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Abstract—This paper is concerned with the Quantum Fokker-
Planck equation, which is a kinetic model for quantum mechani-
cal (charged) particles-transport under the influence of diffusive
effects. In this work, we study small and large time behavior of
solutions, respectively. Though this setting is fairly introductory,
our method of proof, which uses a priori estimates, can be
extended to prove analogous results for transport equations, and
nonlinear equations even when other tools, such as semigroup
methods or the use of explicit fundamental solutions, are
unavailable.

Index Terms—Quantum Fokker-Planck system, small time
behavior, large time behavior.

I. INTRODUCTION

THE Quantum Fokker-Planck (called QFP in the sequel
for simplicity) equation is a parabolic partial differential

equation. From the physical point of view, the QFP equa-
tion is a kinetic model for quantum mechanical (charged)
particles-transport under the influence of diffusive effects, for
example, in the description of quantum Brownian motion [8],
quantum optics [9], and semiconductor device simulations
[10].

In this paper, we are interested in the small and large time
behavior of solutions of the following version of the QFP
system, namely

ft + v · ∇xf − x · ∇vf = (1)
β∇v · (vf) + σ∆vf + 2γ∇x · (∇vf) + α∆xf, (2)

f(x, v, 0) = f0(x, v), (3)

where the Wigner function f = f(t, x, v) is a probabilistic
quasi-distribution function of particles at time t ≥ 0, located
at x ∈ Rn with velocity v ∈ Rn. β ≥ 0 is a friction
parameter and the parameters σ > 0, α ≥ 0, γ ≥ 0
constitute the phase-space diffusion matrix of the system,
which are necessary in order to make the model consistent
with quantum physics, that is,

ασ ≥ γ2 +
β2

16
, (4)

which guarantees that the system is quantum mechanically
correct, see [1], [2] for detail.

In last years, mathematical studies of QFP type equations
mainly focused on the Cauchy problem, such as [1], [2],
[3], [4], [5], [6], where different aspects regarding the
derivation of the model were taken into consideration. In the
present work we shall be mainly interested in the asymptotic
behavior as t ¿ 1 or t → ∞ of solutions to (1)-(3).
There is only a few results for this problem. For instance,
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if f0 ∈ L1(R2n) ∩ L2(R2n) Sparber et al. [7] proved that
the solution of (1)-(3) converged exponentially towards the
steady state by the use of explicit fundamental solutions
and entropy-methods. If f0 ∈ L2(R2n, (1+A(x, v))m) with
A(x, v) = 1

4 (|x|2+2x ·v+3|v|3) for some m > 0, Arnold et
al. [12] proved that the (1)-(3) with β = 2, σ = α = 1, γ = 0
admitted a unique stationary solution that converged towards
the steady state with an exponential rate.

However, if f0 only belongs to L2(R2n), the cited work
can not be applied. In order to do so, we must introduce
new tools, which uses a priori estimates, can be extended to
prove analogous results for problems with time-dependent
coefficients, transport equations, and nonlinear equations
even when other tools, such as semigroup methods or the
use of explicit fundamental solutions, are unavailable.

We are in a position to describe one of the main results:
Theorem 1 For every f0 ∈ L2(R2n), let the equation

(1)-(3) satisfy (4). If α+σ
2 ≥ γ

√
1 + (σ−α

2γ )2:

• For any t ∈ (0, 1], any solution of (1)-(3) satisfies

sup
0≤t≤1

‖f(t)‖L2(R2n) ≤ C, ‖∇xf(t)‖L2(R2n) ≤ Ct−
1
2 ;

• If v ∈ Rn and x ∈ Ω (Ω ⊂ Rn is a bounded domain
with smooth boundary ∂Ω), f obeys the prescribed
boundary conditions on ∂Ω

f(t, x, v) = f(t, y, v), ∀ x, y ∈ ∂Ω, v ∈ Rn, t ≥ 0.

Setting λ = min{αC−1
Ω , θC−1

Ω }−nβ ≥ 0, any solution
of (1)-(3) satisfies

‖f(t)‖L2 ≤ ‖f(t)0‖L2e−
1
2 λt,

where CΩ is defined by Lemma 4. Moreover, If λ > 0,
then one has f → 0 as t →∞.

