



Abstract— The efficiency of a multi-core architecture is

directly related to the mechanisms that map the threads

(processes in execution) to the cores. Determining the CPU

resource availability of a multi-core architecture based on the

characteristics of the threads that are in execution is the art of

system performance prediction. Prediction of CPU resource

availability is important in the context of making process

assignment, load balancing, and scheduling decisions. In

distributed infrastructure, CPU resources are allocated on

demand for a chosen set of compute nodes. In this paper, a

prediction model is derived for multi-core architectures and

empirical evaluations are performed with real-world

benchmark programs in a heterogeneous environment to

demonstrate the accuracy of the proposed model. This model

can be utilized in various time-sensitive applications like

resource allocation in a cloud environment, task distribution

(determining the order for faster processing time) in

distributed systems, and others.

Index Terms — CPU Availability, Execution Efficiency,

Hyper-threading, Multi-core Prediction Model, Prediction

Algorithm.

I. INTRODUCTION

YSTEM efficiency prediction involves estimating the

system's behavior for a set of tasks to be executed on it.

Making such predictions is complicated due to the dynamic

nature of the system and its workload, which can vary

drastically in a short span of time [2]. For any prediction

approach, it can be useful to know a priori certain

characteristics of tasks that are planned to be assigned to the

system. As an example, it is useful to know the CPU

requirement of the task, which is the fraction of time a task

requires the CPU. It is also useful to know the maximum

amount of main memory a task will consume during its

execution (memory requirement). This information is useful

to forecast the amount of time that may be consumed for

memory paging activities.

Manuscript received December 23, 2016; revised January 16, 2017.

Khondker S. Hasan, Ph.D., is an Assistant Professor at the University of

Houston - Clear Lake, Houston, TX 77058, USA. He received his Ph.D. in

Computer Science from the University of Oklahoma, OK, USA in 2014 and

M.S. in Computer Science from the Wichita State University, Kansas, USA

in 2001. Dr. Khondker is a current IAENG Member # 156478. phone: 1-

281-283-3842; (e-mail: HasanK@ uhcl.edu).
John K. Antonio, Ph.D., received the Ph.D. degree in electrical

engineering from Texas A&M University, College Station in 1989. He is

currently Senior Associate Dean of Engineering and Professor of Computer
Science at the University of Oklahoma (OU), Norman, OK 73019, USA (e-

mail: antonio@ou.edu).

Sridhar Radhakrishnan, Ph.D., is Professor and Director of the School of
Computer Science at the University of Oklahoma, Norman, OK 73019,

USA, where he joined in 1990. He received his Ph.D. in Computer Science

from Louisiana State University in 1990 (e-mail: sridhar@ou.edu).

In time-shared systems, the utilization of the CPU and the

speed of the computer's response to its users have improved

as a result of advances in CPU scheduling [2]. To realize

this increase in performance, it is customary to keep many

processes running in the system [3]. The success of

approaches for assigning concurrent processes (or threads)

to multi-core or many-core systems relies on the existence

of reasonably accurate CPU resource availability model.

This is because there is a strong relationship between a

thread's total execution time and the availability of CPU

resources used for its execution [1]. Therefore, predicting

the resource availability that results when threads are

assigned to a processor is a basic problem that arises in

many important contexts. Accurate resource availability

prediction model is important because there exists a wide

range of applications and scientific models (e.g., geological,

meteorological, economical and others) that requires

extensive use of CPU resource, repeatedly. These models

fall into this category, where the program remains the same

and the data on which it operates changes over time. The

distributed task assignment problem in general is NP-Hard

and it is further complicated by the changing dynamics

(changes to CPU availability) of the compute nodes [1].

Given a set of tasks each with varied CPU requirements,

and a multi-core system, we provide a CPU availability

prediction model for the efficiency with which the tasks are

executed. To facilitate scientific and controlled empirical

evaluation, real-world benchmark programs with dynamic

behavior are employed on LINUX systems that are

parameterized by their CPU usage factor. Extensive

experimental studies and statistical analysis are presented in

this paper to measure the accuracy of the introduced

prediction models.

