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Abstract—In this paper, we formulate a multiobjective fuzzy
random simple recourse programming problem, in which fuzzy
random variables coefficients are involved in equality con-
straints. In the proposed method, equality constraints with
fuzzy random variables are defined on the basis of a possibility
measure and and a two-stage programming method. For a given
permissible possibility level specified by the decision maker, a
Pareto optimality concept is introduced. An interactive decision
making method is proposed to obtain a satisfactory solution
from among a Pareto optimal solution set. The proposed method
is applied to a farm planning problem in the Philippines, in
which it is assumed that an amount supplied of water resource
in dry season is represented as a fuzzy random variable.

Index Terms—multiobjective programming, simple recourse
programming, a possibility measure, fuzzy random variables,
a satisfactory solution.

I. I NTRODUCTION

During the past six decades, various types of stochastic
programming approaches have been proposed to deal with
mathematical programming problems with random variable
coefficients. Such approaches can be classified into two
groups, one is two-stage programming methods and the other
is chance constraints methods [1], [2], [3], [6], [14], [16],
[18]．In two-stage programming problems [1], [2], the first-
stage is to minimize the penalty cost for the violation of the
equality constraints under the assumption that the decision
variables are fixed, and the second-stage is to minimize the
original objective function and the corresponding penalty
cost. For chance constraint programming problems [13], [14],
a probability maximization model and a fractile optimization
model were proposed. In a probability model, the probability
that the objective function is smaller than a certain target
value is maximized. A fractile optimization model can be re-
garded as a complementary to the corresponding probability
maximization model, in which a target variable is optimized
under the condition that the probability that the objective
function is smaller than the target variable is larger than a
given value.

Two-stage programming methods have been applied to
various types of water resource allocation problems with
random inflow in future [15], [17]. However, if probability
density functions of random variables are unknown or the
problem is a large scale one with random variables, it may
be extremely hard to solve the corresponding two-stage
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programming problem. From such a point of view, inexact
two-stage programming methods have been proposed [5],
[10].

As an extension of two-stage programming methods for
multiobjective programming problems, Sakawa et al. [12]
proposed an interactive fuzzy decision making method for
multiobjective stochastic programming problems with simple
recourse. However, in the real world decision making situa-
tions, it seems to be natural to consider that the uncertainty
is expressed by not only fuzziness but also randomness
simultaneously. From such a point of view, interactive de-
cision making methods for multiobjective fuzzy random
programming problems have been proposed [7], [8], in which
chance constraint methods and a possibility measure are
applied to deal with fuzzy random variable coefficients [9].

In this paper, we focus on multiobjective fuzzy random
simple recourse programming problems, where the coeffi-
cients of equality constraints are defined by fuzzy random
variables [9], and propose an interactive decision making
method to obtain a satisfactory solution from among a Pareto
optimal solution set. In section II, using a possibility measure
[4] and a two-stage programming method, multiobjective
programming problems with fuzzy random variable coef-
ficients are transformed into multiobjective fuzzy random
simple recourse programming problems, and a corresponding
Pareto optimality concept is introduced. To obtain a candi-
date of a satisfactory solution from among a Pareto optimal
solution set, an interactive algorithm is developed. In section
III, we further consider a generalized multiobjective fuzzy
random simple recourse programming problem, where not
only the coefficients of equality constraints are fuzzy random
variables but also the coefficients of the objective functions
are random variables. To deal with such a problem, both
a two-stage programming method and a chance constraint
method are applied simultaneously. In section IV, to show
the efficiency of the proposed method, we apply the proposed
method to a farm planning problem in the Philippines [20],
in which it is assumed that an amount supplied of water
resource in dry season is represented as a fuzzy random
variable.

