [14j} we further consider a generalized multiobjective fuzzy
a probability maximization model za_nd a fractile optimizati_qmandom simple recourse programming problem, where not
model were proposed. In a probability model, the probabiligyny the coefficients of equality constraints are fuzzy random
that the objective function is smaller than a certain targghriaples but also the coefficients of the objective functions
value is maximized. A fractile optimization model can be resye random variables. To deal with such a problem, both
garded as a complementary to the corresponding probabilifytyo-stage programming method and a chance constraint
maximization model, in which a target variable is optimize¢hethod are applied simultaneously. In section 1V, to show
under the condition that the probability that the objectivg,e efficiency of the proposed method, we apply the proposed
fu_nction is smaller than the target variable is larger than Bethod to a farm planning problem in the Philippines [20],
given value. in which it is assumed that an amount supplied of water

Two-stage programming methods have been applied source in dry season is represented as a fuzzy random
various types of water resource allocation problems witlyriable.

random inflow in future [15], [17]. However, if probability

density functions of random variables are unknown or the

problem is a large scale one with random variables, it may ||, M uULTIOBJECTIVE FuzzY RANDOM SIMPLE
be extremely hard to solve the corresponding two-stage RECOURSEPROGRAMMING PROBLEMS

I. INTRODUCTION

H. Yano and R. Zhang are with Graduate School of Humanities and In thi . f ltiobiecti .
Social Sciences, Nagoya City University, Nagoya, 467-8501, Japan, e-malil: n this section, we focus on muitiobjective programming

yano@hum.nagoya-cu.ac.jp problems involving fuzzy random variable coefficients in the
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right-handsides of the equality constraints. Yano [19] has already formulated fuzzy random simple
. recourse programming problems usifg™,y~). In this
min (e1z, -, ex) (1) paper, as a extension of [19], we formulated a multiobjective
subject to fuzzy random simple recourse programming problem (1) as
A —d @) follows.
. min c;x+ F [ min (qu"r + ql_y_)}
where ¢, = (co1, - ,cn),f = 1,--- k are n dimen- TreX yty-
sional coefficient row vectors of objective functiom, = o (6)
” T 1 1 1 1 1 1
(T1, ) > 0. is ann d|men5|on{al deC|S|o.n variable min cxx + E { min (q;y+ +qky—)]
column vector,X is a linear constraint set with respect Tex y+t.y-
to . 14 is an (n% x n) dimensional coefficient matrix, subject to
d = (dy,---,d,) is an m dimensional coefficient col- T 1 .
umn vector whose elements are fuzzy random variables [9] ai® + yi_ 2 ?i(w) - Lil(V)ai’Z' 1-eeym
(The symbols ?” and ™" mean randomness and fuzziness aix —y; <bw)+R (VBii=1--.,m
respectively). xeX,yt >0,y >0

In order to deal with fuzzy random variables efficiently,

Katagiri et al. [7], [8] defined an LR-type fuzzy randomWhere
variable, which is a special type of a fuzzy randgm variable. a = (¢4, ,q4,,)>00=1,--k (7
Under the occurrence of each elementary evgnd;(w) is a = (g, ,aq,,)>00=1--k (8)

arealization of an LR-type fuzzy random variaklg which

is an LR fuzzy number [4] whose membership function i&'€ 7 dimensional weighting row vectors foy* andy~
defined as follows. respectively. For thé-th objective function of (6), the second

_ term can be transformed into follows [19].
L (L“)._S) ,  s<

i(w)
M) = R(H9) . s> Tw) © E {yrfi;_(qijqzy‘)}

)

> df (Bb] — o~ 17 (0)e)

=l =l
S

i

where the function L(t) def max{0,[(t)} is a real-valued

continuous function from[0,00) to [0,1], and () is a

strictly decreasing continuous function satisfyi@) = 1. m
Also, R(t) % max{0,r(t)} satisfies the same conditions. +Zq2; {(aiz + L7 (an) Fi(aiw + L™ (1))
a5 (> 0) and 8;;(> 0) are called left and right spreads [4]. l:1a-a:+rl(7)w
The mean valué; is a random variable, whose probability _/ ' 1 bifi(b')dbi}
density function and cumulative distribution function are oo
defined asf;(-) and F;(-) respectively. It is assumed that m
random variables;,i = 1,---,m are independent each +Zq@ {(aix — R~ (7)B;)Fi(a;x — R™'(7)5)
other. i=1
Since it is difficult to deal with multiobjective fuzzy a; x—R™"(v)B
random simple recourse programming problems (1) directly, —/ bifi(bi)dbi}

we introduce a permissible possibility leve(0 < v < 1)
based on a concept of a possibility measure [4] for the def de(2,7) ©)]

equality constraints (2), . ' I .
q 4 @ In the following, we define the objective functions as:

