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Fuzzy Modeling using Vector Quantization based
on Input and Output Learning Data
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Abstract—Many studies on fuzzy modeling(learning of fuzzy other learning methods [10]. Most of conventional learning
inference systems) with vector quantization(VQ) and steepest methods using VQ are ones that determine initial assignment
descend method (SDM) have been made. It is known that ot harameters for membership functions in antecedent part
these methods are superior in the number of rules(parameters) =~ . - )
compared with other learning methods. Most of conventional using only input Part of learning data. Tl'he.re.f.ore, W.e pro-
learning methods using VQ are ones that determine initial pOSEd some |earnlng methods to determine initial assignment
assignment of center parameters for membership functions in of center parameters for membership functions in antecedent
antecedent part using only input part of learning data, initial  part using all learning data. Further, we proposed learn-
assignment of center parameters for membership functions ing methods determining the initial assignment of weight

in antecedent part using all learning data and the initial .
assignment of all parameters in systems using VQ and the parameters in consequent part [12], [13]. These methods

generalized onverse matrix(GIM). These methods are ones that @'€ ones that determine the initial assignment of learning
determine the initial assignment of parameters in learning parameters in learning process, and any learning data is
process, and any learning data in learning steps of SDM is selected randomly in learning steps of SDM [12]-[14]. On
selected randomly. On the other hand, it is known that many the other hand, it is known that many rules are needed at
fuzzy rules are needed at or near the places where output the ol h tout ch idlv in | .
changes rapidly in learning data. Therefore, the rate of output or near the places where output changes rapidly In learning
change for learning data must be considered. In this paper, we data. Therefore, the rate of change for output data must be
propose learning methods that any data in learning steps of considered. Little learning methods selected any data using
SDM are selected using the probability based on the rate of the probability based on the rate of output change for learning
output change for leaming data. In order to demonstrate the 415 have been proposed. In this paper, we propose learning
effectiveness of the proposed methods, numerical simulations thods that dat lected usind th bability b d
for function approximation and pattern classification problems methods that any data are selecte ”S'”Q e pro .a ity ‘jise
are performed. on the rate of output change for learning data in learning
process of SDM. In order to demonstrate the effectiveness
of the proposed method, numerical simulations for function
approximation and pattern classification problems are per-

formed.

Index Terms—Fuzzy Inference Systems, Vector Quantization,
Neural Gas Network, Steepest Descent Method.

I. INTRODUCTION

ANY studies on fuzzy modeling(learning of fuzzy Il. PRELIMINARIES

inference systems) have been made [1], [2]. TheX The conventional fuzzy inference model

aim is to construct automatically fuzzy inference systems T ional f inf del usina SDM is d
from learning data. Although most of conventional methods e conventional fuzzy inference model using IS de-

are based on steepest descend method(SDM), the obvi Elrébed [1]’. [.2]' !_eth ~ {1,---,j}andZ7 = {0,1,---,j}
drawbacks of them are its large time complexity and getti ar the positive integey. Letlf be the set of real numbers.
stuck in a shallow local minimum. Further, there is proble etz = (r1,---,2m) and Y be input apd output data,
of difficulty dealing with high dimensional spaces [3], [4] €SPectively, where;;cR for i € Z,, andy"eR. Then the
In order to overcome them, some novel methods have béré‘rlF of simplified fuzzy inference model is expressed as
developed, which 1) create fuzzy rules one by one startirle o if @1 is My and -+ and @, is M,,; then y is wj,
from any number of rules, or delete fuzzy rules one by (1)
one starting from a sufficiently large number of rules [Slyherej e Z,, is a rule number, € Z,, is a variable number,
2) use GA (Genetic Algorithm) and PSO (Particle Swarmy, ; is a membership function of the antecedent part,and
Optimization) to determine fuzzy systems [6], 3) use fuzzg the weight of the consequent part.

inference systems composed of small number of input ruleA membership value of the antecedent peytfor input
modules, such as SIRMs (Single Input Rule Modules) angis expressed as

DIRMs (Double Input Rule Modules) methods [7], [8], and m

4) use a self-organization or a vector quantization technique i = H M, (x;). ©)
to determine the initial assignment of learning parameters [5], oty

[9]. Specifically, learning methods using VQ and SDM ar

superior in the number of rules(parameters) compared WﬁhGaussmn membership function is used, thefy is ex-

pressed as follow:
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Eq.(4).
Z?:l Mg - Wy
Z;L:l lu”l

*_

Yy (4)

In order to construct the effective model, the conventional

learning is introduced. The objective functidii is deter-

mined to evaluate the inference error between the desirablt

outputy” and the inference output*.