II. M ULTIOBJECTIVE FUZZY RANDOM SIMPLE

RECOURSEPROGRAMMING PROBLEMS

In this section, we focus on multiobjective programming
problems involving fuzzy random variable coefficients in the
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right-handsides of the equality constraints.

min
x∈X

(c1x, · · · , ckx) (1)

subject to
Ax = d̃ (2)

where cℓ = (cℓ1, · · · , cℓn), ℓ = 1, · · · , k are n dimen-
sional coefficient row vectors of objective function,x =
(x1, · · · , xn)

T ≥ 0 is an n dimensional decision variable
column vector,X is a linear constraint set with respect
to x. A is an (m × n) dimensional coefficient matrix,

d̃ = (d̃1, · · · , d̃m)
T

is an m dimensional coefficient col-
umn vector whose elements are fuzzy random variables [9]
(The symbols ”- ” and ”˜ ” mean randomness and fuzziness
respectively).

In order to deal with fuzzy random variables efficiently,
Katagiri et al. [7], [8] defined an LR-type fuzzy random
variable, which is a special type of a fuzzy random variable.

Under the occurrence of each elementary eventω, d̃i(ω) is

a realization of an LR-type fuzzy random variabled̃i, which
is an LR fuzzy number [4] whose membership function is
defined as follows.

µ
d̃i(ω)

(s) =

 L
(

bi(ω)−s
αi

)
, s ≤ bi(ω)

R
(

s−bi(ω)
βi

)
, s > bi(ω)

(3)

where the functionL(t)
def
= max{0, l(t)} is a real-valued

continuous function from[0,∞) to [0, 1], and l(t) is a
strictly decreasing continuous function satisfyingl(0) = 1.

Also, R(t)
def
= max{0, r(t)} satisfies the same conditions.

αij(> 0) andβij(> 0) are called left and right spreads [4].
The mean valuebi is a random variable, whose probability
density function and cumulative distribution function are
defined asfi(·) and Fi(·) respectively. It is assumed that
random variablesbi, i = 1, · · · ,m are independent each
other.

Since it is difficult to deal with multiobjective fuzzy
random simple recourse programming problems (1) directly,
we introduce a permissible possibility levelγ(0 < γ ≤ 1)
based on a concept of a possibility measure [4] for the
equality constraints (2),

Pos(aix = d̃i(ω)) ≥ γ, i = 1, · · · ,m, (4)

whereai = (ai1, · · · , ain), i = 1, · · · ,m aren-dimensional
row vectors ofA. From the property of LR fuzzy numbers,
the i-th inequality condition (4) can be transformed into the
following two inequalities.

bi(ω)− L−1(γ)αi ≤ aix ≤ bi(ω) +R−1(γ)βi (5)

For the above two inequalities (5), we introduce two vectors

y+ = (y+1 , · · · , y+m)
T ≥ 0,y− = (y−1 , · · · , y−m)

T ≥ 0,

where(y+i , y
−
i ) represent the shortage and the excess for the

interval (5), and the following relations hold [19]．
(1) For the casebi(ω) − L−1(γ)αi > aix, it holds that
y+i = bi(ω)− L−1(γ)αi − aix > 0, y−i = 0．
(2) For the casebi(ω) + R−1(γ)βi < aix, it holds that
y+i = 0, y−i = aix− (bi(ω) +R−1(γ)βi) > 0．
(3) For the casebi(ω) − L−1(γ)αi ≤ aix ≤ bi(ω) +
R−1(γ)βi, it holds thaty+i = 0, y−i = 0．

Yano [19] has already formulated fuzzy random simple
recourse programming problems using(y+,y−). In this
paper, as a extension of [19], we formulated a multiobjective
fuzzy random simple recourse programming problem (1) as
follows.

min
x∈X

c1x+ E

[
min
y+,y−

(
q+
1 y

+ + q−
1 y

−)]
· · · · · · · · · · · · · · · · · · · · · · · ·

min
x∈X

ckx+ E

[
min
y+,y−

(
q+
k y

+ + q−
k y

−)]
 (6)

subject to

aix+ y+i ≥ bi(ω)− L−1(γ)αi, i = 1, · · · ,m
aix− y−i ≤ bi(ω) +R−1(γ)βi, i = 1, · · · ,m
x ∈ X,y+ ≥ 0,y− ≥ 0

where

q+
ℓ = (q+ℓ1, · · · , q

+
ℓm) ≥ 0, ℓ = 1, · · · , k (7)

q−
ℓ = (q−ℓ1, · · · , q

−
ℓm) ≥ 0, ℓ = 1, · · · , k (8)

are m dimensional weighting row vectors fory+ and y−

respectively. For theℓ-th objective function of (6), the second
term can be transformed into follows [19].

