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Abstract— In this paper we introduce and study special types 
of magic squares of order six. We present the property 
preserving transformations.  We list the enumerations of some 
sets of the squares. The codes for the enumeration is based on 
parallel computing. 

 
Index Terms—magic squares, four corner property, semi 

pandiagonal magic squares, parallel computing 

 

I. INTRODUCTION 

N this paper we consider the old famous problem of magic 
squares. A semi magic square is a square matrix, where 
the sum of all entries in each column or row yields the 

same number. Some authors call it magic square. This 
number is called the magic constant. We call a semi magic 
square a magic square if both main diagonals sum up to the 
magic constant. A natural magic square of order n is a 
matrix of size of size n×n such that its entries consist of all 
integers from one to n². The magic constant in this case is 

2

)1( 2 nn
. 

A pandiagonal magic square is a magic square such that the 
sum of all entries in all broken diagonals equals the magic 
constant. A symmetric magic square is a natural magic 
square of order n such that the sum of both elements of each 

pair of dual (opposite entries) equals 12 n . For example, 
TABLE I 

A NATURAL SYMMETRIC MAGIC SQUARE 
   

15 14 1 18 17 

19 16 3 21 6 

2 22 13 4 24 

20 5 23 10 7 

9 8 25 12 11 
 
If the two main diagonals sum to the magic constant then the 
square is called a magic square. An off-diagonal is a 

combination of two parallel diagonal lines to the same main 
diagonal. The two parallel diagonal lines must occur on 
opposite sides of the main diagonal and they can only be 
combined if the combination has the same number of entries 

 
Manuscript received September 4, 2015; revised December 17, 2015. 

This work was supported by the Dean of scientific research al Al-albayt 
university.  

S. Sh. Al-Ashhab is a mathematician worhing as associate professor at 
Al albayt university Jordan. He is developing codes for solving 
mathematical problems and searches for resources of high computing 
performance. Jordan (corresponding author: 00962-777-288186; fax: 
00962-2-6297034; e-mail: ahhab@aabu.edu.jo).  

as the main diagonal. Two examples of an off-diagonal line 
are 13, 7, 4, 10 and 1, 7, 16, 10 as shown in table II. There 
are 3 offdiagonals corresponding to each main diagonal. A 
pandiagonal square is a magic square where all off-diagonals 
sum to the magic constant. 

TABLE II 
A NATURAL PANDIAGONAL MAGIC SQUARE 

  

1 8 13 12 

14 11 2 7 

4 5 16 9 

15 10 3 6 
 
The number of natural magic squares of order five is known. 
It is well-known that there are pandiagonal magic squares 
and symmetric squares of order five. The number of natural 
magic squares of order six is till now unknown. We give 
here the number of a subset of such squares. It is well-known 
that there are neither pandiagonal magic squares nor 
symmetric squares of order six. We define here classes of 
magic squares of order six, which satisfy some of the 
conditions for both types. It is well known that there are 
pandiagonal and symmetric magic squares of order seven. 

II. TYPES OF MAGIC SQUARES 

A. Four corner magic squares 6 by 6 

    A four corner magic square of order 6 is magic square 
with magic constant 3s such that 

saaaa jijijiij 2)3)(3()3()3(      (1) 

holds for each i = 1,2,3 and j = 1,2,3 and 

saaaa 243344433      (2) 

    The entries of a four corner magic square of order 6 
satisfy 

.2

,2

645561312213

635241362514

saaaaaa

saaaaaa




   (3) 

These two conditions represent the sum of the entries of 
two broken diagonals. 

