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Abstract— The efficiency of a multi-core architecture is 

directly related to the mechanisms that map the threads 

(processes in execution) to the cores. Determining the CPU 

resource availability of a multi-core architecture based on the 

characteristics of the threads that are in execution is the art of 

system performance prediction. Prediction of CPU resource 

availability is important in the context of making process 

assignment, load balancing, and scheduling decisions. In 

distributed infrastructure, CPU resources are allocated on 

demand for a chosen set of compute nodes. In this paper, a 

prediction model is derived for multi-core architectures and 

empirical evaluations are performed with real-world 

benchmark programs in a heterogeneous environment to 

demonstrate the accuracy of the proposed model. This model 

can be utilized in various time-sensitive applications like 

resource allocation in a cloud environment, task distribution 

(determining the order for faster processing time) in 

distributed systems, and others. 

 
Index Terms — CPU Availability, Execution Efficiency, 

Hyper-threading, Multi-core Prediction Model, Prediction 

Algorithm. 

I. INTRODUCTION 

YSTEM efficiency prediction involves estimating the 

system's behavior for a set of tasks to be executed on it. 

Making such predictions is complicated due to the dynamic 

nature of the system and its workload, which can vary 

drastically in a short span of time [2]. For any prediction 

approach, it can be useful to know a priori certain 

characteristics of tasks that are planned to be assigned to the 

system. As an example, it is useful to know the CPU 

requirement of the task, which is the fraction of time a task 

requires the CPU. It is also useful to know the maximum 

amount of main memory a task will consume during its 

execution (memory requirement). This information is useful 

to forecast the amount of time that may be consumed for 

memory paging activities.  
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In time-shared systems, the utilization of the CPU and the 

speed of the computer's response to its users have improved 

as a result of advances in CPU scheduling [2]. To realize 

this increase in performance, it is customary to keep many 

processes running in the system [3]. The success of 

approaches for assigning concurrent processes (or threads) 

to multi-core or many-core systems relies on the existence 

of reasonably accurate CPU resource availability model. 

This is because there is a strong relationship between a 

thread's total execution time and the availability of CPU 

resources used for its execution [1]. Therefore, predicting 

the resource availability that results when threads are 

assigned to a processor is a basic problem that arises in 

many important contexts. Accurate resource availability 

prediction model is important because there exists a wide 

range of applications and scientific models (e.g., geological, 

meteorological, economical and others) that requires 

extensive use of CPU resource, repeatedly. These models 

fall into this category, where the program remains the same 

and the data on which it operates changes over time. The 

distributed task assignment problem in general is NP-Hard 

and it is further complicated by the changing dynamics 

(changes to CPU availability) of the compute nodes [1]. 

Given a set of tasks each with varied CPU requirements, 

and a multi-core system, we provide a CPU availability 

prediction model for the efficiency with which the tasks are 

executed. To facilitate scientific and controlled empirical 

evaluation, real-world benchmark programs with dynamic 

behavior are employed on LINUX systems that are 

parameterized by their CPU usage factor. Extensive 

experimental studies and statistical analysis are presented in 

this paper to measure the accuracy of the introduced 

prediction models. 

Given the CPU requirements of tasks in a run queue, 

Beltrán et al. [2] provide an analytical model to estimate the 

CPU availability (which is the percentage of CPU time that 

will be allocated) for the new task prior to its placement in 

the run queue. It is shown that in certain cases this 

information can be used to schedule the execution of tasks 

in such a way that the completion time of all the tasks is 

minimized [2]. They considered a batch of tasks (each with 

its own CPU requirements) and their analytical model 

determined the CPU availability using the sum total of the 

CPU requirement of each of the tasks in the batch. Using 

this sum total posed a challenge in that the CPU availability 

prediction is precise only when the order of task execution is 

known a priori. To address this challenge, our (Khondker et 

al. [1]) analytical model provided tight upper- and lower-

bounds on CPU availability. The bounds are necessary 

because the actual CPU availability depends on the order of 

execution of tasks in the batch. Thus the analytical model in 
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Khondker et al. [1] is oblivious of the CPU scheduler. 