E

[
min
y+,y−

(
q+
ℓ y

+ + q−
ℓ y

−)]
=

m∑
i=1

q+ℓi

(
E[b̄i]− aix− L−1(γ)αi

)
+

m∑
i=1

q+ℓi
{
(aix+ L−1(γ)αi)Fi(aix+ L−1(γ)αi)

−
∫ aix+L−1(γ)αi

−∞
bifi(bi)dbi

}

+

m∑
i=1

q−ℓi
{
(aix−R−1(γ)βi)Fi(aix−R−1(γ)βi)

−
∫ aix−R−1(γ)βi

−∞
bifi(bi)dbi

}
def
= dℓ(x, γ) (9)

In the following, we define the objective functions as:

zℓ(x, γ)
def
= cℓx+ dℓ(x, γ), ℓ = 1, · · · , k. (10)

Then, a multiobjective programming problem (1) can be
reduced to a multiobjective fuzzy random simple recourse
programming problem, in which a permissible possibility
level γ is a parameter specified by the decision maker.

min
x∈X

(z1(x, γ), · · · , zk(x, γ)) (11)

Now, we can define a Pareto optimal solution concept for
(11).
Definition 1.
x∗ ∈ X is said to be aγ-Pareto optimal solution to (11),
if and only if there does not exist anotherx ∈ X such
that zℓ(x, γ) ≤ zℓ(x

∗, γ), ℓ = 1, · · · , k with strict inequality
holding for at least oneℓ.

For generating a candidate for a satisfactory solution which
is also a γ-Pareto optimal solution, the decision maker
is asked to specify a permissible possibility levelγ and
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the reference objective valueŝzℓ, ℓ = 1, · · · , k [11]. Once
a permissible possibility levelγ and reference objective
values ẑℓ, ℓ = 1, · · · , k are specified, the correspondingγ-
Pareto optimal solution, which is in a sense close to his/her
requirement or better than that if the reference objective
values are attainable, is obtained by solving the following
minimax problem [11]．
[MINMAX1( ẑ,γ)]

min
x∈X,λ∈R1

λ (12)

s.t. zℓ(x, γ)− ẑℓ ≤ λ, ℓ = 1, · · · , k (13)

The relationships between the optimal solution(x∗, λ∗)
of MINMAX1( ẑ,γ) and γ-Pareto optimal solutions can be
characterized by the following theorem.
Theorem 1.
(1) If x∗ ∈ X,λ∗ ∈ R1 is a unique optimal solution of
MINMAX1( ẑ,γ), thenx∗ ∈ X is aγ-Pareto optimal solution
to (11).
(2) If x∗ ∈ X is a γ-Pareto optimal solution, thenx∗ ∈ X

λ∗ def
= zℓ(x

∗, γ) − ẑℓ, ℓ = 1, · · · , k is an optimal solution
of MINMAX1( ẑ,γ) for some reference objective valuesẑ =
(ẑ1, · · · , ẑk).
(Proof)
(1) Assume thatx∗ ∈ X is not aγ-Pareto optimal solution.
Then, there existsx ∈ X such thatzℓ(x, γ) ≤ zℓ(x

∗, γ), ℓ =
1, · · · , k with strict inequality holding for at least oneℓ. This
means thatzℓ(x, γ)−ẑℓ ≤ zℓ(x

∗, γ)−ẑℓ ≤ λ∗, ℓ = 1, · · · , k,
which contradicts the fact thatx∗ ∈ X is a unique optimal
solution to MINMAX1(ẑ,γ).
(2) Assume thatx∗ ∈ X,λ∗ ∈ R1 is not an optimal solution
to MINMAX1( ẑ, γ) for any reference objective valueŝz =
(ẑ1, · · · , ẑk), which satisfy the equalitiesλ∗ = zℓ(x

∗, γ) −
ẑℓ, ℓ = 1, · · · , k. Then, there exists somex ∈ X,λ < λ∗

such thatzℓ(x, γ) − ẑℓ ≤ λ, ℓ = 1, · · · , k. This means that
zℓ(x, γ) < zℓ(x

∗, γ), ℓ = 1, · · · , k, which contradicts the
fact thatx∗ ∈ X is a γ-Pareto optimal solution.

