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Abstract—Many studies on fuzzy modeling(learning of fuzzy
inference systems) with vector quantization(VQ) and steepest
descend method (SDM) have been made. It is known that
these methods are superior in the number of rules(parameters)
compared with other learning methods. Most of conventional
learning methods using VQ are ones that determine initial
assignment of center parameters for membership functions in
antecedent part using only input part of learning data, initial
assignment of center parameters for membership functions
in antecedent part using all learning data and the initial
assignment of all parameters in systems using VQ and the
generalized onverse matrix(GIM). These methods are ones that
determine the initial assignment of parameters in learning
process, and any learning data in learning steps of SDM is
selected randomly. On the other hand, it is known that many
fuzzy rules are needed at or near the places where output
changes rapidly in learning data. Therefore, the rate of output
change for learning data must be considered. In this paper, we
propose learning methods that any data in learning steps of
SDM are selected using the probability based on the rate of
output change for learning data. In order to demonstrate the
effectiveness of the proposed methods, numerical simulations
for function approximation and pattern classification problems
are performed.

Index Terms—Fuzzy Inference Systems, Vector Quantization,
Neural Gas Network, Steepest Descent Method.

I. I NTRODUCTION

M ANY studies on fuzzy modeling(learning of fuzzy
inference systems) have been made [1], [2]. Their

aim is to construct automatically fuzzy inference systems
from learning data. Although most of conventional methods
are based on steepest descend method(SDM), the obvious
drawbacks of them are its large time complexity and getting
stuck in a shallow local minimum. Further, there is problems
of difficulty dealing with high dimensional spaces [3], [4].
In order to overcome them, some novel methods have been
developed, which 1) create fuzzy rules one by one starting
from any number of rules, or delete fuzzy rules one by
one starting from a sufficiently large number of rules [5],
2) use GA (Genetic Algorithm) and PSO (Particle Swarm
Optimization) to determine fuzzy systems [6], 3) use fuzzy
inference systems composed of small number of input rule
modules, such as SIRMs (Single Input Rule Modules) and
DIRMs (Double Input Rule Modules) methods [7], [8], and
4) use a self-organization or a vector quantization technique
to determine the initial assignment of learning parameters [5],
[9]. Specifically, learning methods using VQ and SDM are
superior in the number of rules(parameters) compared with
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other learning methods [10]. Most of conventional learning
methods using VQ are ones that determine initial assignment
of parameters for membership functions in antecedent part
using only input part of learning data. Therefore, we pro-
posed some learning methods to determine initial assignment
of center parameters for membership functions in antecedent
part using all learning data. Further, we proposed learn-
ing methods determining the initial assignment of weight
parameters in consequent part [12], [13]. These methods
are ones that determine the initial assignment of learning
parameters in learning process, and any learning data is
selected randomly in learning steps of SDM [12]–[14]. On
the other hand, it is known that many rules are needed at
or near the places where output changes rapidly in learning
data. Therefore, the rate of change for output data must be
considered. Little learning methods selected any data using
the probability based on the rate of output change for learning
data have been proposed. In this paper, we propose learning
methods that any data are selected using the probability based
on the rate of output change for learning data in learning
process of SDM. In order to demonstrate the effectiveness
of the proposed method, numerical simulations for function
approximation and pattern classification problems are per-
formed.

II. PRELIMINARIES

A. The conventional fuzzy inference model

The conventional fuzzy inference model using SDM is de-
scribed [1], [2]. LetZj = {1, · · · , j} andZ∗

j = {0, 1, · · ·, j}
for the positive integerj. Let R be the set of real numbers.
Let x = (x1, · · · , xm) and yr be input and output data,
respectively, wherexi∈R for i ∈ Zm and yr∈R. Then the
rule of simplified fuzzy inference model is expressed as

Rj : if x1 is M1j and · · · and xm is Mmj then y is wj ,
(1)

wherej ∈ Zn is a rule number,i ∈ Zm is a variable number,
Mij is a membership function of the antecedent part, andwj

is the weight of the consequent part.
A membership value of the antecedent partµj for input

x is expressed as

µi =
m∏
j=1

Mij(xj). (2)