In this section, we describe the conventional learning

algorithm [2].

Let D
{(5511)7 ’
of input data ofD, respectively. The objective of learning is
to minimize the following mean square error(MSE):

1 P
B= L0 -
p=1

, wherey, is the inference output for the dais.
In order to minimize the objective functioy, each

— p —
Ty, 0,

{( zh,,yP)lp € Zp} and D*

®)

parametera € {c;;,b;;,w;} is updated based on SDM as

follows [1], [2]:

oE
= G

wheret is iteration time andK, is a constant. When the

alt+1) =a(t) — Ko

Gaussian membership function is used as the membershiGiven an

function, the following relation holds.

oF 1 T — Cij
= =i W=y (w—y*) ’
dcij Zj:l 2%} ’ b?j
(1)
22 1j (zj — cij)?
= ) -y B
Obi; D1 M ! b;
(8)
2 1
o ey ©)
w; Zj:l Hj ( )

.-,z )|peZp} be the set of learning data and the set

Computer Scientists 2017 Vol I,

‘ Give 0, Tygpn = ng. Lett = 1. |
|

(]
| Set parameters ;;, by, w; randomly. |

p=1
)

Select a learning data (x”,yp) and calculate .
Caleulate Ac;j, Abyj, Aw; by Eqs.(7),(8) and (9).

Fig. 1. The flowchart of the conventional learning algorithm

For neural gas method [15], the following method is used:
input data vectorv, we determine the
neighborhood-ranking;, for keZ’_;, being the reference
vector for which there aré vectorsc; with

[lv = ¢jll <llv = el (13)

If we denote the numbeékt associated with each vectoy
by k;(v,c;), then the adaption step for adjusting thgés is
given by
ANe; = ehy(ki(v,e)(v—¢)
ha(ki(v,c)) exp(—k;(v,e)/A)

wheree€[0,1] and A > 0. The number) is called decay

(14)
(15)

The conventional learning algorithm is shown as Fig.1 [1},ynstant.

[2], [11], where ng, @ and T,,,, are the initial number
of rules, threshold and the maximum number of learnin
respectively. Note that the method is generative one. T
method is called learning algorithm A.

B. Neural gas and K-means methods

If A—0, Eqg.(14) becomes equivalent to the K-means
thethod [15]. Otherwise, not only the winner, but the
E@cond, third nearest reference veatqy, c;,, etc., are also
updated.

Let p(v) be the probability distribution of data vectors for
V. The flowchart of the conventional neural gas algorithm

Vector quantization techniques encode a data space, e.ds 8hown as Fig.2 [15], where;,;, cfin, 0 and T,,,, are

subspacd’CR™, utilizing only a finite setC = {¢;|i€Z, }
of reference vectors (also called cluster centers), where
andr are positive integers.

Let the winner vectoe; ) be defined for any vectarcV’
as follows:

o . o 1
i(v) = arg min ||v — eif| (10)
, where||a — b|| means the distance between vecterand
b.

From the finite seC, V' is partioned as follows:

Vi = {veVlllv - cil[<|lv - ¢)| for jeZ,} (11)

learning constants, threshold and the maximum number of
learning, respectively. The method is called learning algo-
rithm NG.

If the data distributionp(v) is not given in advance, a
stochastic sequence of input datdl),v(2),--- which is
based orp(v) is given [15].

By using Learning Algorithm NG, learning method of
fuzzy systems is shown as follows [9], [10] : In this case,
assume that the distribution of learning ddi¥ is discrete
uniform one. Letny be the initial number of rules.