Unfortunately, it is not guaranteed that the optimal solution
(x∗, λ∗) to MINMAX1( ẑ,γ) is γ-Pareto optimal, if(x∗, λ∗)
is not unique. In order to guaranteeγ-Pareto optimality, we
solve aγ-Pareto optimality test problem for(x∗, λ∗).
Theorem 2.
Let x∗ ∈ X, λ∗ ∈ R1 be an optimal solution to
MINMAX1( ẑ,γ), in which λ∗ = zℓ(x

∗, γ) − ẑℓ, ℓ =
1, · · · , k. Corresponding to the optimal solutionx∗ ∈ X,
solve the followingγ-Pareto optimality test problem.

max
x∈X,ϵ=(ϵ1,··· ,ϵk)≥0

k∑
ℓ=1

ϵℓ (14)

subject to

zℓ(x, γ)− ẑℓ + ϵℓ ≤ λ∗, ℓ = 1, · · · , k

Let x̌ ∈ X, ϵ̌ℓ ≥ 0, ℓ = 1, · · · , k be an optimal solution to
(14). If

∑k
ℓ=1 ϵ̌ℓ = 0, thenx∗ ∈ X is a γ-Pareto optimal

solution to (11).
On the other hand, the partial differentiation of

zℓ(x, γ), ℓ = 1, · · · , k for xs, s = 1, · · · , n and xt, t =

1, · · · , n can be calculated as follows.

∂zℓ(x, γ)

∂xs∂xt

=
m∑
i=1

q+ℓiaisaitfi(aix+ L−1(γ)αi)

+
m∑
i=1

q−ℓiaisaitfi(aix−R−1(γ)βi) (15)

The Hessian matrix forzℓ(x, γ) can be written as:

∇2zℓ(x, γ)

=
m∑
i=1

q+ℓifi(aix+ L−1(γ)αi) ·Ai

+

m∑
i=1

q−ℓifi(aix−R−1(γ)βi) ·Ai, (16)

whereAi, i = 1, · · · ,m are (n × n)-dimensional matrices
defined as follows.

Ai
def
=

 a2i1 · · · ai1ain
...

.. .
...

ainai1 · · · a2in

 , i = 1, · · · ,m (17)

Because of the property of the Hessian matrix for
zℓ(x, γ), ℓ = 1, · · · , k, the following theorem holds.
Theorem 3.
MINMAX1( ẑ, γ) is a convex programming problem.
(Proof)
From the definition (17), it holds thatAi = aT

i ·ai. Therefore,
the following relation holds for anyn-dimensional column
vectory ∈ R1.

yTAiy = yT · (aT
i · ai) · y

= (yT · aT
i ) · (ai · y)

= (ai · y)T · (ai · y) ≥ 0

This means that matricesAi, i = 1, · · · ,m are positive
semidefinite. Because of the assumptions that probability
density functionsfi(·) ≥ 0, i = 1, · · · ,m，and q+ℓi ≥
0, q−ℓi ≥ 0, ℓ = 1, · · · , k, i = 1, · · · ,m, the following relation
holds for each of the Hessian matrices∇2zℓ(x, γ), ℓ =
1, · · · , k.

yT∇2zℓ(x, γ)y

=
m∑
i=1

q+ℓifi(aix+ L−1(γ)αi) · yTAiy

+
m∑
i=1

q−ℓifi(aix−R−1(γ)βi) · yTAiy ≥ 0

This means that MINMAX1(̂z, γ) is a convex programming
problem.

The relationship between a permissible possibility levelγ
and the optimal objective function valuezℓ(x∗, γ) can be
characterized by the following theorem.
Theorem 4.
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For the optimal solutionx∗ ∈ X to (11), the following
relation holds.