If Gaussian membership function is used, thenMij is ex-
pressed as follow:

Mij(xj) = exp

(
−1

2

(
xj − cij

bij

)2
)
. (3)

, where cij and bij are the center and the width values of
Mij , respectively. The inference outputy∗ is calculated by
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Eq.(4).

y∗ =

∑n
i=1 µi · wi∑n

i=1 µi
. (4)

In order to construct the effective model, the conventional
learning is introduced. The objective functionE is deter-
mined to evaluate the inference error between the desirable
outputyr and the inference outputy∗.

In this section, we describe the conventional learning
algorithm [2].

Let D = {(xp
1, · · · , xp

m, yp)|p ∈ ZP } and D∗ =
{(xp

1, · · ·, xp
m)|p∈ZP } be the set of learning data and the set

of input data ofD, respectively. The objective of learning is
to minimize the following mean square error(MSE):

E =
1

P

P∑
p=1

(y∗p − yp)2. (5)

, wherey∗p is the inference output for the dataxp.
In order to minimize the objective functionE, each

parameterα ∈ {cij , bij , wj} is updated based on SDM as
follows [1], [2]:

α(t+ 1) = α(t)−Kα
∂E

∂α
(6)

where t is iteration time andKα is a constant. When the
Gaussian membership function is used as the membership
function, the following relation holds.

∂E

∂cij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · xj − cij
b2ij

(7)
∂E

∂bij
=

µj∑n
j=1 µj

· (y∗ − yr) · (wj − y∗) · (xj − cij)
2

b3ij
(8)

∂E

∂wj
=

µj∑n
j=1 µj

· (y∗ − yr) (9)

The conventional learning algorithm is shown as Fig.1 [1],
[2], [11], where n0, θ and Tmax are the initial number
of rules, threshold and the maximum number of learning,
respectively. Note that the method is generative one. The
method is called learning algorithm A.

B. Neural gas and K-means methods

Vector quantization techniques encode a data space, e.g., a
subspaceV⊆Rm, utilizing only a finite setC = {ci|i∈Zr}
of reference vectors (also called cluster centers), wherem
andr are positive integers.

Let the winner vectorci(v) be defined for any vectorv∈V
as follows:

i(v) = arg min
i∈Zr

||v − ci|| (10)

, where||a− b|| means the distance between vectorsa and
b.

From the finite setC, V is partioned as follows:

Vi = {v∈V |||v − ci||≤||v − cj || for j∈Zr} (11)

The evaluation function for the partition is defined as follows:

E =
r∑

i=1

∑
v∈Vi

||v − ci(v)||2 (12)

Fig. 1. The flowchart of the conventional learning algorithm

For neural gas method [15], the following method is used:
Given an input data vectorv, we determine the

neighborhood-rankingcik for k∈Z∗
r−1, being the reference

vector for which there arek vectorscj with

||v − cj || < ||v − cik || (13)

If we denote the numberk associated with each vectorci
by ki(v,ci), then the adaption step for adjusting theci’s is
given by

△ci = ε·hλ(ki(v, c))·(v − ci) (14)

hλ(ki(v, c)) = exp(−ki(v, c)/λ) (15)

where ε∈[0, 1] and λ > 0. The numberλ is called decay
constant.

If λ→0, Eq.(14) becomes equivalent to the K-means
method [15]. Otherwise, not only the winnerci0 but the
second, third nearest reference vectorci1 , ci2 , etc., are also
updated.

Let p(v) be the probability distribution of data vectors for
V . The flowchart of the conventional neural gas algorithm
is shown as Fig.2 [15], whereεint, εfin, θ and Tmax are
learning constants, threshold and the maximum number of
learning, respectively. The method is called learning algo-
rithm NG.

If the data distributionp(v) is not given in advance, a
stochastic sequence of input datav(1),v(2), · · · which is
based onp(v) is given [15].