Learning Algorithm B

The evaluation function for the partition is defined as followsStep B1 : For learning datab*, Learning Algorithm NG is

(12)

E=Y Y lv—cwlf

i=1 VeV;
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performed by using)* as the se¥/’. The setD* is encoded
by the setC of reference vectors, whel€'| = n,.
Step B2 : The set of center parameters of fuzzy rules is set
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| Give ing, iy Tmax- Let t = 1. ‘ Give 0, M, Ty n = 1. Lett = 1.
Determine py, (%) for xeD* using Calculation method
R|

Give the set C of reference vectors and

the probability p(v) of data vectors for V. Determine c;; based on py(x) and
1 by by Eq.(16). Set w; randomly.

Givev € V withp(v). I

Determine the neighborhood- q=1

ranking k;(v, ¢;) fori € Z,.. I

Select a data (x, y)eD randomly and
Updatec; fori € Z. calculate inference output y* .

) +1
EE using Eq.(14) and n ::1 1 \Bﬂ

t/T,
Eint € gint(gint/sfin) e

| Update c;j, by, w; using Eqs.(7), (8) and (9). ‘

Fig. 2. Neural Gas method

to the setC.
Let

1
bi = — Z (cij — xkj)z, (16) Fig. 3. The flowchart of learning algorithm C

(] m
Y xpec;

whereC; andm, are thei-th cluster forC' and the number normalizing H (z*).
of learning data foicZ,,,. Each initial weightw; is selected

) H(x?
randomly. pu(x’) = # (18)
Step B3 : Learning algorithm A for initial parameters;, Zj:l H(x7)
b;; andw; are performed. and > pu (i) = 1.
[Example 1]
C. The probability based on the rate of output change for Le€t us explain how to computey(z) using y =
|earn|ng data SZn(Wl'l)IEQ as shown in Flg 4, Whel’ﬁhmg,yE[O 1]

. . . . Assume that four learning data are given as follows :
Learning Algorithm B is a method that determines the

initial assignment of fuzzy rules by vector quantization using o |y

the setD* of input for learning data. In this case, the set z' =(0.2,0.2) | 0.005
of output in learning dataD is not used to determine the z® = (0.2,0.8) | 0.020
initial assignment of fuzzy rules. In the previous paper, we x® = (0.8,0.2) | 0.200
proposed a method considering both input and output data x* = (0.8,0.8) | 0.799
to determine the initial assignment of fuzzy rules [5]. Let M = 2.

Based on the literature [5], the probability distribution for Then, H(x!) is calculated as follows :
D* is defined as follows : LetD and D* be the sets of
learning data defined in 2.1. Iyt — 42| yt — 17
Calculation of the probability for learning data H(z') = 2 — 2] + o — 29| (19)
Step 1 : Give an input datax‘c D*, we determine the T r o

neighborhood-ranking z?, - .. &' ... zir-1) of the = 035

vector ' with % = z’, ' being closest toxz’ and because the first and second closest vectorscfoare 2
x'*(k = 0,---,P — 1) being the vectoe’ for which there andz3>.

arek vectorsz’ with ||z — x/|| < ||z — x*||. Likewise, we obtainedH (z?) = 1.325, H(z?®) = 1.325

Step 2 : DetermineH (x*) which shows the rate of changeand H(z*) = 2.3. From the Eqg. (18) each g (x)'s is
of inclination of the output around output data to input datealculated agz(z') = 0.066, p2(x?) = 0.25, pa(x3) =

x*, by the following equation: 0.25, po(x*) = 0.434.
If M = 3, then the following result is obtained :
ly* — | p3(z!) = 0.143, p3(z?) = 0.21, p3(x3) = 0.169, p3(z*) =
Z (17)
[lx? — ait]| 0.477.

In both cases, the rate of output changeafér= (0.8, 0.8)
, wherez® for [€Z,, means thd-th neighborhood-ranking is large compared to other points, sg (x*) is large.
of z', i€Zp and y' and y are output for inputz’ and  The flowchart of learning algorithm C usingy(x) is
x', respectively. The numbe¥/ means the range of rankingshown in Fig.3 [5].
consideringH (x). Then, let us show how the assignment of fuzzy rules
Step 3 : Determine the probability,, (z?) for x'cD* by changes after learning using an example.
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¥ Step 5 : If t <T?,., go to Step 3 with«—¢ + 1, otherwise

go to Step 6 witht<1.

Step 6 : Determineb;; by Eq.(16).

Step 7 : Letg=1.