∂zℓ(x
∗, γ)

∂γ

= −
m∑
i=1

q+ℓi
∂L−1(γ)

∂γ
αi

+
m∑
i=1

q+ℓi
∂L−1(γ)

∂γ
αiFi(aix

∗ + L−1(γ)αi)

−
m∑
i=1

q−ℓi
∂R−1(γ)

∂γ
βiFi(aix

∗ −R−1(γ)βi)

(18)

Now, following the above discussions, we can present an
interactive algorithm to derive a satisfactory solution from
among aγ-Pareto optimal solution set to (11).
[An interactive algorithm 1]
Step 1: Set a permissible possibility levelγ = 1.
Step 2: The decision maker sets the initial reference
objective valueŝzℓ for zℓ(x, γ), ℓ = 1, · · · , k.
Step 3: Solve MINMAX1(ẑ, γ) and obtain the correspond-
ing optimal solution(x∗, λ∗). For the optimal solutionx∗,
a γ-Pareto optimality test problem is solved.
Step 4: If the decision maker is satisfied with the cur-
rent value of theγ-Pareto optimal solutionzℓ(x∗, γ), ℓ =
1, · · · , k, then stop. Otherwise, the decision maker updates
his/her reference objective valuesẑℓ, ℓ = 1, · · · , k, and/or a
permissible possibility levelγ, and return to Step 3.

III. G ENERALIZED MULTIOBJECTIVE FUZZY RANDOM

SIMPLE RECOURSEPROGRAMMING PROBLEMS

In this section, we further consider generalized multiobjec-
tive fuzzy random simple recourse programming problems, in
which not only fuzzy random variable coefficients but also
random variables ones are involved in the constraints and
objective functions.

min
x∈X

(c̄1x, · · · , c̄kx) (19)

subject to

Ax = d̃ (20)

where a decision variable vectorx, a constraint setX,
a coefficient matrixA, an LR-type fuzzy random variable

vector d̃ are already defined in the previous section, and
c̄ℓ = (c̄ℓ1, · · · , c̄ℓn), ℓ = 1, · · · , k is ann dimensional ran-
dom variable coefficient row vectors of the objective function
c̄ℓx. Let us assume that the each elementc̄ℓj is a Gaussian
random variable,i.e., c̄ℓj ∼ N(E[c̄ℓj ], σℓjj), and the posi-
tive definite variance covariance matricesVℓ, ℓ = 1, · · · , k
between Gaussian random variablesc̄ℓj , j = 1, · · · , n are
given as:

Vℓ =


σℓ11 σℓ12 · · · σℓ1n

σℓ21 σℓ22 · · · σℓ2n

· · · · · · · · · · · ·
σℓn1 σℓn2 · · · σℓnn

 , i = 1, · · · , k. (21)

We denote the vectors of the expectation for the random
variable row vector̄cℓ asE[c̄ℓ] = (E[c̄ℓ1], · · · , E[c̄ℓn]), ℓ =

1, · · · , k. Then, using the variance covariance matrixVℓ, the
objective function̄cℓx becomes a Gaussian random variable.

c̄ℓx ∼ N(E[c̄ℓ]x,x
TVℓx), ℓ = 1, · · · , k (22)

According to the discussion in the previous section, for
a permissible possibility level, a generalized multiobjective
fuzzy random simple recourse programming problem (19)
can be reduced to the following multiobjective stochastic
programming problem.

min
x∈X

(c̄1x+ d1(x, γ), · · · , c̄kx+ dk(x, γ)) (23)

where dℓ(x, γ), ℓ = 1, · · · , k are penalty costs defined by
(9). If the decision maker specifies permissible probability
levels p̂ℓ, ℓ = 1, · · · , k for c̄ℓx, the multiobjective stochastic
problem (23) can be transformed into the following multiob-
jective programming problem through a fractile optimization
model [13], [14].

min
x∈X

(f1(x, γ, p̂1), · · · , fk(x, γ, p̂k)) (24)

wherefℓ(x, γ, p̂ℓ) is defined as follows.

fℓ(x, γ, p̂ℓ)
def
= E[c̄ℓ]x+Φ−1(p̂ℓ) ·

√
xTVℓx

+dℓ(x, γ) (25)

whereΦ−1(·) is an inverse function of a cumulative standard
normal distribution. It should be noted here that the problem
(24) can be regarded as a generalized version of (11), since
fℓ(x, γ, 0.5) is equivalent tozℓ(x, γ) if E[c̄ℓ] is replaced by
cℓ.