By using Learning Algorithm NG, learning method of
fuzzy systems is shown as follows [9], [10] : In this case,
assume that the distribution of learning dataD∗ is discrete
uniform one. Letn0 be the initial number of rules.
Learning Algorithm B
Step B1 : For learning dataD∗, Learning Algorithm NG is
performed by usingD∗ as the setV . The setD∗ is encoded
by the setC of reference vectors, where|C| = n0.
Step B2 : The set of center parameters of fuzzy rules is set
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Fig. 2. Neural Gas method

to the setC.
Let

bij =
1

mi

∑
xk∈Ci

(cij − xkj)
2, (16)

whereCi andmi are thei-th cluster forC and the number
of learning data fori∈Zn0 . Each initial weightwi is selected
randomly.
Step B3 : Learning algorithm A for initial parameterscij ,
bij andwi are performed.

C. The probability based on the rate of output change for
learning data

Learning Algorithm B is a method that determines the
initial assignment of fuzzy rules by vector quantization using
the setD∗ of input for learning data. In this case, the set
of output in learning dataD is not used to determine the
initial assignment of fuzzy rules. In the previous paper, we
proposed a method considering both input and output data
to determine the initial assignment of fuzzy rules [5].

Based on the literature [5], the probability distribution for
D∗ is defined as follows : LetD and D∗ be the sets of
learning data defined in 2.1.
Calculation of the probability for learning data
Step 1 : Give an input dataxi∈D∗, we determine the
neighborhood-ranking(xi0 ,xi1 , · · ·,xik , · · ·,xiP−1) of the
vector xi with xi0 = xi, xi1 being closest toxi and
xik (k = 0, · · ·, P − 1) being the vectorxi for which there
arek vectorsxj with ||xi − xj || < ||xi − xik ||.
Step 2 : DetermineH(xi) which shows the rate of change
of inclination of the output around output data to input data
xi, by the following equation:

H(xi) =

M∑
l=1

|yi − yil |
||xi − xil ||

(17)

, wherexil for l∈ZM means thel-th neighborhood-ranking
of xi, i∈ZP and yi and yil are output for inputxi and
xil , respectively. The numberM means the range of ranking
consideringH(x).
Step 3 : Determine the probabilitypM (xi) for xi∈D∗ by

Fig. 3. The flowchart of learning algorithm C

normalizingH(xi).

pM (xi) =
H(xi)∑P
j=1 H(xj)

(18)

and
∑P

i=1 pM (xi) = 1.
[Example 1]

Let us explain how to computepM (x) using y =
sin(πx3

1)x2 as shown in Fig.4, wherex1, x2, y∈[0, 1].
Assume that four learning data are given as follows :

x y
x1 = (0.2, 0.2) 0.005
x2 = (0.2, 0.8) 0.020
x3 = (0.8, 0.2) 0.200
x4 = (0.8, 0.8) 0.799

Let M = 2.
Then,H(x1) is calculated as follows :

H(x1) =
|y1 − y2|
||x1 − x2||

+
|y1 − y3|
||x1 − x3||

(19)

= 0.35

because the first and second closest vectors forx1 are x2

andx3.
Likewise, we obtainedH(x2) = 1.325, H(x3) = 1.325

and H(x4) = 2.3. From the Eq.(18), each ofp2(x)’s is
calculated asp2(x1) = 0.066, p2(x

2) = 0.25, p2(x
3) =

0.25, p2(x4) = 0.434.
If M = 3, then the following result is obtained :

p3(x
1) = 0.143, p3(x2) = 0.21, p3(x3) = 0.169, p3(x4) =

0.477.
In both cases, the rate of output change forx4 = (0.8, 0.8)

is large compared to other points, sopM (x4) is large.
The flowchart of learning algorithm C usingpM (x) is

shown in Fig.3 [5].
Then, let us show how the assignment of fuzzy rules

changes after learning using an example.
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Fig. 4. The figure ofy = sin(πx3
1)x2

[Example 2]
Let us consider two cases withM = 1 and 100 using

y = sin(πx3
1)x2, where Fig.5(a) and (b) are the initial

assignment of center parameters for four fuzzy rules using
pM (x) with M = 1 and100 for the number of learning data
P = 500, respectively. Fig.5(c) and (d) are the assignment of
fuzzy rules after learning forM = 1 and100, respectively.
The result shows that the case ofM = 100 is superior in
the assignment of fuzzy rules after learning to the case of
M = 1. Please see Ref. [11] about the detailed explanation
of Algorithm C.