B. FC magic squares with symmetric center 

      A four corner magic square of order 6 can be written as 
TABLE III 

A FC MAGIC SQUARE 
    

x f g t G M 

z h n j q N 

w E e a m D 

A k b s – a– b – e  H R 

I p d o Q T 

B F W J L p+q – x 
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where 

A = s + e – t – x, B = j+o+t – w – e; 
D = d+g+n+x– a – p – q, 

E = 3s – e – a – m – w – D, 
F = 3s– f –h–k– p–E, 

G = j +o+ p+q+s–e –g– f –w–x, 
H = e+g+s+w+x – j– k – o – p – q, 

I=2s – o – j – z, J = 2s+e– j – o – a – t, 
M = 3s– f –g–t –x–G, 
N = 3s– j–n–q–h–z, 
L = f +h+k–m+ p–s, 

Q=2s–h–p–q, R = s+a+e–k–A–H, 
T = h + j+q +z –d – s, 

W = a+2s – d – g – n – e. 

We see that it has seventeen independent variables. This 
formula was computed by maple. In case that 

b= s – a , s – a – b – e = s – e 
we call the square a FC magic square with symmetric center. 
In [1] we find for first time the concept of FC squares with 
some simple enumerations. 

C. Semi pandiagonal magic squares 

    We can generalize the concept of four corner magic 
square to the semi pandiagonal magic square. It has the 
following structure: 

TABLE IV 
A SEMI PANDIAGONAL MAGIC SQUARE 

 
a D c d f H 

h Q k l m E 

A r u v J I 

q p z 2s – u– v – z  y L 

n o i x e T 

B F M N G Y 

 
where 

A = d–c+l+m+o+ p+q–s–2u–v+x+y–z, 
B = 3s–a–h–q–n–A, 

D = 4s–2d– f –h–l–n– p–2q–2a+2u+2v–x–y+2z, 
E = o–k–l–h+s+e, 

F = 2a+2d+ f +h+l+m+n+2q–r–3s–2u–2v+x+y–2z+e, 
G = k– f +l–m+ p+r+i–s+x–e, 

H = 3s–a–c–d– f –D, 
I = c–d+k–m–o–q+i+u+z, 

J = 4s–l– p–r–i–k–x–y, 
L = s–q– p+u+v–y, M = 3s–k–i–c–u–z, 

N = s–l–d+u–x+z, Q=2s–e–m–o 
T=3s–e–i–o–n–x, 

Y = m–a+o–s+v+z. 
 

It is easy to check that every FC square is a semi 
pandiagonal magic square. Hence, we are dealing with a 
generalization of the FC squares. The number of 
independent variables is now twenty.  
    It is worth mentioning that the two dependent variables in 
the frame of center square (E and H) depends only on the 
variables in the outer frame. This is helpful by programming 
in order to reduce run time for counting such squares. 

  

III. PROPERTY PRESERVING TRANSFORMATIONS 

     There are seven classical transformations, which take a 
magic square into another magic square. They are the 

combinations of the rotations with angles 
2

3
,,

2





and 

transpose operation. Now, a four corner magic squares with 
symmetric center can be transformed as follows into another 
one of the same kind: we make these interchanges 

simultaneously: interchange 12a  (res. 62a ) with 15a  (res. 

65a ); interchange 21a  (res. 26a ) with 51a  (res. 56a ); 

interchange 22a  (res. 55a ) with 25a  (res. 52a ); interchange 

23a  (res. 24a ) with 53a  (res. 54a ); interchange 32a  (res. 

42a ) with 35a  (res. 45a ). As a practical example on this 

transformation, the previous semi pandiagonal magic square 
can be transformed into this one 

TABLE V 
THE TRANSFORMED SQUARE 

 
a f c d D H 

n e i x o T 

A J u v r I 

q y z 2s – u– v – z  p L 

h m k l Q E 

B G M N F Y 

 
without losing its properties. 
      We can use this transformation to reduce the run time for 
computing the number of natural magic squares. In order to 
eliminate the effect of the previous transformations in 
developing a code we compute all natural four corner magic 
squares for which the following conditions hold: 

                      
4433342552 , aaaaa                       (4) 

When we calculate the number of all natural squares, we 
multiply then the number with sixteen. 