Given the CPU requirements of tasks in a run queue,

Beltrán et al. [2] provide an analytical model to estimate the

CPU availability (which is the percentage of CPU time that

will be allocated) for the new task prior to its placement in

the run queue. It is shown that in certain cases this

information can be used to schedule the execution of tasks

in such a way that the completion time of all the tasks is

minimized [2]. They considered a batch of tasks (each with

its own CPU requirements) and their analytical model

determined the CPU availability using the sum total of the

CPU requirement of each of the tasks in the batch. Using

this sum total posed a challenge in that the CPU availability

prediction is precise only when the order of task execution is

known a priori. To address this challenge, our (Khondker et

al. [1]) analytical model provided tight upper- and lower-

bounds on CPU availability. The bounds are necessary

because the actual CPU availability depends on the order of

execution of tasks in the batch. Thus the analytical model in

A New Multi-core CPU Resource Availability

Prediction Model for Concurrent Processes

Khondker S. Hasan, John K. Antonio, and Sridhar Radhakrishnan

S

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Khondker et al. [1] is oblivious of the CPU scheduler.

In the present paper, we have further improved the

analytical model in [1] in several ways. First, we have

applied an empirical approach based on the thread

assignment observation in [1, 4] to introduce a new Multi-

core CPU availability prediction model. This empirical

model provides a single prediction value (instead of upper-

and lower-bounds) of CPU availability for a set of

concurrent processes prior to their execution without explicit

knowledge of the mapping between available cores and

processes. Second, we have utilized real-world benchmark

programs in LINUX systems to perform extensive empirical

work. Finally, we provided empirical results and statistical

analysis to validate the introduced new CPU availability

model and its application in a commercial context.

II. RELEVANT WORK

Existing prediction models generally assume CPU

resources are equally distributed among all processes in the

run queue by following a Round Robin (RR) scheduling

technique [2, 7]. These models use the number of processes

in the run queue as the system load index. As a result, the

CPU availability prediction for a newly arriving process

when there are currently N processes in the run queue is

simply 1/(N + 1). This predictor is only accurate for CPU-

bound processes, which share CPU resources in a balanced

manner; consistent with the RR model assumption. But,

when the processes also require I/O resources, this approach

fails to provide accurate predictions and incurs large

prediction errors. Thus, when there are processes in the run

queue that require CPU and I/O resources, a more complex

model is necessary to describe how the CPU is shared [5].

The introduced model overcomes this suitable for both CPU

and I/O bound processes.

Federova et al. [9] also worked on operating system

scheduling heterogeneous multi-core systems. They

proposed thread-to-core assignment algorithms that optimize

performance and demonstrate the need for balanced core

assignment. The paper makes the case that thread schedulers

for multi-core systems in a heterogeneous environment

should target the following objectives: optimal performance,

core assignment balance, response time, and fairness. In

addition, Federova [9] introduced a practical new method

for estimating performance degradation on multi-core

processors, and its application to workloads of clusters

nodes.

Jen-Chieh et al., [10] have worked on multi-core systems

and the allied software parallelization technique trends of

System On Chip (SoC) design. Their paper adopts an

electronic system-level (ESL) design methodology for

higher system performance and lower energy utilization for

revealing a system performance prediction and analysis

method for multi-core systems. Based on the scalable multi-

core virtual platform, they have performed one to eight-core

system performance trend prediction as well as multi-core

system performance analysis. Experiments are conducted for

observing the performance improvement of software

parallelization. The paper also discusses issues related to

hardware-software co-design and hardware cost reduction.

III. MULTI-CORE CPU AVAILABILITY MODEL

The primary focus of this section is to present a CPU

availability prediction model for estimating CPU availability

for a set of tasks on multi-core systems. When the number

of threads assigned to a multi-core processor is less than or

equal to the number of CPU cores associated with the

processor, the efficiency of the CPU is often near to ideal.