Step 8 : Given a datax,y) based orpy (x) for zeD.

Step 9 : Calculateu; andy* by Egs.(2) and (4).

Step 10 : Update parameters;;, b;; and w;; by Eqs.(7),

(8) and (9).

Step 11 : If ¢ < P then go to Step 8 witly«+—q + 1.

Step 12 : If E <6 ort > T, 9o to Step 13, otherwise

go to Step 8 witht«<—¢ + 1, where E is computed as Eq.(5).

Step 13 : If E < 0 the algorithm terminate, otherwise go to

[Example 2] Step 2 withn<n + 1 and¢;j, b;; andw, are set randomly.
Let us consider two cases with/ = 1 and 100 using

y = sin(maf)zs, where Fig.5(a) and (b) are the initial The feature of the proposed method is that learning data

assignment of center parameters for four fuzzy rules usigge selected from the probabilipyi; () in both determining

pu () with M = 1 and100 for the number of learning data of the initial assignment of parameters and learning steps of

P =500, respectively. Fig.5(c) and (d) are the assignment @fp\(See steps 3 and 8 in learning algorithm C).

fuzzy rules after learning fod/ = 1 and 100, respectively. In order to compare the proposed method with con-

The result shows that the case bf = 100 is superior in yentional ones, the following methods are introduced (See

the assignment of fuzzy rules after learning to the case pfy g):

M = 1. Please see Ref. [11] about the detailed explanatipR) Method A is one based on the conventional algorithm

of Algorithm C. of Fig.1 [1], [2]. Initial parameters of, b and w are set
Itis known that many rules are needed at or near palaGafdomly and all parameters are updated by SDM using

where output changes quickly for learning data. The probgarning data selected randomly until the inference error

bility pas(x) is a technique to find the optimum places fopecome sufficiently small.

Fig. 4. The figure ofy = sin(rz3)zo

method to find the optimum number of. [2], [3], [10]. Initial values ofc are determined using* by
VQ and b is computed using:. Weight parametersv are
[ll. THE PROPOSED METHOD randomly selected. Further, all parameters are updated by

It is shown that learning algorithms A, B and C using VG@DM until the inference error become sufficiently small.
and SDM is effective in accuracy and the number of rules {€) Method C was introduced in the chapter II. Initial values
other methods. Most of conventional learning methods usiff ¢ are determined usind@ by VQ and b is computed
VQ are ones that determine initial assignment of paramet&t®ing c. Weight parameters are randomly selected. Further,
in antecedent part for membership functions. However, littRll parameters are updated by SDM until the inference error
learning methods using VQ in learning process of SDM hagcome sufficiently small.
been proposed. (A) Method A is the proposed one. Initial parameters@f

The method using VQ in SDM means that each learnifgand w are set randomly and all parameters are updated
data in SDM is not selected randomly, but selected based @ging SDM using learning data based pjy () until the
par(x). Therefore, each data existing the place where outgoference error become sufficiently small.
rapidly changes is more likely to be selected. Let explain (B’) Method B’ is the proposed one. Initial values ef
using Example 1. are determined usin@* by VQ andb is computed using
[Example 3] c. Weight parametersv are randomly selected. Further, all

Let M = 2in Example 1. Thepy(x') = 0.066, po(x2) = parameters are updated by SDM basedpgn(x) until the
0.25, po(x®) = 0.25 and po(z?) = 0.434, so learning data inference error become sufficiently small.

(', yY), (x2, %), (3,9°) and(x*, y*)eD are selected with (C’) Method C’ is the proposed one. Initial values of
the probability0.066, 0.25, 0.25 and 0.434, respectively. are determined usin@ by VQ and b is computed using

In this case, output change fé&*, y*) and (x',y') are c. Weight parameters are randomly selected. Further, all
rapidly and flat as shown in Fig.4, respectively. It seems p@rameters are updated by SDM basedpgi(x) until the
assign a lot of fuzzy rules at or near the pldag¢, y*). inference error become sufficiently small.