 

In the present paper, we have further improved the 

analytical model in [1] in several ways. First, we have 

applied an empirical approach based on the thread 

assignment observation in [1, 4] to introduce a new Multi-

core CPU availability prediction model. This empirical 

model provides a single prediction value (instead of upper- 

and lower-bounds) of CPU availability for a set of 

concurrent processes prior to their execution without explicit 

knowledge of the mapping between available cores and 

processes. Second, we have utilized real-world benchmark 

programs in LINUX systems to perform extensive empirical 

work. Finally, we provided empirical results and statistical 

analysis to validate the introduced new CPU availability 

model and its application in a commercial context. 

II. RELEVANT WORK 

Existing prediction models generally assume CPU 

resources are equally distributed among all processes in the 

run queue by following a Round Robin (RR) scheduling 

technique [2, 7]. These models use the number of processes 

in the run queue as the system load index. As a result, the 

CPU availability prediction for a newly arriving process 

when there are currently N processes in the run queue is 

simply 1/(N + 1). This predictor is only accurate for CPU-

bound processes, which share CPU resources in a balanced 

manner; consistent with the RR model assumption. But, 

when the processes also require I/O resources, this approach 

fails to provide accurate predictions and incurs large 

prediction errors. Thus, when there are processes in the run 

queue that require CPU and I/O resources, a more complex 

model is necessary to describe how the CPU is shared [5]. 

The introduced model overcomes this suitable for both CPU 

and I/O bound processes. 

Federova et al. [9] also worked on operating system 

scheduling heterogeneous multi-core systems. They 

proposed thread-to-core assignment algorithms that optimize 

performance and demonstrate the need for balanced core 

assignment. The paper makes the case that thread schedulers 

for multi-core systems in a heterogeneous environment 

should target the following objectives: optimal performance, 

core assignment balance, response time, and fairness. In 

addition, Federova [9] introduced a practical new method 

for estimating performance degradation on multi-core 

processors, and its application to workloads of clusters 

nodes.  

Jen-Chieh et al., [10] have worked on multi-core systems 

and the allied software parallelization technique trends of 

System On Chip (SoC) design. Their paper adopts an 

electronic system-level (ESL) design methodology for 

higher system performance and lower energy utilization for 

revealing a system performance prediction and analysis 

method for multi-core systems. Based on the scalable multi-

core virtual platform, they have performed one to eight-core 

system performance trend prediction as well as multi-core 

system performance analysis. Experiments are conducted for 

observing the performance improvement of software 

parallelization. The paper also discusses issues related to 

hardware-software co-design and hardware cost reduction. 

III. MULTI-CORE CPU AVAILABILITY MODEL 

The primary focus of this section is to present a CPU 

availability prediction model for estimating CPU availability 

for a set of tasks on multi-core systems. When the number 

of threads assigned to a multi-core processor is less than or 

equal to the number of CPU cores associated with the 

processor, the efficiency of the CPU is often near to ideal. 

When the number of assigned threads is more than the 

number of CPU cores, the resulting CPU performance can 

be more difficult to predict (Khondker et al. [1, 4]). For 

example, assigning two CPU-bound threads to a single core 

results in CPU availability of about 50%, meaning that 

roughly 50% of the CPU resource is available for executing 

either thread. Alternatively, if two I/O-bound threads are 

assigned to a single core, it is possible that the resulting 

CPU availability is nearly 100%, provided that the usage of 

the CPU resource by each thread is fortuitously interleaved. 

However, if the points in time where both I/O bound threads 

do require the CPU resource overlap (i.e., they are not 

interleaved), then it is possible (although perhaps not likely) 

that the CPU availability of the two I/O bound threads could 

be as low as 50%. Therefore, considering the number of 

processes in the run queue as a load index is not sufficient. 

The aggregate CPU load (sum total) of running threads 

needs to be considered for deriving an accurate model.  

The execution of a thread is generally modeled by a series 

of alternating work and sleep phases. A thread in a work 

phase will remain there until it has consumed enough CPU 

cycles to complete the allotted work of that portion of 

computation. After completing the work phase, the thread 

then enters in the sleep portion where it stays (does not 

consume CPU cycles) for a specific amount of time. Each 

thread is parameterized by a CPU usage factor. The CPU 

usage factor is defined as the time required to complete the 

work portion of a work-sleep phase on an unloaded CPU, 

divided by the total time of a work-sleep phase. A thread 

having zero sleep length has a CPU usage factor of 100%, 

which is also called a CPU-bound thread. Sleep phase length 

and the total amount of computational work to accomplish is 

computed based on the CPU usage factor. Its sleep length 

relative to that of the work portion based on CPU load factor 

is used to account for I/O or any other interruptions 

(Khondker et al. [1, 4]). 