Similar to Definition 1, we can define a Pareto optimal
solution concept to (24).
Definition 2.
x∗ ∈ X is said to be a (γ, p̂)-Pareto optimal solution to
(24), if and only if there does not exist anotherx ∈ X such
that fℓ(x, γ, p̂ℓ) ≤ fℓ(x

∗, γ, p̂ℓ), ℓ = 1, · · · , k with strict
inequality holding for at least oneℓ.

For the reference objective valueŝfℓ, ℓ = 1, · · · , k speci-
fied by the decision maker, the corresponding (γ, p̂)-Pareto
optimal solution is obtained by solving the following mini-
max problem [11]．
[MINMAX2( f̂ , γ, p̂)]

min
x∈X,λ∈R1

λ (26)

s.t. fℓ(x, γ, p̂)− f̂ℓ ≤ λ, ℓ = 1, · · · , k (27)

Similar to Theorem 3, MINMAX2(̂f , γ, p̂) become a
convex programming problem, we can present the interactive
algorithm to obtain a satisfactory solution from among a (γ,
p̂)-Pareto optimal solution set.
[An interactive algorithm 2]
Step 1: Set a permissible possibility levelγ = 1 and
permissible probability levelŝpℓ, ℓ = 1, · · · , k.
Step 2: The decision maker sets the initial reference objec-
tive valuesf̂ℓ, ℓ = 1, · · · , k for fℓ(x, γ, p̂), ℓ = 1, · · · , k.
Step 3: Solve MINMAX2(f̂ , γ, p̂) and obtain the corre-
sponding optimal solution(x∗, λ∗). For the optimal solution
x∗, a (γ, p̂)-Pareto optimality test problem is solved.
Step 4: If the decision maker is satisfied with the current
value fℓ(x

∗, γ, p̂), ℓ = 1, · · · , k then stop. Otherwise, the
decision maker updates his/her reference objective values
f̂ℓ, ℓ = 1, · · · , k, a permissible possibility levelγ, and/or
permissible probability levelŝpℓ, ℓ = 1, · · · , k and return to
Step 3.
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TABLE I
PROFIT COEFFICIENTSctj , t = 1, · · · , 5, j = 1, · · · , 7

j 1 2 3 4 5 6 7
t year ct1 ct2 ct3 ct4 ct5 ct6 ct7
1 1989 4.5 32.6 4.0 72.6 7.3 2.7 10.9
2 1990 5.7 22.7 29.5 13.6 6.3 4.3 24.5
3 1991 3.8 26.3 42.3 42.9 5.1 1.2 13.3
4 1992 3.5 21.3 20.1 35.7 5.2 2.5 26.1
5 1993 4.4 26.2 39.3 22.5 8.4 2.2 26.6

IV. A SECOND CROP PLANNING PROBLEM OF PADDY

FIELDS IN THE PHILIPPINES

In this section, we formulate a second crop planning
problem of paddy fields in the Philippines [20] as a multiob-
jective simple recourse programming problem, in which the
water availability constraint in the dry season is expressed
as a equality constraint with a fuzzy random variable. In
the model farm, only rice (x1) is grown in the wet season
between May and October, and in the dry season between
November and April, tobacco(x2), tomatoes(x3), garlic(x4),
mungbeans(x5), corn(x6) and sweet peppers(x7) are grown,
where xj means the cultivation area (unit: 1 ha) for each
crop j = 1, · · · , 7. It is assumed that the farmer has one
person of available family labor, but does not have access to
hired labor, and he/she must decide the planting ratio among
seven kinds of crops (xj , j = 1, · · · , 7) in his/her farmland
to maximize his/her total income and minimize total work
hours.