When the number of assigned threads is more than the

number of CPU cores, the resulting CPU performance can

be more difficult to predict (Khondker et al. [1, 4]). For

example, assigning two CPU-bound threads to a single core

results in CPU availability of about 50%, meaning that

roughly 50% of the CPU resource is available for executing

either thread. Alternatively, if two I/O-bound threads are

assigned to a single core, it is possible that the resulting

CPU availability is nearly 100%, provided that the usage of

the CPU resource by each thread is fortuitously interleaved.

However, if the points in time where both I/O bound threads

do require the CPU resource overlap (i.e., they are not

interleaved), then it is possible (although perhaps not likely)

that the CPU availability of the two I/O bound threads could

be as low as 50%. Therefore, considering the number of

processes in the run queue as a load index is not sufficient.

The aggregate CPU load (sum total) of running threads

needs to be considered for deriving an accurate model.

The execution of a thread is generally modeled by a series

of alternating work and sleep phases. A thread in a work

phase will remain there until it has consumed enough CPU

cycles to complete the allotted work of that portion of

computation. After completing the work phase, the thread

then enters in the sleep portion where it stays (does not

consume CPU cycles) for a specific amount of time. Each

thread is parameterized by a CPU usage factor. The CPU

usage factor is defined as the time required to complete the

work portion of a work-sleep phase on an unloaded CPU,

divided by the total time of a work-sleep phase. A thread

having zero sleep length has a CPU usage factor of 100%,

which is also called a CPU-bound thread. Sleep phase length

and the total amount of computational work to accomplish is

computed based on the CPU usage factor. Its sleep length

relative to that of the work portion based on CPU load factor

is used to account for I/O or any other interruptions

(Khondker et al. [1, 4]).

This section introduces a model for predicting the

expected (on average) availability of CPU (instead of

calculating the upper- and lower-bounds [1]). As discussed

in the previous subsection, exact values of CPU availability

are difficult to predict because of dependencies on many

factors, including context switching overhead, CPU usage

requirements of the threads, core hyper-threading, the

degree of interleaving of the timing of the CPU

requirements of the threads, and the characteristics of the

thread scheduler of the underlying operating system. Due to

the complex nature of the execution environment, an

empirical approach is incorporated into our approach to

estimate expected CPU availability. The model predicts

availability of CPU resources for a batch of heterogeneous

threads executed concurrently on multi-core distributed

systems. The model estimates the CPU requirements for the

batch in and expected thread execution efficiency.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

A. Assumptions

Following are the assumptions for the introduced model:

 Threads are heterogeneous and there are no inter-

thread communication.

 CPU utilization is statistically "stationary" over time.

 Batches of threads are spawned concurrently in a

multi-core system.

 The number of threads in a batch is more than the

number of CPU cores of the assigned machine.

 The multi-core system in which the threads are

spawned was initially unloaded.

 CPU requirement of each thread is preceding known

before placing into the run-queue.

 Threads are independent and there are no racing

conditions.

 Overhead related to operating system's real-time

process execution is negligible.

B. The Mathematical Model for Multi-core CPU

The new multi-core CPU availability model is derived

based on two empirical scenarios. In the first scenario, when

the value of aggregate CPU load (L) is less than or equal to

the number of CPU cores (r), that is, running threads has

low CPU utilization, the number of work phase overlap is

generally small. This results in less contending work phases

among running threads but still some context switching

overhead. The CPU availability upper-bound model is based

on the situation in which all work portions of threads are out

of phase (interleaved). The following expression represents

the context switching overhead when L ≤ r. This is

subtracted from unity in Eq. 3 to model CPU availability. In

the following, ξ represents the count of CPU core hyper-

threading.

In the second scenario, when the value of L > r, the best

CPU availability for running threads is considered as r/L.