Posaiw:iw >v,i=1,---,m, 4 o
( @) 27 @) zo(x, ) e +de(x,7),£=1,--- k. (10)
wherea; = (a1, ,ain), i = 1,--- ,m aren-dimensional o )

row vectors ofA. From the property of LR fuzzy numbers,Then, & multiobjective programming problem (1) can be
the i-th inequality condition (4) can be transformed into thééduced to a multiobjective fuzzy random simple recourse
following two inequalities. programming problem, in which a permissible possibility

_ _ level v is a parameter specified by the decision maker.
bi(w) — L7 )y < @z < bi(w) + R ()8 (5)

. . . min (Zl(ll?,’)/),“- ,Z]g($7’}/)) (11)
For the above two inequalities (5), we introduce two vectors TeX

yt = (g, 7ymT >0,y = (yr - ayfn)T >0, z\llolv)v we can define a Pareto optimal solution concept for

where(y;", y;") represent the shortage and the excess for tBefinition 1.

interval (5), and the following relations hold [19] x* € X is said to be ay-Pareto optimal solution to (11),

(1) For the casé;(w) — L~(y)a; > a;x, it holds that if and only if there does not exist another € X such

y =bi(w) — L7 (y)a; — a;x > 0,y; =00 that z,(x, ) < ze(x*,7),¢ = 1,--- , k with strict inequality

(2) For the casé;(w) + R~'(y)B; < a;z, it holds that holding for at least oné.

yt =0,y = a;xz — (bi(w) + R71(7)8:) > 00 For generating a candidate for a satisfactory solution which

(3) For the caséh;(w) — L™ (y)ay < a;xz < bi(w) + is also a~-Pareto optimal solution, the decision maker

R™1(%)8:, it holds thaty;" = 0,y; = 00 is asked to specify a permissible possibility leveland
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the reference objective value®,? = 1,--- .k [11]. Once 1,---,n can be calculated as follows.

a permissible possibility levely and reference objective

valuesz,, ¢ = 1,--- , k are specified, the corresponding 9ze(2,7)

Pareto optimal solution, which is in a sense close to his/her 0xs0xy

requirement or better than that if the reference objective m N .

values are attainable, is obtained by solving the following = > qfaisaifi(aix + L7 (7))

minimax problem [11] =

[MINMAX1( 2,7)] +3 " qpaisaifilax — R7)B)  (15)
=1

min A (12)
TeX,\eR!?

The Hessian matrix fog,(x,~) can be written as:
s.t. zo(x,y) — 20 <A l=1,---k (13

VQZE('T,’)’)
The relationships between the optimal soluti@e, A*) m
of MINMAX1( 2,v) and ~-Pareto optimal solutions can be = Zqui(aierL*l('y)a,;) <A
characterized by the following theorem. i=1

m

Theorem 1.
(1) If z* € X,\* € R! is a unique optimal solution of

+> dnfilam— R ()8 - A, (16)
MINMAX1( 2,7), thenz* € X is ay-Pareto optimal solution =t

to (11). where A;,i = 1,--- ,m are (n x n)-dimensional matrices
(2) If z* € X is a~y-Pareto optimal solution, then* € X  defined as follows.

« def * o . . .
A= ze(x*,y) — 2,0 = 1,--- k is an optimal solution )
of MINMAXZ1( 2,v) for some reference objective valugs= 23 T G1Gin

~ ~ def . . .
(217"'7216)- A7: : : 72:15""m (17)
(Proof) Ginan - a2,
(1) Assume thatc* € X is not a~y-Pareto optimal solution.
Then, there existe € X such that(x,~v) < z¢(x*,7),{ = Because of the property of the Hessian matrix for
1, -+, k with strict inequality holding for at least orfe This  z,(x,v),¢{ = 1,--- , k, the following theorem holds.
means that,(x,v)—2; < ze(x*,v)—2, < X, {=1,--- ,k, Theorem 3.
which contradicts the fact that* € X is a unique optimal MINMAXZ1( 2,~) is a convex programming problem.
solution to MINMAX1(2,7). (Proof)