It is known that many rules are needed at or near palaces
where output changes quickly for learning data. The proba-
bility pM (x) is a technique to find the optimum places for
the assignment of fuzzy rules. The algorithm C is a heuristic
method to find the optimum number ofM .

III. T HE PROPOSED METHOD

It is shown that learning algorithms A, B and C using VQ
and SDM is effective in accuracy and the number of rules to
other methods. Most of conventional learning methods using
VQ are ones that determine initial assignment of parameters
in antecedent part for membership functions. However, little
learning methods using VQ in learning process of SDM have
been proposed.

The method using VQ in SDM means that each learning
data in SDM is not selected randomly, but selected based on
pM (x). Therefore, each data existing the place where output
rapidly changes is more likely to be selected. Let explain it
using Example 1.
[Example 3]

LetM = 2 in Example 1. Thenp2(x1) = 0.066, p2(x2) =
0.25, p2(x3) = 0.25 and p2(x

4) = 0.434, so learning data
(x1, y1), (x2, y2), (x3, y3) and(x4, y4)∈D are selected with
the probability0.066, 0.25, 0.25 and0.434, respectively.

In this case, output change for(x4, y4) and (x1, y1) are
rapidly and flat as shown in Fig.4, respectively. It seems to
assign a lot of fuzzy rules at or near the place(x4, y4).

In this section, we propose three algorithms usingpM (x)
in learning steps of SDM corresponding to algorithms A, B
and C. They are called algorithms(methods) A’, B’ and C’.
The algorithm C’ is only shown as follows:
Learning Algorithm C’
Step 1 : θ, T 0

max, Tmax andM are set. Initial values ofcij ,
bij andwi are set randomly.n←n0.
Step 2 : Let t = 1.
Step 3 : Select a data(xp, yp) based onpM (xp) for p∈ZP .
Step 4 : Updatecij by Eq.(14).

Step 5 : If t < T 0
max, go to Step 3 witht←t+1, otherwise

go to Step 6 witht←1.
Step 6 : Determinebij by Eq.(16).
Step 7 : Let q = 1.
Step 8 : Given a data(x, y) based onpM (x) for x∈D.
Step 9 : Calculateµi andy∗ by Eqs.(2) and (4).
Step 10 : Update parameterscij , bij andwij by Eqs.(7),
(8) and (9).
Step 11 : If q < P then go to Step 8 withq←q + 1.
Step 12 : If E < θ or t > Tmax go to Step 13, otherwise
go to Step 8 witht←t+ 1, whereE is computed as Eq.(5).
Step 13 : If E < θ the algorithm terminate, otherwise go to
Step 2 withn←n+ 1 andcij , bij andwi are set randomly.

The feature of the proposed method is that learning data
are selected from the probabilitypM (x) in both determining
of the initial assignment of parameters and learning steps of
SDM(See steps 3 and 8 in learning algorithm C’).