This scenario is based on interleaved work phase of running

threads. This model provides an optimistic estimation, but

when the value of L increases, contention is more likely due

to relatively wider work portions than idle portions. That is,

increased CPU load increases more context switching

overhead. The following estimated context switching

overhead is subtracted from the second scenario of the

upper-bound model (in Eq. 3) to reflect the observed

behavior.

The following mathematical model derived from the

empirical observation provides an explanation of thread

assignment in multi-core processor. The model of Eq. 3

depends on the aggregate CPU load (sum total) of the set of

tasks, number of threads, number of processor cores, and

number of hyper-threading in cores. For a multi-core

machine, the following prediction model estimates the

average CPU availability for a set of tasks:

The model of Eq. 3 is derived from Eqs. 1 and 2 that

depends on whether the aggregate CPU load is less than the

number of cores or more than the number of cores. In the

first situation, CPU resources are lightly loaded resulting in

low context switching overhead and better efficiency. In the

second situation, threads are moderate to highly loaded (i.e.,

aggregate CPU load is more than the number of cores),

resulting in more context switching overhead and reduced

efficiency. In general, thread with more CPU load incurs

more contention for resources and context switching

overhead. Therefore, an estimated context switching

overhead is subtracted from the efficiency value in both

cases (i.e., when for L ≤ r or L > r) to match the average

efficiency.

IV. EMPIRICAL STUDIES

A. Overview

Depending on the process variation (CPU versus I/O

bound), the Linux scheduler version 2.6 and above

dynamically modifies this measured value to assign a

priority penalty to CPU-bound processes and boost I/O-

bound processes [11]. This Dynamic Priority Scheme is

controlled with the sleep avg variable for each process.

When an I/O-bound process is awakened from a sleep

interval, its total sleep time is added to this variable. In

addition, when a process leaves the processor, the time it has

been executing on it is subtracted from this variable. The

higher the sleep avg value is, the higher the dynamic priority

will be. In addition, the time slice of a process is computed

with its priority value, always maintaining its length

between the minimum and maximum values [11].

B. Empirical Environment

The system used for evaluating the multi-core test cases is

equipped with an Intel(R) Xeon(R) Quad-core W3520

processor, 2.67GHz clock speed, 1.333 MHz bus speed, and

6.0 GB of RAM. This machine also has Linux kernel

version 3.2.36. The average CPU load (represents the

average system load over a period of time) was 0.0161302

per core in a scale of 1.0 (in a fifteen minute period) before

running test cases, which indicates that the machines were

lightly loaded (essentially unloaded). The Linux Shell

command top and sysinfo is called and output is redirected

and parsed to extract required data from the system.

The C programming language in the Linux environment

is used to implement the analytical model framework and

benchmark programs. The gcc compiler version used is

4.6.3. Threads deployed here are independent tasks,

meaning there are no interdependencies among threads such

as message passing. Threads are spawned concurrently.

When the batch of threads complete assigned work and

terminates, an execution report is produced, which contains

start time, work time, idle time, end time, number of phases,

and others for statistical analysis.

(1)

(2)

(3)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

C. Benchmarking

The benchmark programs used for conducting empirical

study in the Linux environment consists of real-world CPU-

intensive programs like Super prime number generator,

Monte-Carlo estimation of π along with a similar synthetic

benchmark program. Table I consists of a complete list of

programs used as benchmark program for conducting

empirical case studies.
TABLE I

BENCHMARK PROGRAMS USED FOR VALIDATING INTRODUCED CPU

AVAILABILITY PREDICTION MODEL

Algorithm 1 presents major parts of the experimental

system. The algorithm takes the number of concurrent

threads and test runs as input and outputs the measured

execution efficiency for the batch. Uniform sampling of data

across the values of possible aggregate CPU loading was

implemented. A test run of each batch of threads provides

one measurement (the minimum efficiency is considered for

accuracy) of CPU availability.