(2) Assume that" € X, \* € R is not an optimal solution o the definition (17), it holds that; = a7 -a;. Therefore,
to MINMAX1(2, ) for any reference objective valugs=  he following relation holds for anyi-dimensional column
(%21, , %), which satisfy the equalitied™ = z,(x*,v) — vectory € R
%¢,£ = 1,--- k. Then, there exists some € X, \ < \*
such thatzy(x,v) — 2, < X\, £ = 1,--- , k. This means that
ze(x,y) < ze(x*,7v),£ = 1,--- ,k, which contradicts the
fact thatx* € X is a~-Pareto optimal solution.
Unfortunately, it is not guaranteed that the optimal solution
(z*, \*) to MINMAX1( 2,7) is y-Pareto optimal, ifx*, \*)

y"Ay = y"(a] ai)y
(" -al) (ai-y)

(ai-y)" - (a;-y) >0

is not unique. In order to guaranteePareto optimality, we This means that matriced;,« = 1,---,m are positive
solve ay-Pareto optimality test problem fae*, \*). semidefinite. Because of the assumptions that probability
Theorem 2. density functionsf;(-) > 0,i = 1,---,m0and ¢}, >
Let z* € X, \* € R! be an optimal solution to 0,q,;, >20,4=1,--- k,i=1,---,m, the following relation

MINMAX1(2,7), in which \* = z(z*,7) — 2,f = Tolds Lor each of the Hessian matric&8’z,(z,v),¢ =

s,

1,---,k. Corresponding to the optimal solutior* € X,
solve the followingy-Pareto optimality test problem.

& yTVQZf(wv'y)y

max €r (14) — +rla -1 .yl A
wEX,EZ(El,”',fk)Z(); ;qﬁf!(aszrL ey A

subject to +> g filaiw — R (Y)Bi) -y Aiy > 0
=1

zo(e,y) —20+e <X 4=1,--- Kk
This means that MINMAX1£, v) is a convex programming

Letz € X,é > 0,0 =1,--- ,k be an optimal solution to problem.
(14). If Zle ¢r = 0, thenx* € X is a~-Pareto optimal  The relationship between a permissible possibility leyel
solution to (11). and the optimal objective function valug(x*,~) can be
On the other hand, the partial differentiation ofharacterized by the following theorem.
ze(x,vy),L = 1,--- ,k for z5,s = 1,---,n and 2;,t = Theorem 4.
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For the optimal solutione* € X to (11), the following 1,--- k. Then, using the variance covariance matrjx the
relation holds. objective functioné,xz becomes a Gaussian random variable.
Oze(2*,7) ¢ ~ N(Elgz, 2" Vix), 0 =1,--- k (22)
2ol

According to the discussion in the previous section, for

_ i +<9L_1(’Y)a_ a permissible possibility level, a generalized multiobjective
p Qi oy ! fuzzy random simple recourse programming problem (19)
m . can be reduced to the following multiobjective stochastic
+ 0L () Fa:x* + Lt , programming problem
+quiT% (@i + L7 (7)) '
l;Ll min (51$+d1(m,’}/)7 7Ekm+dk(m,'}/)) (23)
— 8R71 (7) * -1 pex
*qu T oy BiFi(aix”™ — R™ (7)) where d;(x, ), = 1,--- ,k are penalty costs defined by
=1 18 (9). If the decision maker specifies permissible probability
(18) Jevelsjpy, ¢ = 1,--- , k for &, the multiobjective stochastic

Now, following the above discussions, we can present Qﬁoplem (23) can_be transformed into the foII.owing_ m.ultigb—
interactive algorithm to derive a satisfactory solution frorffCtive programming problem through a fractile optimization

among ay-Pareto optimal solution set to (11). model [13], [14]. R )

[An interactive algorithm 1] min (fi(®,7,01), -, fu(®,7,Px)) (24)
Step 1: Set a permissible possibility level = 1. where fo(z,~, p¢) is defined as follows.