II. PRELIMINARY

In the ensuing, we shall analyze the basic properties of
the solutions of (1)-(3).

Lemma 1 Let the coefficients of the equation (1)-(3)
satisfy (4).
• If γ = 0, then one has

1
2

d

dt
‖f(t)‖2L2 ≤ nβ

2
‖f‖2L2 − α‖∇xf‖2L2 − σ‖∇vf‖2L2 .

• If γ > 0, then one has

1
2

d

dt
‖f(t)‖2L2 ≤ nβ

2
‖f‖2L2 − θ‖∇xf‖2L2 − θ‖∇vf‖2L2 ,

where θ = α+σ
2 − γ

√
1 + (σ−α

2γ )2.

Proof: The first assertion follows directly by applying
the integration by parts. Next we shall prove the second
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assertion. Multiplication of the equation (1)-(3) by f , we
have

1
2

d

dt
‖f(t)‖L2 =

n∑

i=1

∫ ∫
{−vifxi

f + xifvi
f +

β(vif)vifdxdv + σfvivif + 2γfxivi + αfxixif}dxdv.

Using the integration by parts, it is clear that

−
∫ ∫

vifxi
fdxdv =

∫ ∫
(vif)xi

fdxdv

=
∫ ∫

vifxi
fdxdv,

hence
∫ ∫

vifxifdxdv = 0.
Analogy, we have

∫ ∫
xifvifdxdv = 0 and

∫ ∫
β(vif)vi

fdxdv =
∫ ∫

βf2 + βvifvi
fdxdv

=
∫ ∫

βf2 − β(vif)vifdxdv,

thus ∫ ∫
β(vif)vifdxdv =

β

2

∫ ∫
f2dxdv.

By [1] and the interpolation inequality
∫ ∫

fxivi
fdxdv ≤ ε

2
‖fxi

‖2L2 +
1
2ε
‖fvi

‖2L2 ,

we obtain
1
2

d

dt
‖f(t)‖2L2 ≤ nβ

2
‖f‖2L2 − σ‖∇vf‖2L2 + εγ‖∇xf‖2L2

+
γ

ε
‖∇vf‖2L2 − α‖∇xf‖2L2

≤ nβ

2
‖f‖2L2 + (

γ

ε
− σ)‖∇vf‖2L2

+(εγ − α)‖∇xf‖2L2 .

Note that if ε = α−σ
2γ +

√
1 + (σ−α

2γ )2 then one has

1
2

d

dt
‖f(t)‖2L2 ≤ nβ

2
‖f‖2L2 − θ‖∇xf‖2L2 − θ‖∇vf‖2L2 ,

where θ = α+σ
2 − γ

√
1 + (σ−α

2γ )2.
Lemma 2 Let the coefficients of the equation (1)-(3)

satisfy (4), then one has

1
2

d

dt
‖∇x,vf(t)‖2L2 ≤ βn

2
‖∇x,vf(t)‖2L2

−min{α, σ}‖∆x,vf(t)‖2L2 .

Proof: Multiplication of the equation (1)-(2) by −∆xf ,
using integrations by parts, we have

1
2

d

dt
‖∇xf(t)‖2L2 ≤ βn

2
‖∇xf(t)‖2L2 + n

∫ ∫
∇xf · ∇vf

−σ

∫ ∫
∆xf∆vf − α‖∆xf‖2L2 .

Analogously, multiplication of the equation (1)-(2) by
−∆vf , we get

1
2

d

dt
‖∇vf(t)‖2L2 ≤ βn

2
‖∇vf(t)‖2L2 − n

∫ ∫
∇xf · ∇vf

−σ‖∆vf(t)‖2L2 − α

∫ ∫
∆xf∆vf.

Moreover, it yields

1
2

d

dt
‖∇x,vf(t)‖2L2 ≤ βn

2
‖∇x,vf(t)‖2L2 −

(α + σ)
∫ ∫

∆xf∆vf −min{α, σ}‖∆x,vf(t)‖2L2 .

Note that∫ ∫
∆xf∆vf =

∫ ∫
|
∑

∂xi
∂vj

f |2.