This section introduces a model for predicting the 

expected (on average) availability of CPU (instead of 

calculating the upper- and lower-bounds [1]). As discussed 

in the previous subsection, exact values of CPU availability 

are difficult to predict because of dependencies on many 

factors, including context switching overhead, CPU usage 

requirements of the threads, core hyper-threading, the 

degree of interleaving of the timing of the CPU 

requirements of the threads, and the characteristics of the 

thread scheduler of the underlying operating system. Due to 

the complex nature of the execution environment, an 

empirical approach is incorporated into our approach to 

estimate expected CPU availability. The model predicts 

availability of CPU resources for a batch of heterogeneous 

threads executed concurrently on multi-core distributed 

systems. The model estimates the CPU requirements for the 

batch in and expected thread execution efficiency. 
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A. Assumptions 

Following are the assumptions for the introduced model: 

 Threads are heterogeneous and there are no inter- 

thread communication. 

 CPU utilization is statistically "stationary" over time. 

 Batches of threads are spawned concurrently in a 

multi-core system. 

 The number of threads in a batch is more than the 

number of CPU cores of the assigned machine. 

 The multi-core system in which the threads are 

spawned was initially unloaded. 

 CPU requirement of each thread is preceding known 

before placing into the run-queue. 

 Threads are independent and there are no racing 

conditions. 

 Overhead related to operating system's real-time 

process execution is negligible. 

 

B. The Mathematical Model for Multi-core CPU 

The new multi-core CPU availability model is derived 

based on two empirical scenarios. In the first scenario, when 

the value of aggregate CPU load (L) is less than or equal to 

the number of CPU cores (r), that is, running threads has 

low CPU utilization, the number of work phase overlap is 

generally small. This results in less contending work phases 

among running threads but still some context switching 

overhead. The CPU availability upper-bound model is based 

on the situation in which all work portions of threads are out 

of phase (interleaved). The following expression represents 

the context switching overhead when L ≤ r. This is 

subtracted from unity in Eq. 3 to model CPU availability. In 

the following, ξ represents the count of CPU core hyper-

threading. 

 

 
 

In the second scenario, when the value of L > r, the best 

CPU availability for running threads is considered as r/L. 

This scenario is based on interleaved work phase of running 

threads. This model provides an optimistic estimation, but 

when the value of L increases, contention is more likely due 

to relatively wider work portions than idle portions. That is, 

increased CPU load increases more context switching 

overhead. The following estimated context switching 

overhead is subtracted from the second scenario of the 

upper-bound model (in Eq. 3) to reflect the observed 

behavior. 

 
 

The following mathematical model derived from the 

empirical observation provides an explanation of thread 

assignment in multi-core processor. The model of Eq. 3 

depends on the aggregate CPU load (sum total) of the set of 

tasks, number of threads, number of processor cores, and 

number of hyper-threading in cores. For a multi-core 

machine, the following prediction model estimates the 

average CPU availability for a set of tasks: 
 

 
 

The model of Eq. 3 is derived from Eqs. 1 and 2 that 

depends on whether the aggregate CPU load is less than the 

number of cores or more than the number of cores. In the 

first situation, CPU resources are lightly loaded resulting in 

low context switching overhead and better efficiency. In the 

second situation, threads are moderate to highly loaded (i.e., 

aggregate CPU load is more than the number of cores), 

resulting in more context switching overhead and reduced 

efficiency. In general, thread with more CPU load incurs 

more contention for resources and context switching 

overhead. Therefore, an estimated context switching 

overhead is subtracted from the efficiency value in both 

cases (i.e., when for L ≤ r or L > r) to match the average 

efficiency. 

IV. EMPIRICAL STUDIES 

A. Overview 

Depending on the process variation (CPU versus I/O 

bound), the Linux scheduler version 2.6 and above 

dynamically modifies this measured value to assign a 

priority penalty to CPU-bound processes and boost I/O-

bound processes [11]. This Dynamic Priority Scheme is 

controlled with the sleep avg variable for each process. 