Step 2: The decision maker sets the initial reference def ~ -

objective valuess, for z,(x,~),{ =1, - , k. folx,v,p0) = EE]z+o () ValVix
Step 3: Solve MINMAX1(%,~) and obtain the correspond- +dy(z,7) (25)

ing optimal solution(z*, A"). For the optimal solutiore®, where®~1(.) is an inverse function of a cumulative standard

ary Par.eto optlmallty Fest problem 1S sqlv_ed. . normal distribution. It should be noted here that the problem
Step 4: If the decision maker is satisfied with the cur : . .

. . N (24) can be regarded as a generalized version of (11), since
rent value of they-Pareto optimal solutior,(z*,v),¢ =

1,---,k, then stop. Otherwise, the decision maker updatécé(m’%o'@ is equivalent tax(x, 7) if Ele] is replaced by

his/her reference objective valuég ¢ = 1,--- , k, and/or a e

- - Similar to Definition 1, we can define a Pareto optimal
permissible possibility level, and return to Step 3. P

solution concept to (24).

Definition 2.
I1l. GENERALIZED MULTIOBJECTIVE FUzZY RANDOM x* € X is said to be a (;p)-Pareto optimal solution to
SIMPLE RECOURSEPROGRAMMING PROBLEMS (24), if and only if there does not exist another X such

In this section, we further consider generalized multiobjeg:'at fo(@,7,p0) < fo(®*,7,p0), £ = 1,--+, k with strict
nﬁequahty holding for at least oné

tive fuzzy random simple recourse programming problems, i L A .
y P brog gp For the reference objective valugg ¢ = 1,--- , k speci-

which not only fuzzy random variable coefficients but als - .
random variables ones are involved in the constraints ao(a?m?;'l t2§|u1§>crlsi'§r;g::ﬁra tge g;:/ﬁiSptohned;gﬂgx iianra'r:(i)ni-
objective functions. P y 9 9

max problem [11]0

énigl( (G1z, -, Cx) (19) [MINMAX2( £ v P
€
, min A (26)
subject to TeX AER!
Az =d (20) st fo(@,v,P) — fe<AL=1,-- &k  (27)

where a decision variable vectox, a constraint setX Similar to Theorem 3, MlNMszf’ 7, P) become a
' ' _convex programming problem, we can present the interactive

a coeff;uent matrixA, an_ LR—t_ype fuzzy random V_a”ablealgorithm to obtain a satisfactory solution from among a (v
vector d are already defined in the previous section, a”ﬁ)—Pareto optimal solution set.

¢ = (o, ,Cm), L =1,---  kis ann dimensional ran- [An interactive algorithm 2]

dom variable coefficient row vectors of the objective functiogtep 1: Set a permissible possibility levej = 1 and
c,x. Let us assume that the each elementis a Gaussian permissible probability levelg,, ¢ =1,--- , k.

random variablej.e., ¢o; ~ N(E[¢;], 0455), and the posi- Step 2: The decision maker sets the initial reference objec-
tive definite variance covariance matriceg ¢ = 1,--- .k tive valuesf,,¢ =1,--- , k for folx,v,p), L =1, k.
between Gaussian random variablgs,j = 1,---,n are Step 3: Solve MINMAX2(f, 7, ) and obtain the corre-
given as: sponding optimal solutiofiz*, A*). For the optimal solution

x*, a (v, p)-Pareto optimality test problem is solved.

- o . Step 4: If the decision maker is satisfied with the current
V= | Ot T Ten =1k (21) value fi(z*,7,P),¢ = 1,---,k then stop. Otherwise, the
decision maker updates his/her reference objective values