To ensure a uniform sampling of data across the values of

possible aggregate loadings, a random value of aggregate

loading between (ɛ × n) and n is chosen first. The value of ɛ

is 0.05, denoting a 5% CPU-load, is used to represent the

extreme lower CPU load value for a thread. A thread cannot

have CPU load value of zero (0.0), else it would never

complete its assigned work. The selected aggregate load

(sum-total) is then distributed among threads using

expressions inside the inner for loop. For example, if a

thread batch contains 8-threads then the minimum-limit is

0.4 which is (0.05 × 8) and the maximum-limit is 8.0 (i.e.,

all CPU-bound threads). Then a CPU load value between

0.4 and 8.0 is chosen and distributed among 8 threads using

Algorithm 1.

D. Empirical CPU Availability Case Studies

For measuring the CPU availability of the quad-core

processor, three case studies were conducted in which 8, 12,

and 16 threads were spawned concurrently to observe the

execution efficiency in quad-core systems. A moving

average with a window size of 0.1% is calculated and

plotted in the Figure 1. A 90% confidence interval value is

computed and presented along with measured execution

efficiency. CPU availability graphs for 8 and 16 threads are

shown in Figures 1 and 2 respectively.

Fig. 1. CPU availability of 8 concurrent processes in a quad-core machine.

Results of 4,000 independent test cases with average efficiency and 90%

confidence interval bars.

Fig. 2. CPU availability of 16 concurrent processes in a quad-core machine.

Results of 4,000 independent test cases with average efficiency and 90%

confidence interval bars.

Figures 1 and 2 show measured CPU availability scatter

graphs for 8 and 16 concurrent processes executing on a

quad-core processor, superimposed with the plots of the

moving average and a 90% confidence interval bars. In

these figures, the horizontal axis represents aggregated CPU

load and the vertical axis represents CPU availability. Each

small dot in these graphs is an independent test case

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

measurement of CPU availability. There are 4,000 dots in

each figure representing the measured CPU availability

value among the concurrent threads. A moving average line

is also drawn through the data on the graphs for helping to

visualize the average measured performance. A window size

of 0.1 aggregate CPU load and incremental value of 0.01

was used to calculate the moving average values. A similar

sliding window approach was employed to calculate the

90% confidence interval upper and lower limits. The

empirical results for the quad-core processor under Linux

environment show that the CPU availability prediction is

fairly accurate in all cases when the CPU is lightly,

moderately (similar to real-world environment), and heavily

loaded.

Fig. 3. The measured average CPU availability data and predicted average

data associated with Eq. 3 for (a) multi-core systems with r = 4 and n = 8.

(b) multi-core systems with r = 4 and n = 12. (c) multi-core systems with r

= 4 and n = 16.

TABLE II

MEASURED PREDICTION ERROR FOR THE CASE STUDIES OF 8, 12 AND 16

CONCURRENT THREADS IN A QUAD-CORE MACHINE

Figure 3 (a, b, c) corresponds to the experimental data for

8, 12, and 16 batches of threads in a quad-core machine. In

this figure, the horizontal axis represents the normalized

aggregate load, L/n, and the vertical axis represents the CPU

availability for running threads. The average CPU

availability line is plotted from Table II, which is from

empirical multi-core test data discussed in Section IV. It can

be observed that the CPU availability model lines are

smooth and follow similar pattern compared with the

average lines obtained empirically (Fig. 1 and 2). As the

number of threads in a batch increases, the shape and pattern

of the line of prediction model become almost identical to

average measured line.

Table II contains empirical data to validate the proposed

model. It can be observed from the table that for a set of 8-

threads, the maximum prediction error is 3.24% when

normalized aggregate loading is 0.5. For 12-threads, the

maximum prediction error is 3.63% when normalized

aggregate loading is 0.4. Finally, for 16-threads, the

maximum error is 1.92% when normalized aggregate

loading is 0.5.

This analysis shows that the introduced average CPU

availability model is consistent with the measured values.

The maximum predicted error is only 3.63%. Thus, the

model depicts accuracy and reliability and can be deployed

in real-world applications for scheduling.