When an I/O-bound process is awakened from a sleep 

interval, its total sleep time is added to this variable. In 

addition, when a process leaves the processor, the time it has 

been executing on it is subtracted from this variable. The 

higher the sleep avg value is, the higher the dynamic priority 

will be. In addition, the time slice of a process is computed 

with its priority value, always maintaining its length 

between the minimum and maximum values [11]. 

B. Empirical Environment 

The system used for evaluating the multi-core test cases is 

equipped with an Intel(R) Xeon(R) Quad-core W3520 

processor, 2.67GHz clock speed, 1.333 MHz bus speed, and 

6.0 GB of RAM. This machine also has Linux kernel 

version 3.2.36. The average CPU load (represents the 

average system load over a period of time) was 0.0161302 

per core in a scale of 1.0 (in a fifteen minute period) before 

running test cases, which indicates that the machines were 

lightly loaded (essentially unloaded). The Linux Shell 

command top and sysinfo is called and output is redirected 

and parsed to extract required data from the system. 

The C programming language in the Linux environment 

is used to implement the analytical model framework and 

benchmark programs. The gcc compiler version used is 

4.6.3. Threads deployed here are independent tasks, 

meaning there are no interdependencies among threads such 

as message passing. Threads are spawned concurrently. 

When the batch of threads complete assigned work and 

terminates, an execution report is produced, which contains 

start time, work time, idle time, end time, number of phases, 

and others for statistical analysis. 

(1) 

(2) 

(3) 
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C. Benchmarking 

The benchmark programs used for conducting empirical 

study in the Linux environment consists of real-world CPU-

intensive programs like Super prime number generator, 

Monte-Carlo estimation of π along with a similar synthetic 

benchmark program. Table I consists of a complete list of 

programs used as benchmark program for conducting 

empirical case studies.  
TABLE I 

BENCHMARK PROGRAMS USED FOR VALIDATING INTRODUCED CPU 

AVAILABILITY PREDICTION MODEL 
 

 
 

Algorithm 1 presents major parts of the experimental 

system. The algorithm takes the number of concurrent 

threads and test runs as input and outputs the measured 

execution efficiency for the batch. Uniform sampling of data 

across the values of possible aggregate CPU loading was 

implemented. A test run of each batch of threads provides 

one measurement (the minimum efficiency is considered for 

accuracy) of CPU availability. 

 

 
 

To ensure a uniform sampling of data across the values of 

possible aggregate loadings, a random value of aggregate 

loading between (ɛ × n) and n is chosen first. The value of ɛ 

is 0.05, denoting a 5% CPU-load, is used to represent the 

extreme lower CPU load value for a thread. A thread cannot 

have CPU load value of zero (0.0), else it would never 

complete its assigned work. The selected aggregate load 

(sum-total) is then distributed among threads using 

expressions inside the inner for loop. For example, if a 

thread batch contains 8-threads then the minimum-limit is 

0.4 which is (0.05 × 8) and the maximum-limit is 8.0 (i.e., 

all CPU-bound threads). Then a CPU load value between 

0.4 and 8.0 is chosen and distributed among 8 threads using 

Algorithm 1. 

D. Empirical CPU Availability Case Studies 

For measuring the CPU availability of the quad-core 

processor, three case studies were conducted in which 8, 12, 

and 16 threads were spawned concurrently to observe the 

execution efficiency in quad-core systems. A moving 

average with a window size of 0.1% is calculated and 

plotted in the Figure 1. A 90% confidence interval value is 

computed and presented along with measured execution 

efficiency. CPU availability graphs for 8 and 16 threads are 

shown in Figures 1 and 2 respectively.  

 

 
 

Fig. 1. CPU availability of 8 concurrent processes in a quad-core machine. 

Results of 4,000 independent test cases with average efficiency and 90% 

confidence interval bars. 

 

 
 

Fig. 2. CPU availability of 16 concurrent processes in a quad-core machine. 

Results of 4,000 independent test cases with average efficiency and 90% 

confidence interval bars. 