In order to compare the proposed method with con-
ventional ones, the following methods are introduced (See
Fig.6):
(A) Method A is one based on the conventional algorithm
of Fig.1 [1], [2]. Initial parameters ofc, b and w are set
randomly and all parameters are updated by SDM using
learning data selected randomly until the inference error
become sufficiently small.
(B) Method B is known as learning method of RBF networks
[2], [3], [10]. Initial values ofc are determined usingD∗ by
VQ and b is computed usingc. Weight parametersw are
randomly selected. Further, all parameters are updated by
SDM until the inference error become sufficiently small.
(C) Method C was introduced in the chapter II. Initial values
of c are determined usingD by VQ and b is computed
using c. Weight parameters are randomly selected. Further,
all parameters are updated by SDM until the inference error
become sufficiently small.
(A’) Method A’ is the proposed one. Initial parameters ofc,
b and w are set randomly and all parameters are updated
using SDM using learning data based onpM (x) until the
inference error become sufficiently small.
(B’) Method B’ is the proposed one. Initial values ofc
are determined usingD∗ by VQ andb is computed using
c. Weight parametersw are randomly selected. Further, all
parameters are updated by SDM based onpM (x) until the
inference error become sufficiently small.
(C’) Method C’ is the proposed one. Initial values ofc
are determined usingD by VQ and b is computed using
c. Weight parameters are randomly selected. Further, all
parameters are updated by SDM based onpM (x) until the
inference error become sufficiently small.

IV. N UMERICAL SIMULATIONS

In order to show the effectiveness of proposed algorithms,
simulations of function approximation and classification
problems are performed.

A. Function approximation

The systems are identified by fuzzy inference systems.
This simulation uses four systems specified by the following
functions with 4-dimensional input space[0, 1]4(Eqs.(20) and
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(a)Theinitial assignment of rules forM = 1
(c)Theassignment of rules after learning forM = 1

(b)The initial assignment of rules forM = 100
(d)Theassignment of rules after learning forM = 100

Fig. 5. The figures (a) and (b) show the initial assignment forM = 1 and100, respectively, where◦ and• mean the places of learning data and center
parameters of fuzzy rules. The figures (c) and (d) show the assignment after learningM = 1 and100, respectively.

Fig. 6. Concept of conventional and proposed methods, where SDM andd
NG mean Steepest Descent Method and Neural Gas method. The algorithm
C’ is only shown, and algorithms A’ and B’ are also defined in the same
way.

(21)) and [−1, 1]4((22) and (23)), and one output with the
range[0, 1];

y =
(2x1 + 4x2

2 + 0.1)2

37.21

× (4 sin(πx3) + 2 cos(πx4) + 6)

12
(20)

y =
(sin(2πx1)× cos(x2)× sin(πx3)× x4 + 1.0)

2.0
(21)

y =
(2x1 + 4x2

2 + 0.1)2

74.42

TABLE I
THE RESULTS FOR FUNCTION APPROXIMATION

Eq(20) Eq(21) Eq(22) Eq(23)
the number of rules 4.2 13.6 7.2 5.1

A MSE for Learning(×10−4) 0.40 0.71 0.43 0.28
MSE of Test(×10−4) 0.52 1.09 1.00 0.49
the number of rules 5.6 14.9 5.2 3.7

B MSE of Learning(×10−4) 0.18 0.77 0.49 0.33
MSE of Test(×10−4) 0.27 1.42 1.11 0.48
the number of rules 4.8 15.6 5.5 4.0

C MSE of Learning(×10−4) 0.21 0.72 0.54 0.88
MSE of Test(×10−4) 0.34 1.33 0.69 0.53
the number of rules 3.3 7.8 5.5 3.7

A’ MSE for Learning(×10−4) 0.22 0.63 0.43 0.27
MSE of Test(×10−4) 0.30 1.10 0.58 0.33
the number of rules 3.1 7.0 4.9 3.4

B’ MSE of Learning(×10−4) 0.21 0.66 0.57 0.25
MSE of Test(×10−4) 0.26 2.30 0.69 0.27
the number of rules 3.2 7.1 4.7 3.1

C’ MSE of Learning(×10−4) 0.21 0.65 0.60 0.22
MSE of Test(×10−4) 0.26 0.91 0.73 0.25

+
(3e3x3 + 2e−4x4)−0.5 − 0.077

4.68
(22)

y =
(2x1 + 4x2

2 + 0.1)2

74.42

+
(4 sin(πx3) + 2 cos(πx4) + 6)

446.52
(23)

As the initial conditions of simulations,Tmax = 50000,
Kc = 0.01, Kb = 0.01, Kc = 0.1, εinit = 0.1, εfin =
0.01, λ = 0.7, θ = 1.0×10−4 and M = 200 are used.
The numbers of learning and test data are512 and 6400,
respectively.