Table I shows the profit coefficientsctj of seven crops
j (j = 1, · · · , 7) in each year [20]. From Table I, we can
compute the expected values as

(E[c̄1], E[c̄2], E[c̄3], E[c̄4], E[c̄5], E[c̄6], E[c̄7])

= (4.38, 25.82, 27.04, 37.46, 6.46, 2.58, 20.28).

Then, the first objective function (total profit, unit: 1000
pesos) can be defined as

∑7
j=1 E[c̄j ]xj . The second objective

function is total working hours. Table II shows the required
working hoursLℓj for each crop (j= 1, · · · , 7) and each
period (from the middle ten days in May to the last ten days
in April, ℓ = 1, · · · , 27) [20]. Then, the second objective
function (a total number of working hours, unit: 1 hour) can
be expressed as

∑27
ℓ=1

∑7
j=1 Lℓjxj . Since the upper limit

of the working hours for each period (ℓ= 1, · · · , 27) can
be computed as8 (hours)× 1 (person)× 10 (days)= 80
(hours), the constraints

∑7
j=1 Lℓjxj ≤ 80, ℓ = 1, · · · , 27

must be satisfied. As two land area constraints (unit: 1 ha)
for the wet and dry season,x1 ≤ 1,

∑7
j=2 xj ≤ 1, xj ≥

0, j = 1, · · · , 7 must be satisfied. We assume that the water
availability constraint in the dry season is expressed as

7∑
j=1

wjxj = d̃,

where the water demand coefficientswj for the crops
(j = 2, · · · , 7) are set as(w2, w3, w4, w5, w6, w7) =
(264.6, 232.3, 352.8, 88.2, 44.1, 220.5) [20], and the water
supply possible amount is defined as a following LR-type

fuzzy random variablẽd (unit : 1000 gallons).

µ
d̃(ω)

(s) =

 L
(

b(ω)−s
α

)
, s ≤ b(ω)

R
(

s−b(ω)
β

)
, s > b(ω)

TABLE II
THE REQUIRED WORKING HOURS FOR EACH PERIODLℓj

period : ℓ Lℓ1 Lℓ2 Lℓ3 Lℓ4 Lℓ5 Lℓ6 Lℓ7

2-May : 1 26
1-Jun: 2 16
2-Jun: 3 160
1-Jul : 4 16
2-Jul : 5 6

2-Aug : 6 8
3-Sep: 7 140
1-Oct : 8 32 8
3-Oct : 9 46 6

1-Nov : 10 36 174 8
2-Nov : 11 100 10 44 12 54 50
3-Nov : 12 22 16 12 8 20
1-Dec : 13 8 38 16 10 16 108
2-Dec : 14 16 94 16 72
3-Dec : 15 8 32 16 24
1-Jan: 16 8 14 64
2-Jan: 17 36 14 12 16
3-Jan: 18 70 6
1-Feb: 19 70 6 180 48
2-Feb: 20 36 14 60 56
3-Feb: 21 36 6 48
1-Mar : 22 36 56
2-Mar : 23 30 32
3-Mar : 24 30
1-Apr : 25 38 56
2-Apr : 26 30
3-Apr : 27 26

where b̄ ∼ N(300, 5), α = β = 100，andL(t) = R(t) =
1− t, 0 ≤ t ≤ 1.

Since the penalty cost arises only for the shortage of
water resource, it is assumed thatq+1 = 0, q−1 = 10 and
q+2 = q−2 = 0. Then, for the reference objective valueẑℓ, ℓ =
1, 2 specified by the decision maker, the correspondingγ-
Pareto optimal solution is obtained by solving the following
minimax problem.

max
x∈X,λ∈R1

λ

s.t. −
7∑

j=1

E[c̄j ]xj + d(x, γ)− ẑ1 ≤ λ

27∑
ℓ=1

7∑
j=1

Lℓjxj − ẑ2 ≤ λ

whered(x, γ) is defined as follows.

d(x, γ)
def
= q−1

(
7∑

j=2

wjxj −R−1(γ)β)

·Φ(
7∑

j=2

wjxj −R−1(γ)β)

−
∫ ∑7

j=2 wjxj−R−1(γ)β

−∞
bϕ(b)db

}
whereϕ(·) andΦ(·) mean the probability density function
and the cumulative distribution one forN(300, 5).