In this section, we propose three algorithms using(x) IV. NUMERICAL SIMULATIONS

in learning steps of SDM corresponding to algorithms A, B 1, e to show the effectiveness of proposed algorithms,

and C. They are _called algorithms(methods) A, B’ and Csimulations of function approximation and classification
The algorithm C’ is only shown as follows:

X ) problems are performed.
Learning Algorithm C’

Step1: 6, T2 ... Tmaz andM are set. Initial values of;;, ] o

b;; andw; are set randomlya<—ny. A. Function approximation

Step 2 : Lett=1. The systems are identified by fuzzy inference systems.

Step 3 : Select a datéx?, y?) based o, (xP) for pecZp. This simulation uses four systems specified by the following

Step 4 : Updatec;; by Eq.(14). functions with 4-dimensional input spafte 1]*(Egs.(20) and
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(a)Theinitial assignment of rules fol/ = 1
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1
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0.4 ® @
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o} ;xl
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(b)Theinitial assignment of rules foM = 100

Fig. 5. The figures (a) and (b) show the initial assignmentifbe= 1 and 100, respectively, where ande mean the places of learning data and center
parameters of fuzzy rules. The figures (c) and (d) show the assignment after leafniag and 100, respectively.

Select ¢
randomly.

Learning data Determine

{xPlpeZp} cby NG.
Learning data Determine
{(x” ;Vr)lii c ZP} cbased on
idd Py (%).

Determine
bby
Eq.(16).

Determine
bby
Eq.(16).

Determine
bby
Eq.(16).

(D

Update ¢, b
and w by SDM
using learning
data selected

randomly.

Select w
randomly.

(D

Update ¢, b
and w by SDM
using learning
data selected

randomly.

Select w
randomly.

T4

Update ¢, b
and w by SDM
using learning
data selected

randomly.

Select w
randomly.

(A)

(B)

(0]

Determine
cbased on
P (%)

Learning data
(@ p)wezp}

Fig. 6. Concept of conventional and proposed methods, where SDM andd
NG mean Steepest Descent Method and Neural Gas method. The algorithm
C’ is only shown, and algorithms A" and B’ are also defined in the same

way.

(21)) and[-1,1]*((22) and (23)), and one output with the

Determine
bby
Eq.(16).

Update ¢, b and
w by SDM using

pu(®).

Select w
randomly.

()

(20)

(sin(27x1) X cos(xa) X sin(mzs) X x4 + 1.0)

X2

0.8
0.6
0.4

02

0 0.2 0.4 0.6

X3
1
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0.6
0.4

02

0

0.8 1

> X
12 1

0 02 04

06

08

TABLE |
THE RESULTS FOR FUNCTION APPROXIMATION

1

12' xl

(c)Theassignment of rules after learning féf = 1

(d)Theassignment of rules after learning féf = 100

2.0

range(o0, 1];
y = (221 4 423 4+ 0.1)?
37.21
" (4sin(mas) + 2 cos(may) + 6)
12
y =
y = (221 + 423 +0.1)2

74.42

ISBN: 978-988-14047-3-2

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

(21)

Eq(20) | Eq(21) | Eq(22) | Eq(23)
the number of rules 4.2 13.6 7.2 5.1
MSE for Learning(x10~%) 0.40 0.71 0.43 0.28
MSE of Test(x10~%) 0.52 1.09 1.00 0.49
the number of rules 5.6 14.9 5.2 3.7
MSE of Learning(x10~%) 0.18 0.77 0.49 0.33
MSE of Test(x 10~ %) 0.27 1.42 111 0.48
the number of rules 4.8 15.6 55 4.0
MSE of Learning(x10~%) 0.21 0.72 0.54 0.88
MSE of Test(x10—%) 0.34 1.33 0.69 0.53
the number of rules 3.3 7.8 55 3.7
MSE for Learning(x10—%) 0.22 0.63 0.43 0.27
MSE of Test(x10~%) 0.30 1.10 0.58 0.33
the number of rules 3.1 7.0 4.9 3.4
MSE of Learning(x 10~ %) 0.21 0.66 0.57 0.25
MSE of Test(x 10— %) 0.26 2.30 0.69 0.27
the number of rules 3.2 7.1 4.7 3.1
MSE of Learningx10~%) 0.21 0.65 0.60 0.22
MSE of Test(x10~%) 0.26 0.91 0.73 0.25
N (3e3%3 4 2e474) =05 — (.077 22)
4.68
(221 + 423 + 0.1)?
74.42
4 sin :
+( sin(ma3) + 2 cos(mxy) + 6) (23)

446.52

As the initial conditions of simulationsT]},,... = 50000,
K. =001, K, = 001, K. = 0.1, gjnszt = 0.1, €pin, =
0.01, A = 0.7, § = 1.0x107* and M = 200 are used.
The numbers of learning and test data at€ and 6400,
respectively.