Table I shows the result of simulation, where the number
of rules, MSE’s for learning and test data are shown. In
Table I, the number of rules means one when the threshold
θ = 1.0×10−4 of inference error is achieved in learning.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



TABLE II
THE DATASET FOR PATTERN CLASSIFICATION

Iris Wine BCW
The number of data 150 178 683
The number of input 4 13 9
The number of class 3 3 2

TABLE III
THE RESULT FOR PATTERN CLASSIFICATION

Iris Wine BCW
the number of rules 3.4 7.8 14.4

A RM for Learning(%) 3.0 1.4 1.6
RM of Test(%) 3.3 10.3 4.3

the number of rules 2.0 20.8 26.0
B RM of Learning(%) 3.3 13.6 2.2

RM of Test(%) 3.3 16.6 3.5
the number of rules 3.4 7.4 9.6

C RM of Learning(%) 2.8 2.1 2.0
RM of Test(%) 4.7 5.1 4.6

the number of rules 2.2 2.2 3.7
A’ RM for Learning(%) 2.7 1.5 1.5

RM of Test(%) 3.6 7.7 4.1
the number of rules 2.2 2.6 2.5

B’ RM of Learning(%) 2.4 1.3 1.7
RM of Test(%) 3.9 7.7 4.0

the number of rules 2.2 2.5 2.6
C’ RM of Learning(%) 2.4 1.4 1.6

RM of Test(%) 3.8 8.2 4.0

The result of simulation is the average value from twenty
trials. As a result, proposed methods A’, B’ and C’ reduce
the number of rules compared to conventional methods.
Specifically, algorithm C’ is superior to other algorithms.

B. Classification problems for UCI database

Iris, Wine and BCW data from UCI database shown in
Table II are used as the second numerical simulation [16]. In
this simulation, 5-fold cross-validation is used. As the initial
conditions for classification problem,Tmax = 50000, Kc =
0.001, Kb = 0.001, Kw = 0.05, εinit = 0.1, εfin = 0.01
andλ = 0.7 are used. Further,M = 100 andθ = 1.0×10−2

for Iris and Wine andM = 200 andθ = 2.0×10−2 for BCW
are used.

Table III shows the result of classification problem. In
Table III, the number of rules, RM’s for learning and test data
are shown, where RM means the rate of misclassification.
As a result, it is shown that proposed methods A’, B’ and C’
reduce the number of rules in classification problem.

Let us consider the reason why we can get the good
result by using the probabilitypM (x). In the conventional
learning method, parameters are updated by any data selected
randomly from the set of learning data. In the proposed
method, parameters are updated by any data selected from the
probabilitypM (x). The functionpM (x) is determined based
on output change for the set of learning data, so many fuzzy
rules are likely to generate at or near the places where output
change is large for the set of learning data. For example, if
the number of learning time is 100 andpM (x0) = 0.5, then
learning datax0 is selected 50 times from the set of learning
data in learning. As a result, membership functions are likely
to generate at or near the places where output change is
large for the set of learning data. The probabilitypM (x) is
considered as a method to improve the local search of SDM.

V. CONCLUSION

In this paper, we propose learning methods that any data
in learning steps of SDM is selected based on a probability
based on the rate of output change for learning data. It
means that each learning data in SDM is not selected
randomly, but selected based on the probability for output
change. Therefore, each data existing the place where output
rapidly changes is more likely to be selected. In order
to demonstrate the effectiveness of the proposed method,
numerical simulations for function approximation and pattern
classification problems were performed. In the future work,
we will propose more effective learning algorithm using the
probability of output change for learning data compared to
other methods and consider to apply the proposed method to
learning of neural network.
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