For comparison, we show two kinds of tables, Table III
for γ = 1 and Table IV forγ = 0.5, where the interactive
processes under the hypothetical decision maker are shown
according to An interactive algorithm 1. In each table, a
satisfactory solution is obtained at the third iteration. Eachγ-
Pareto optimal solution is obtained by applying Mathematica
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TABLE III
INTERACTIVE PROCESSES FORγ = 1

1 2 3 4
µ 300 300 300 300
σ2 5 5 5 10
ẑ1 -33 -33 -30 -30
ẑ2 680 620 620 620
z1(x∗) -34.1648 -33.5212 -33.4891 -32.3451
z2(x∗) 678.835 619.479 616.511 617.655
x∗
1 0.557996 0.411074 0.403728 0.410482

x∗
2 0.000 0.000 0.000 0.000

x∗
3 0.537202 0.537202 0.537202 0.636229

x∗
4 0.462798 0.462798 0.462798 0.363771

x∗
5 0.000 0.000 0.000 0.000

x∗
6 0.000 0.000 0.000 0.000

x∗
7 0.000 0.000 0.000 0.000

TABLE IV
INTERACTIVE PROCESSES FORγ = 0.5

1 2 3 4
µ 300 300 300 300
σ2 5 5 5 10
ẑ1 -33 -33 -30 -30
ẑ2 680 620 620 620
z1(x∗) -35.4266 -34.7831 -34.7509 -33.6070
z2(x∗) 677.574 618.217 615.249 616.393
x∗
1 0.549943 0.403021 0.395675 0.402428

x∗
2 0.000 0.000 0.000 0.000

x∗
3 0.41272 0.41272 0.41272 0.511748

x∗
4 0.58728 0.58728 0.58728 0.488252

x∗
5 0.000 0.000 0.000 0.000

x∗
6 0.000 0.000 0.000 0.000

x∗
7 0.000 0.000 0.000 0.000

to solve the corresponding minimax problem and theγ-
Pareto optimality test problem. By comparing Table III for
γ = 1 with Table IV for γ = 0.5, it is clear that anyγ-
Pareto optimal solution forγ = 0.5 is superior toγ-Pareto
optimal solution forγ = 1 because of the definition of
a possibility measure. In anyγ-Pareto optimal solution of
Table III and Table IV, only tomatoes (x3) and garlic (x4) in
the dry season and rice (x1) in the wet season are cultivated.
The larger value of a permissible possibility levelγ gives the
larger planting ratio of tomatoes (x3) and the smaller one of
garlic (x4) because of the difference of the water demand
coefficients of tomatoes (x3) and garlic (x4). At the fourth
iteration Table III and Table IV,γ-Pareto optimal solutions
are shown under the assumption that the varianceσ2 of the
random variablēb is changed to 10. Then, the objective
function z1(x

∗) at the fourth iteration become worse than
the one at the third iteration, because of the corresponding
penalty costd(x∗, γ).

V. CONCLUSIONS

In this paper, we formulate a multiobjective fuzzy ran-
dom simple recourse programming problem, in which fuzzy
random variables coefficients are involved in equality con-
straints. In the proposed method, equality constraints with
fuzzy random variables are defined on the basis of a possi-
bility measure and and a two-stage programming method. For
a given permissible possibility level and reference objective
values specified by the decision maker, corresponding min-
imax problem is solved to obtain a Pareto optimal solution.
The proposed method is applied to a farm planning problem
in the Philippines, in which it is assumed that an amount

supplied of water resource in dry season is represented as
a fuzzy random variable. However, in such a farm planning
problem, we assume that the expected values are adopted
as profit coefficients. If we consider the correlation between
seven kinds of profit coefficients, we have to deal with the
profit coefficients as random variables. Such decision making
situations are discussed in section III, and we will apply
a generalized version of the proposed method to a farm
planning problem in the near future.
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