V. CONCLUSION

In this paper, a new multi-core CPU availability

prediction model is introduced. Given a set of processes,

aggregate CPU load of the set of processes, number of CPU

cores, and hyper-threading of a machine, we can predict the

CPU availability for the set of processes with very small

error. A mathematical prediction model is introduced and

validated. A wide range of test cases have been conducted in

Linux systems using real-world benchmark programs along

with synthetic benchmark programs for verifying the

accuracy of the new CPU availability prediction model. All

benchmark programs are implemented using the C language

and deployed in Linux systems concurrently. The results of

empirical studies are presented in this paper in the form of

scatter plots, and tables. Thread availability scatter plots

provide clear visualization of measured efficiency based on

the density of the dots in the plots. The empirical studies

performed for validating the average CPU availability model

shows that the model values follow the same shape and

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

pattern of the experimentally measured average CPU

availability lines with a maximum error rate less than 4.0%.

This model is suitable for applications that require a single

prediction value instead of upper- and lower bounds for

dispatching tasks. Using this reliable information one might

be able to determine the order in which tasks should be

assigned to the system so that the completion time of all the

tasks is minimized.

The introduced prediction model can be used as a

building block for distributed task scheduler to determine

the order (or find sub sets) in which tasks should be assigned

to compute nodes for minimizing the total execution time

prior to its placement in the run queue. All the obtained

results justify the strength of the introduced model for

predicting the CPU availability of multi-core systems while

executing threads. Hence, the ability of this model to predict

the CPU availability and multi-core processor efficiency for

process execution while the CPU resource availability is

uncertain has been demonstrated. Finally, the usefulness of

the introduced prediction model in real-world applications

for estimating the execution efficiency of processes before

they are placed into the run-queue by a scheduler has been

motivated, and is the topic of future studies.

ACKNOWLEDGMENT

The authors would like to thank Jonathan Mullen, System

Administrator, School of Computer Science, University of

Oklahoma, for his time and coordinated support. We would

also like to extend our gratitude to Dr. Mahendran

Veeramani for his valuable feedback towards this work.

REFERENCES

[1] Khondker S. Hasan, John K. Antonio, and Sridhar Radhakrishnan,

“A New Composite CPU/Memory Model for Predicting Efficiency of

Multi-core Processing,” The 20th IEEE International Symposium On
High Performance Computer Architecture (HPCA-2014) workshop,

Sponsored by: IEEE Computer Society, Orlando, FL, USA, 2014.

[2] Martha Beltrán, Antonio Guzmán and Jose Luis Bosque, “A new
CPU Availability Prediction Model for Time-Shared Systems,” IEEE

Computer, Vol 57, July 2008.

[3] Y. Zhang, W. Sun, and Y. Inoguchi, “Predicting running time of grid

tasks on cpu load predictions”, Proceedings of the 7th IEEE/ACM

International Conference on Grid Computing, pp. 286–292,
September 2006.

[4] Khondker S. Hasan, Sridhar Radhakrishnan, and John K. Antonio,

“Composite Prediction Model and Task Distribution on a Cloud of
Multi-core Processors,” The 20th IEEE International Conference on

High Performance Computing (HiPC) Workshop on Cloud

Computing Applications (IWCA-13), Bangalore, India, 18-21 Dec.
2013.

[5] Khondker Shajadul Hasan, Nicolas G. Grounds, John K. Antonio,

“Predicting CPU Availability of a Multi-core Processor Executing
Concurrent Java Threads,” Proceedings of the International

Conference on Parallel and Distributed Processing Techniques and

Applications (PDPTA 11), sponsor: World Academy of Science and
Computer Science Research, Education, and Applications (CSREA),

Las Vegas, NV, July 2011.

[6] Silberschatz Avi, Galvin B. Peter, Gagne Greg, Operating System
Concepts, Eighth Edition, John Wiley and Sons, 2009.