Table | shows the result of simulation, where the number
of rules, MSE’s for learning and test data are shown. In
Table I, the number of rules means one when the threshold
6 = 1.0x10~* of inference error is achieved in learning.
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TABLE Il
THE DATASET FOR PATTERN CLASSIFICATION V. CONCLUSION
Iris | Wine | BCW In this paper, we propose learning methods that any data
';'Te numt?er Off_dati 120 11738 633 in learning steps of SDM is selected based on a probability
e numbper or Inpu .

The number of class3 3 > based on the rate of o.utput chaljge for Igarnlng data. It
means that each learning data in SDM is not selected
randomly, but selected based on the probability for output

TABLE Ill

change. Therefore, each data existing the place where output

THE RESULT FOR PATTERN CLASSIFICATION

Iris | Wine | BCW
the number of rules | 3.4 7.8 14.4
A [ RM for Learning(%) | 3.0 14 1.6
RM of Test%) 3.3 | 103 4.3
the number of rules| 2.0 | 20.8 | 26.0
B RM of Learningft) | 3.3 | 13.6 2.2
RM of Test(%) 33| 166 | 35
the number of rules | 3.4 7.4 9.6
C | RMof Learninglo) | 28 | 2.1 2.0
RM of Test®%) 47 5.1 46
the number of rules | 2.2 2.2 3.7
A" | RM for Learning(%) | 2.7 15 15
RM of Tesi{s) 36 7.7 | 41 1]
the number of rules | 2.2 2.6 25
B’ | RM of Learning@t) | 2.4 13 1.7
RM of Testl%) 39| 7.7 | 40 2]
the number of rules | 2.2 25 2.6
C' [ RM of Learningls) | 2.4 14 1.6 [3]
RM of Test¥%) 38| 82 4.0

The result of simulation is the average value from twenty!
trials. As a result, proposed methods A, B’ and C’ reduce
the number of rules compared to conventional method$s]
Specifically, algorithm C’ is superior to other algorithms.

(6]

B. Classification problems for UCI database

.
Iris, Wine and BCW data from UCI database shown in[ ]

Table Il are used as the second numerical simulation [16]. In
this simulation, 5-fold cross-validation is used. As the initial®!
conditions for classification problent,,, ., = 50000, K. =
0.001, K = 0.001, K,, = 0.05, €jnit = 0.1, €53, = 0.01
and\ = 0.7 are used. Furthef/ = 100 andf = 1.0x102
for Iris and Wine andV/ = 200 andf = 2.0x10~2 for BCW
are used. [10]

Table Il shows the result of classification problem. In
Table IIl, the number of rules, RM’s for learning and test data
are shown, where RM means the rate of misclassificatidh!!
As a result, it is shown that proposed methods A, B’ and C’
reduce the number of rules in classification problem.

El

[12]

Let us consider the reason why we can get the good
result by using the probability,,(x). In the conventional
learning method, parameters are updated by any data selegt%]d
randomly from the set of learning data. In the proposed
method, parameters are updated by any data selected fromifik
probability py (). The functionp,, () is determined based ;5
on output change for the set of learning data, so many fuzzy
rules are likely to generate at or near the places where outPluE
change is large for the set of learning data. For example, |F
the number of learning time is 100 apg; (z°) = 0.5, then
learning datar® is selected 50 times from the set of learning
data in learning. As a result, membership functions are likely
to generate at or near the places where output change is

large for the set of learning data. The probability; (x) is
considered as a method to improve the local search of SDM.
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rapidly changes is more likely to be selected. In order
to demonstrate the effectiveness of the proposed method,
numerical simulations for function approximation and pattern
classification problems were performed. In the future work,
we will propose more effective learning algorithm using the
probability of output change for learning data compared to
other methods and consider to apply the proposed method to
learning of neural network.
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