O¢11 O¢12 -+ Ofin

Otni Otn2 Tt Glnn fo,0 = 1,--- ,k, a permissible possibility levey, and/or
We denote the vectors of the expectation for the randgmermissible probability levelg,,¢ = 1,--- , k and return to
variable row vectoig, as E[¢¢] = (E[ce], - , Elcem]),{ = Step 3.
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TABLE | TABLE Il
PROFIT COEFFICIENTS:5,t =1,---,5,5=1,---,7 THE REQUIRED WORKING HOURS FOR EACH PERIOMR;
j 1 2 3 4 5 6 7 period: [3 Ly Lyo Lys Ly Lys Lyg L7
t year | c¢1 Ct2 Ct3 Ct4 Ct5 Ct6 Ct7 2-May: 1 26
11989 45| 326 | 40| 726 7.3 | 2.7 | 10.9 1-Jun: 2 | 16
21990 | 5.7 | 227 | 295 | 136 | 6.3 | 43 | 245 2-Jun: 3 | 160
3| 1991 | 3.8 | 263 | 423 | 429 | 51| 1.2 | 133 1-Jul: 4| 16
4| 1992 | 35| 21.3| 201 | 357 | 52 | 25 | 26.1 2-Jul: 5 6
5| 1993 | 4.4 | 26.2 | 39.3 | 225 | 84 | 2.2 | 266 2-Aug: 6 8
3-Sep: 7 | 140
1-Oct: 8 32 8
3-Oct: 9 46 6
IV. A SECOND CROP PLANNING PROBLEM OF PADDY 1-Nov: 10 36 174 8
FIELDS IN THE PHILIPPINES 2-Nov: 11 100| 10| 44] 12| 54| S0
) ) ] 3-Nov: 12 22| 16| 12 8| 20
In this section, we formulate a second crop planning [ 1-Dec: 13 8] 38| 16| 10| 16| 108
problem of paddy fields in the Philippines [20] as a multiob- | 2-Dec: 14 16| 94| 16 2
jective simple recourse programming problem, in which the 31'32‘;: 12 g ii 16 gj
water availability constraint in the dry season is expressed——>-3an- 17 36 14 10 16
as a equality constraint with a fuzzy random variable. In | 3-Jan: 18 70 6
the model farm, only rice (g) is grown in the wet season | 1-Feb: 19 /0] 6] 180 48
between May and October, and in the dry season between 2-Feb: 20 1 14 0| %6
Yy _ , y _ " 3-Feb: 21 36| 6 78
November and April, tobacco§}, tomatoes(z), garlic(zy), 1-Mar: 22 36 56
mungbeans(g), corn(z) and sweet peppers{xare grown, 2-Mar: 23 30 32
where z; means the cultivation area (unit: 1 ha) for each ‘?i‘_'\A";rr; ;‘5‘ gg -
cropj = 1,---,7. It is_assumed that the farmer has one —apr: 26 30
person of available family labor, but does not have access tg 3-Apr: 27 26
hired labor, and he/she must decide the planting ratio among
seven kinds of crops (xj = 1,---,7) in his/her farmland
to maximize his/her total income and minimize total workyherep ~ N(300,5), @ = B = 1000 and L(t) = R(t) =
hours. _ N 1-4,0<t<1.
~ Table | shows the profit coefficienis; of seven Crops  gjnce the penalty cost arises only for the shortage of
j (G =1,---,7) in each year [20]. From Table I, we canyater resource, it is assumed thgt = 0,¢; = 10 and
compute the expected values as ¢3 = ¢; = 0. Then, for the reference objective valtie ¢ =
(E[¢1], E[ea), E|és], E[éa), Eles|, Elés), E[er)) 1,2 specm_ed by the_ de_C|S|on _maker, the _correspondyng
— (438, 25.82,27.04, 37.46, 6.46, 2.58, 20.28). Pareto optimal solution is obtained by solving the following

minimax problem.
Then, the first objective function (total profit, unit: 1000

pesos) can be defined B3;_, E[c;]z;. The second objective TEX rER! A
function is total working hours. Table Il shows the required 7
working hoursL,; for each crop (j= 1,---,7) and each s.t. 7ZE[éj]:L'j +d(xz,y) — 2 < A
period (from the middle ten days in May to the last ten days j=1
in April, £ = 1,---,27) [20]. Then, the second objective 27 7
function (a total number of working hours, unit: 1 hour) can ZZLU% — % <A
27 7 . L
be expressed a5 ,_, >, L¢jz;. Since the upper limit =1 j=1

of the working hours for each period € 1,---,27) can

whered(x,~y) is defined as follows.
be computed a8 (hours) x 1 (person)x 10 (days)= 80

(hours), the constraintgzz1 Lyjz; <80, £ =1,---,27 def 7
e P ) s e — -1
must be satisfied. As two land area constraints (unit: 1 ha) dx,y) = o (Z wjz; — R (7))
for the wet and dry seasom;, < 1,2]7:2 z; < lzy > j=2
0,7 =1,---,7 must be satisfied. We assume that the water 7 i
availability constraint in the dry season is expressed as "I’(Z wiz; — R (7))
7 J=2
= S wiz;—R™H (B
;wm * - / b (b)db

where the water demand coefficients; for the crops
G = 2,---,7) are set as(wsq,ws,wy,ws, We, Wy) =
(264.6,232.3, 352.8, 88.2,44.1,220.5) [20], and the water
supply possible amount is defined as a following LR-typ]%

fuzzy random variablel (unit : 1000 gallons).

where ¢(-) and ®(-) mean the probability density function
and the cumulative distribution one fd¥(300, 5).