[7] M. Beltrán and Antonio Guzmán, “How to Balance the Load on

Heterogeneous Clusters,” International Journal of High Performance
Computing Applications, Volume 23, No. 1, pp. 99118, Spring 2009.

[8] Tyler Dwyer, Alexandra Fedorova, Sergey Blagodurov, “A Practical

Method for Estimating Performance Degradation on Multicore
Processors, and its Application to HPC Workloads,” International

Conference on High Performance Computing, Networking, Storage

and Analysis, Article No. 83, ISBN: 978-1-4673-0804-5, IEEE
Computer Society Press, CA, 2012.

[9] Alexandra Fedorova, David Vengerov, Daniel Doucette, “Operating

System Scheduling On Heterogeneous Core Systems,” Sun
Microsystems Technical Report, http://www.techrepublic.com

/whitepapers /operatingsystem-scheduling-on-heterogeneous-core-

systems/314436, July 2007.
[10] Jen-Chieh Yeh; Chi-Hung Lin; Chun-Nan Liu, “Multi-core system

performance prediction and analysis at the ESL,” Int. J. of

Computational Science and Engineering, DOI: 10.1504/
IJCSE.2014.058700, Vol. 9 No. 1/2, pp. 86-94, 2014.

[11] Andrew S. Tanenbaum, Modern Operating Systems, Third Edition,

ISBN13: 978-0136006633, Prentice Hall Inc., 2008.
[12] Shannon Cepeda, “Intel Hyper-Threading Technology: Your

Questions Answered,” http://software.intel.com/en-us/articles/intel-

hyper-threadingtechnology- your-questions-answered 27 January,
2012.

[13] Vitaly Mikheev, “Switching JVMs May Help Reveal Issues in Multi-

Threaded Apps,” May 2010, http://java.dzone.com/articles/case-
study-switching-jvms-may.

[14] R. Wolski, N. Spring, and J. Hayes, “Predicting the CPU Availability

of Time-Shared Unix Systems on the Computational Grid,” Proc. 8th
International Symposium on High Performance Distributed

Computing, pp. 105-112, ISBN: 0-7803-5681-0, August 2002.

[15] Khondker Shajadul Hasan “A Distributed Chess Playing Software
System Model Using Dynamic CPU Availability Prediction,”

International Conference on Software Engineering Research and

Practice (SERP-11), Las Vegas, Nevada, July 2011.
[16] Brian K. Tanaka, “Monitoring Virtual Memory with vmstat,” Linux

Journal, http://www.linuxjournal.com/article/8178, Oct 31, 2005.
[17] M. Tim Jones, “Inside the Linux scheduler 2.6”, The Journal of A

Linux Sysadmin, http://www.ducea.com/2006/07/08/inside-the-linux-

scheduler, July 2006.
[18] M. Tim Jones, “Inside the Linux scheduler,” The latest version of this

all-important kernel component improves scalability, IBM Technical

Report, http://www.ibm.com/developerworks/linux/library/lscheduler/
June 2006.

[19] Zhang, Y., Owens, J.D., “A quantitative performance analysis model

for GPU architectures,” IEEE 17th International Symposium on High
Performance Computer Architecture (HPCA), pp. 382–393 (2011).

[20] Paessler Knowledge Base, “Monitoring Running Processes in Linux,”

http://www.paessler.com/knowledge-base/en/topic/29403-
monitoringprocesses-in-linux, Dec 2011.

[21] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan,

Norman P. Jouppi, Keith I. Farkas, “Single-ISA Heterogeneous
Multi-Core Architectures for Multithreaded Workload Performance,”

31st Annual International Sympo-sium on Computer Architecture

(ISCA), June 2004.
[22] Sim, Jaewoong and Dasgupta, Aniruddha and Kim, Hyesoon and

Vuduc, Richard, “A Performance Analysis Framework for Identifying

Potential Benefits in GPGPU Applications,” Proceedings of the 17th
ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPoPP '12), pp. 11-22, New Orleans, Louisiana,

2012.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