Hence, we can get

1
2

d

dt
‖∇x,vf(t)‖2L2 ≤ βn

2
‖∇x,vf(t)‖2L2

−min{α, σ}‖∆x,vf(t)‖2L2 .

III. PROOF OF THEOREM 1

For a start, we consider the small time behavior of solu-
tions.

Lemma 3 For every f0 ∈ L2(R2n), let the equation (1)-
(3) satisfy (4), any solution satisfies

sup
0≤t≤1

‖f(t)‖L2(R2n) ≤ C, ‖∇vf(t)‖L2(R2n) ≤ Ct−
1
2 .

Proof: Now, by [11] we can utilize a linear expansion in
t to prove the assertion. Let T ∈ (0, 1] be given. Consider
t ∈ (0, T ] and define

y(t) = ‖f(t)‖2L2 + kt‖∇x,vf‖2L2 ,

where k < min{2α, 2σ, 2θ}.
We differentiate this quantity, and use Lemmas 1-2 to find

y′(t) =
d

dt
‖f(t)‖2L2 + k‖∇x,vf‖2L2 + kt

d

dt
‖∇x,vf(t)‖2L2

≤ nβ‖f(t)‖2L2 − 2min{α, θ}‖∇xf‖2L2

−2min{σ, θ}‖∇vf‖2L2 + 2kt
βn

2
‖∇x,vf(t)‖2L2

+k‖∇x,vf‖2L2 − 2kt min{α, σ}‖∆x,vf(t)‖2L2

≤ nβ‖f(t)‖2L2 + knβt‖∇x,vf‖2L2

≤ Cy(t).

A straightforward application of Gronwall’s inequality then
implies

‖f(t)‖2L2 + kt‖∇x,vf‖2L2 ≤ CT ‖f0‖2L2

The assertion follows directly by applying the above inequal-
ity.

Next, we consider the large time behavior of solutions. For
a start, we should collect a few standard inequalities for the
reader’s convenience.

Lemma 4 There is a constant C = CΩ such that
∫

Rn

∫

Ω

|f(x, v)|2dxdv ≤ CΩ

∫

Rn

∫

Ω

|∇xf |2dxdv.

Proof: The proof is similar to that of the classical Poincaré
inequality, and is only sketched. Without loss of generality,
Ω is a rectangle Πn

i=1(ai, bi). First, the result is
∫

Rn

∫

Ω

|f(x, v)|2dxdv ≤

C(b1 − a1)
∫

Rn

∫

Ω

|f(x, v)||∂x1f(x, v)|dxdv.
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With use of the Hölder inequality, it follows that
∫

Rn

∫

Ω

|f(x, v)|2dxdv ≤ C‖∂x1f(x, v)‖L2‖f(x, v)‖L2 .

Lemma 5 For every f0 ∈ H1(R2n), let the equation (1)-
(3) satisfy (4). If v ∈ Rn and x ∈ Ω (Ω ⊂ Rn is a bounded
domain with smooth boundary ∂Ω), f obeys the prescribed
boundary conditions on ∂Ω

f(t, x, v) = f(t, y, v), ∀ x, y ∈ ∂Ω, v ∈ Rn, t ≥ 0.

Setting λ = min{αC−1
Ω , θC−1

Ω } − nβ ≥ 0, any solution of
(1.1)satisfies

‖f(t)‖L2 ≤ ‖f(t)0‖L2e−
1
2 λt,

where CΩ is defined by Lemma 4. Moreover, If λ > 0, then
one has f → 0 as t →∞.

Proof: Since Lemma 1, we have

1
2

d

dt
‖f(t)‖2L2 ≤ nβ

2
‖f‖2L2 −min{α, θ}‖∇xf‖2L2 .

where k1 = −(βn
2 − σ + n2

4σ ) ≥ 0. Using Lemma 4, it is
clear that

d

dt
‖f(t)‖2L2 + λ‖f‖2L2 ≤ 0.

The assertion follows directly by applying the Gronwall
inequality.

Now, we begin with the proof of Theorem 1.
Proof of Theorem 1 Collecting Lemmas 3 and 5, we obtain

the desired results. The proof of Theorem 1 is complete.
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