 

IV. ENUMERTAION OF SEMI PANDIAGONAL SQUARES 

    We want to talk about the problem of counting the natural 
squares of the previous types. In the papers [2], [3], ..., [7] 
there is an enumertion of four corner magic squares, which 
was carried out over several stages. The problem of 
enumerating the semi pandiagonal squares can be performed 
very similarly. But, the run time will be too long. We are 
working on this problem and we present here some results. 
Also, we shall mention that we can use parallelizable codes 
as in the case of four corner magic squares. 
     As a special case we consider the following square 

 
TABLE VI 

A SPECIAL SEMI PANDIAGONAL MAGIC SQUARE 

 

a D c d f s – B 

h s – e k l m E 

A r u s – z J I 

q p z s – u y L 

n s – m i x e T 

B F M N G s – a 
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We will call it semi pandiagonal magic square with centrally 
symmetric diagonals. For this special type we have another 
property preserving transformation. The last square can be 
transformed into this one 

TABLE VII 
THE TRANSFORMED SQUARE  

 

s – a F M N G B 

E s – e k l m h 

I r u s – z J A 

L p z s – u y q 

T s – m i x e n 

s –B D c d f a 

 
without losing its properties. We note that the two property 
preserving transformations do not change the 2 by 2 center. 
Hence, if we fix a 2 by 2 center, then it suffices to consider 
the centrally symmetric semi pandiagonal magic squares, for 
which the following relation holds 

 
                               msmasa  ,                   (5) 

 
We computed the semi pandiagonal magic squares with 

centrally symmetric diagonals such that 
 

                    181,181,35,1  mazu          (6) 

We have the following enumeration: 
 

 TABLE VIII 
NUMBER OF SEMI PANDIAGONAL MAGIC SQUARE (1) 

 
m number m Number 
3 2345934 11 2654448 
4 2426940 12 2766964 
5 2569262 13 2834900 
6 2646828 14 2775044 
7 1732994 15 2857630 
8 1830440 16 2854512 
9 2038438 17 2784088 

10 2198412 18 2743892 

 
The total number of squares is 40 060 726. As a subset we 
computed the natural centrally symmetric squares such that 
 

                    

0det

181,181,35,1































exims

yuszp

Jzsur

mlkes

mazu

         (7) 

The condition on value of the determinant is invariant 
regarding both property preserving transformations. We 
have the following enumeration: 

 
TABLE IX 

NUMBER OF SEMI PANDIAGONAL MAGIC SQUARE (2) 

 
m number m Number m Number 
3 38508 8 37768 14 39434 
4 35514 9 35740 15 36864 
5 30618 10 40020 16 34992 
6 34966 11 38340 17 34690 
7 34368 12 38780 18 41674 
* * 13 38528 * * 

The total number of squares is 590 804. We computed also 
the natural squares such that 

181,181,36,18  mazu  

0det 



























exims

yuszp

Jzsur

mlkes

 

We obtained the following enumeration: 

TABLE X 
NUMBER OF SEMI PANDIAGONAL MAGIC SQUARE (3) 

 
m number m Number 
2 65985 10 142108 
3 62273 11 102625 
4 68435 12 121622 
5 69004 13 136832 
6 85859 14 137848 
7 105378 15 149437 
8 92754 16 156867 
9 109185 17 150147 

 
The total number of squares is 1 756 359. These two 
possibilities for u and z are out of 153 possibilities, which 
shall be calculated. All other possibilities can be calculated 
by symmetry aspects. 