For comparison, we show two kinds of tables, Table Il
rv =1 and Table IV fory = 0.5, where the interactive
processes under the hypothetical decision maker are shown

I (E(w)—s) s < b(w) according to An interactive algorithm 1. In each table, a
15 (s) = Si%‘(w) ’ T satisfactory solution is obtained at the third iteration. Egch
“) R ( B ) ) 5 > b(w) Pareto optimal solution is obtained by applying Mathematica
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TABLE IlI
INTERACTIVE PROCESSES FOR =1

supplied of water resource in dry season is represented as

a fuzzy random variable. However, in such a farm planning

1 2 3 4
m 300 300 300 300
o2 5 5 5 10
Z1 33 33 -30 -30
29 680 620 620 620
z1(x¥) | -34.1648 -33.5212 -33.4891] -32.3451
zo(x*) | 678.835 619.479  616.511] 617.655
x% 0557996 0.411074 0.403728 0.410482
T3 0.000 0.000 0.000 0.000
x5 0.537202 0.537202 0.537202 0.636229
x} 0.462798 0.462798 0.462798 0.363771
zi 0.000 0.000 0.000 0.000

z§ 0.000 0.000 0.000 0.000 [1]
zk 0.000 0.000 0.000 0.000

[2]

TABLE IV 3]

INTERACTIVE PROCESSES FOR = 0.5

4

1 2 3 4 4l

m 300 300 300 300 5]
o2 5 5 5 10
EN 33 33 -30 -30

29 680 620 620 620 6]
z1(x*) | -35.4266 -34.7831 -34.7509 -33.6070

2o(x*) | 677.574 618.217  615.249 616.393 [7]
x5 0549943 0.403021 0.39567§ 0.402428
x5 0.000 0.000 0.000 0.000
z 0.41272 0.41272  0.41272 0.511748

T 0.58728 0.58728  0.58728 0.488252 [8]
z} 0.000 0.000 0.000 0.000
zE 0.000 0.000 0.000 0.000
xk 0.000 0.000 0.000 0.000

[9]
to solve the corresponding minimax problem and the (10]
Pareto optimality test problem. By comparing Table Il for
~v = 1 with Table IV for v = 0.5, it is clear that anyy-
Pareto optimal solution foty = 0.5 is superior toy-Pareto (11
optimal solution fory = 1 because of the definition of [12]
a possibility measure. In any-Pareto optimal solution of
Table 11l and Table IV, only tomatoes £):and garlic (1) in
the dry season and rice (in the wet season are cultivated.
The larger value of a permissible possibility levegjives the [14]
larger planting ratio of tomatoes{) and the smaller one of 15]
garlic (x4) because of the difference of the water demand
coefficients of tomatoes ¢} and garlic {4). At the fourth
iteration Table Il and Table IVy-Pareto optimal solutions
are shown under the assumption that the variaricef the
random variableb is changed to 10. Then, the objectivel?]
function z; (x*) at the fourth iteration become worse than
the one at the third iteration, because of the corresponding]
penalty costd(x*, ).

[16]

[19]

V. CONCLUSIONS
[20]

In this paper, we formulate a multiobjective fuzzy ran-
dom simple recourse programming problem, in which fuzzy
random variables coefficients are involved in equality con-
straints. In the proposed method, equality constraints with
fuzzy random variables are defined on the basis of a possi-
bility measure and and a two-stage programming method. For
a given permissible possibility level and reference objective
values specified by the decision maker, corresponding min-
imax problem is solved to obtain a Pareto optimal solution.
The proposed method is applied to a farm planning problem
in the Philippines, in which it is assumed that an amount
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problem, we assume that the expected values are adopted
as profit coefficients. If we consider the correlation between
seven kinds of profit coefficients, we have to deal with the
profit coefficients as random variables. Such decision making
situations are discussed in section lll, and we will apply
a generalized version of the proposed method to a farm
planning problem in the near future.
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