 

Figures 1 and 2 show measured CPU availability scatter 

graphs for 8 and 16 concurrent processes executing on a  

quad-core processor, superimposed with the plots of the 

moving average and a 90% confidence interval bars. In 

these figures, the horizontal axis represents aggregated CPU 

load and the vertical axis represents CPU availability. Each 

small dot in these graphs is an independent test case 
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measurement of CPU availability. There are 4,000 dots in 

each figure representing the measured CPU availability 

value among the concurrent threads. A moving average line 

is also drawn through the data on the graphs for helping to 

visualize the average measured performance. A window size 

of 0.1 aggregate CPU load and incremental value of 0.01 

was used to calculate the moving average values. A similar 

sliding window approach was employed to calculate the 

90% confidence interval upper and lower limits. The 

empirical results for the quad-core processor under Linux 

environment show that the CPU availability prediction is 

fairly accurate in all cases when the CPU is lightly, 

moderately (similar to real-world environment), and heavily 

loaded.  

 

 
 

Fig. 3. The measured average CPU availability data and predicted average 

data associated with Eq. 3 for (a) multi-core systems with r = 4 and n = 8. 

(b) multi-core systems with r = 4 and n = 12. (c) multi-core systems with r 

= 4 and n = 16. 

TABLE II 

MEASURED PREDICTION ERROR FOR THE CASE STUDIES OF 8, 12 AND 16 

CONCURRENT THREADS IN A QUAD-CORE MACHINE 
 

 
 

Figure 3 (a, b, c) corresponds to the experimental data for 

8, 12, and 16 batches of threads in a quad-core machine. In 

this figure, the horizontal axis represents the normalized 

aggregate load, L/n, and the vertical axis represents the CPU 

availability for running threads. The average CPU 

availability line is plotted from Table II, which is from 

empirical multi-core test data discussed in Section IV. It can 

be observed that the CPU availability model lines are 

smooth and follow similar pattern compared with the 

average lines obtained empirically (Fig. 1 and 2). As the 

number of threads in a batch increases, the shape and pattern 

of the line of prediction model become almost identical to 

average measured line. 

Table II contains empirical data to validate the proposed 

model. It can be observed from the table that for a set of 8-

threads, the maximum prediction error is 3.24% when 

normalized aggregate loading is 0.5. For 12-threads, the 

maximum prediction error is 3.63% when normalized 

aggregate loading is 0.4. Finally, for 16-threads, the 

maximum error is 1.92% when normalized aggregate 

loading is 0.5.  

This analysis shows that the introduced average CPU 

availability model is consistent with the measured values. 

The maximum predicted error is only 3.63%. Thus, the 

model depicts accuracy and reliability and can be deployed 

in real-world applications for scheduling. 

V. CONCLUSION 

In this paper, a new multi-core CPU availability 

prediction model is introduced. Given a set of processes, 

aggregate CPU load of the set of processes, number of CPU 

cores, and hyper-threading of a machine, we can predict the 

CPU availability for the set of processes with very small 

error. A mathematical prediction model is introduced and 

validated. A wide range of test cases have been conducted in 

Linux systems using real-world benchmark programs along 

with synthetic benchmark programs for verifying the 

accuracy of the new CPU availability prediction model. All 

benchmark programs are implemented using the C language 

and deployed in Linux systems concurrently. The results of 

empirical studies are presented in this paper in the form of 

scatter plots, and tables. Thread availability scatter plots 

provide clear visualization of measured efficiency based on 

the density of the dots in the plots. The empirical studies 

performed for validating the average CPU availability model 

shows that the model values follow the same shape and 
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pattern of the experimentally measured average CPU 

availability lines with a maximum error rate less than 4.0%. 

This model is suitable for applications that require a single 

prediction value instead of upper- and lower bounds for 

dispatching tasks. Using this reliable information one might 

be able to determine the order in which tasks should be 

assigned to the system so that the completion time of all the 

tasks is minimized.  

The introduced prediction model can be used as a 

building block for distributed task scheduler to determine 

the order (or find sub sets) in which tasks should be assigned 

to compute nodes for minimizing the total execution time 

prior to its placement in the run queue. All the obtained 

results justify the strength of the introduced model for 

predicting the CPU availability of multi-core systems while 

executing threads. Hence, the ability of this model to predict 

the CPU availability and multi-core processor efficiency for 

process execution while the CPU resource availability is 

uncertain has been demonstrated. Finally, the usefulness of 

the introduced prediction model in real-world applications 

for estimating the execution efficiency of processes before 

they are placed into the run-queue by a scheduler has been 

motivated, and is the topic of future studies. 
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