V. SYMBOLIC COMPUTATIONS 

   It is sometimes of interest to determine the determinant of 
the magic square as a square matrix. In the case of the semi 
pandiagonal magic squares there are cases when the 
determinant is zero. In general the determinant is not zero 
for any semi pandiagonal magic square. If we have all 
entries of the frame of outer 4 by 4 center (e, i, k, l, m, r,  p, 

o, x,  y, Q and J) as the value 
2

s
, Then, we can prove using 

symbolic (e. g. maple) calculation software that the 
determinant is zero. In general the determinant of the 
following square 

TABLE XI 
SYMBOLIC SQUARE 

 
Y P X D K H 

B Ϭ Ϭ Ϭ Ϭ s –B 

A Ϭ U V Ϭ I 

Q Ϭ Z 2s – U–V – Z  Ϭ L 

C Ϭ Ϭ Ϭ Ϭ s – C 

B s – P M N s –K R 

 

with 
2

s
  is zero. Here all capital letters are variables 

taking any real values. In [11] Rosser and Walker show that 

a pandiagonal 44  magic square with magic constant s2  
has in general the following structure 
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TABLE XII 
PANDIAGONAL MAGIC SQUARE 

 
  C B A 

      E 

s – B s – A s –   s – C 

s –  s – E s –   s –  

 
Here the Greek letters depend on the letters A, B, C and E.  
Also, it is well known that the determinant of this matrix is 
zero. In [12] we find other structures, whose determinant is 
zero. It is worth mentioning here that there are no natural 
pandiagonal magic squares 6 by 6. In [9] we find other 
structures similar to this structure with some enumerations. 

VI. TRUMP’S WORK 

   Ian Bethune shared a code for counting the squares, which 
is available online at  

https://bitbucket.org/ibethune/sp_squares/. 
Walter Trump joined me recently in the search for solving 
the problem of counting the natural squares (see [9] and 
[10]). He developed a code for counting the squares. 
According to Trump’s terminology: a magic series (of order 
6) is a vector  

         

.,36}{1,2,3,... },...,,{

,3...

,... 

 with),...,,(

621

621

621

621







kkk

skkk

kkk

kkk

            (8)
 

A magic line is a permutation of a magic series. A general 
pair of magic diagonals consists of two disjoint magic lines, 
which represent the main two diagonals of a 6x6 matrix. The 
complement k* of a number k  {1, 2, 3, ... 36}  is the 
number  k* = s – k. 
If two diagonals can be written as (k1, k2, k3, k3*, k2*, k1*) 
and (k4, k5, k6, k6*, k5*, k4*) we speak of a centrally 
symmetric pair of diagonals.  
If two diagonals can be written as (k1, k2, k3, k4, k5, k6) and 
(k1*, k2*, k3*, k4*, k5*, k6*) we speak of an axially symmetric 
pair of diagonals. 
In 2015 Trump enumerated all magic squares of order 6 with 
symmetric pairs of diagonals. But the number of semi-
panmagic squares was not considered. The calculated 
number of magic squares as matrices is 
 

8 x 96 x ( 1 459 201 633 806 + 2 355 312 270 384) = 

2 929 546 678 417 920 

TABLE XIII 
MAGIC SQUARE WITH A CENRALLY SYMMMETRIC PAIR OF 

DIAGONALS 

 
4 26 27 23 24 7 

20 5 21 22 8 35 
19 25 6 9 34 18 
36 12 28 31 3 1 
2 29 16 15 32 17 

30 14 13 11 10 33 

 

 

 

TABLE XIV 
MAGIC SQUARE WITH AN AXIALLY SYMMMETRIC PAIR OF 

DIAGONALS 

 

1 24 30 27 26 3 
22 2 28 32 4 23 
19 20 12 8 21 31 
15 17 25 29 11 14 
18 35 9 10 33 6 
36 13 7 5 16 34 

VII. CONCLUSION 

   The problem of counting the natural squares of the semi 
pandiagonal magic squares is yet unsolved. I hope that we 
will solve this problem in the near future. Our strategy is to 
split the problem into smaller problems by considering 
special cases of the squares. Also, it is possible to add 
constraints like the value of the determinant. The usage of 
high performance computers will play an essential role in 
this task. The counting of semi pandiagonal magic squares is 
also another step on the way to calculate the number of 
magic squares 6 by 6 (for estimates see [10]). 
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