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Abstract—Constraint optimization problems in multiagent
systems have been studied as fundamental problems of decision
making and resource allocation. When each agent has its own
specific interest in a problem, that task is defined as a multi-
objective optimization problem with asymmetric functions.
Since multi-objective problems have a number of Pareto optimal
solutions in general cases, a preferred solution is selected
using an appropriate criterion. The interactive methods are
approaches of solution methods for multi-objective optimization
problems, where a solution is repeatedly modified based on user-
specified parameters. While interactive methods are developed
for single users, such a framework can be considered as the
base of analysis or games on multiagent systems by replacing
single users with sets of agents. To study such an approach, this
paper investigates a framework that resembles the interactive
aspiration level methods employing a scalarization criterion that
addresses unfairness among agents, and evaluates an example
case of interaction.

Index Terms—multiagent, multi-objective, interactive method

I. INTRODUCTION

Constraint optimization problems in multiagent systems
have been studied as fundamental problems of decision
making and resource allocation. When each agent has its
own interest in a problem, it is defined as a multi-objective
optimization problem with asymmetric functions. In an
asymmetric problem, each agent has its own individual
evaluation on part of the problem, which is represented
as its own objective function. Such classes of problems
have been recently studied for decentralized optimization in
multiagent systems [1], [2], [3], [4], [5]. While traditional
optimization problem optimize the summation of objective
functions, multiple objectives should be simultaneously op-
timized. This formalization is critical for several practical
resource allocations such as task allocation with battery
consumption, and collaborative team generation considering
both the efficiency and the fairness of all members. For multi-
objective problems in multiagent systems, each objective cor-
responds to an individual agent. Since multi-objective prob-
lems have a number of Pareto optimal solutions in general
cases, a preferred solution is selected using an appropriate
criterion [6], [7]. The interactive methods are approaches
of the solution methods for multi-objective optimization
problems, where a solution is repeatedly modified based
on user-specified parameters [8]. While interactive methods
are developed for single users, such a framework can be
considered as a base of analysis or games on multiagent
systems by replacing single users with sets of agents. For
example, agents may require information about the current
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Fig. 1. Asymmetric multi-objective COP

solution to review their positions in the current solution
to investigate the possibilities of selecting another solution
based on their other preferences. To study such an approach,
this paper investigates a framework that resembles interactive
aspiration level methods employing a scalarization criterion
that considers unfairness among agents, and evaluates an
example case of interaction.

The rest of this paper is organized as follows. In the next
section, several preliminaries of this study, including problem
settings, the concepts of multi-objective problems, the scalar-
ization criteria, and interactive methods, are presented. In
Section III, a framework of an interactive solution method for
agents is presented. The proposed approach is experimentally
evaluated in Section IV and discussed in Section V. Then the
paper is concluded in Section VI.

II. PRELIMINARIES

A. Multiobjective problem among agents

Asymmetric multiple objective problems for multiagent
systems have been recently studied [1], [2], [3], [4], [5].
This paper investigates such problems assuming central-
ized solution methods. Here a class of asymmetric multi-
objective constraint optimization problems, which resembles
an asymmetric multi-objective distributed constraint opti-
mization problem [4], [5], is addressed. An asymmetric
multi-objective constraint optimization problem (asymmetric
multi-objective COP) is defined as follows.

Definition 1 (asymmetric multi-objective COP for agents):
An asymmetric multi-objective COP is defined by
(A,X,D,F ), where A is a set of agents, X is a set
of variables, D is a set of the domains of variables, and
F is a set of objective functions. Here single variable
xi ∈ X and single objective function fi ∈ F correspond
to agent ai ∈ A. The variable and function represent the
agent’s decision and utility. Variable xi ∈ X takes values
from its domain Di ∈ D, which is a discrete finite set.
For set of variable Xi ⊆ X , function fi ∈ F is defined
as fi(xi,1, · · · , xi,k) : Di,1 × · · · × Di,k → R0, where
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xi,1, · · · , xi,k ∈ Xi. fi(xi,1, · · · , xi,k) is simply denoted
by fi(Xi). Although ideally, objective functions should be
simultaneously maximized, there are trade-offs among them
in general cases. The goal is to find an optimal solution
under a criterion.

Figure 1 shows an asymmetric multi-objective COP with
three agents, each of which corresponds to its variable and
function. In this example, each agent has a ternary function,
which represents an objective of the agent.

Since each agent prefers to maximize the utility values of
its own objective function, this is a multi-objective problem.
A tuple of the utility values of all the objective functions for
an assignment is defined as an objective vector.

Definition 2 (Objective vector): Objective vector v is de-
fined as [v1, · · · , vK ], where vj is an objective value for
agent j. Vector F(X) of the objective functions is defined
as [f1(X1), · · · , fK(XK)], where fj(Xj) is an objective
function for agent j. For assignment A, vector F(A) of
the functions returns objective vector [v1, · · · , vK ]. Here
vj = fj(A↓Xj ).

Since there are trade-offs among objective functions in
general cases, those objectives cannot be maximized simul-
taneously. Therefore, the objective vectors are compared with
Pareto dominance [6], [7]. The dominance between two
objective vectors is defined as follows.

Definition 3 (Pareto dominance): Vector v dominates v′

if and only if v ≥ v′, and vk > v′k for at least one objective
k.

Based on Pareto dominance, Pareto optimality is defined
as follows.

Definition 4 (Pareto optimality): Assignment A∗ is
Pareto optimal if and only if there is no other assignment
A, such that F(A) ≥ F(A∗), and F k(Ak) > F k(A∗k) for
at least one objective k.

In general cases, there are multiple Pareto optimal solu-
tions. The set of objective vectors corresponding to the Pareto
optimal solutions is called a Pareto front.

When the objective functions represent cost values, the
problem is defined as a multi-objective minimization prob-
lem. In this case, the comparisons of the values are inverted.

B. Scalarization and optimization

The order on objective vectors is defined by scalarization
or a social welfare criterion. With scalarization, a single
objective problem whose optimal solution is Pareto optimal
is defined from the original multi-objective problem. There
are several scalarization and social welfare criteria [7], [6].

Summation
∑K

j=1 fj(Xj) of the objectives is traditional
social welfare. The summation is a ‘utilitarian’ criterion,
since it represents the total value of the objectives. Even
though the maximization on summation ensures Pareto opti-
mality, it does not capture the equality of these objectives.

Maximin maximizes the minimum objective value. Al-
though maximin improves the worst case, it is not Pareto
optimal. Maximin is also improved by a summation that
breaks the ties of maximin ordering. See the literature [6],
[7] for the details of the above criteria.

Leximin is a lexicographic order on the objective vectors
whose values are sorted in ascending order.

Definition 5 (Sorted vector): A sorted vector based on
vector v is a vector where all the values in v are sorted
in ascending order.

Definition 6 (Leximin): Let v = [v1, · · · , vK ] and v′ =
[v′1, · · · , v′K ] respectively denote the sorted vectors of iden-
tical length K. The relation of leximin ordering ≺leximin is
defined as follows. v ≺leximin v′ if and only if ∃t,∀t′ <
t, vt′ = v′t′ ∧ vt < v′t.
The leximin is an ‘egalitarian’ criterion, since it reduces
the inequality of the objectives. Maximization on leximin
ordering ensures Pareto optimality.

The above scalarization and social welfare criteria can
be applied to minimization problems by inverting the com-
parisons. Maximin is redefined as ‘minimax’. In this case,
the maximization function is called a Tchebycheff function.
Maximization on leximin is redefined as minimization on
‘leximax’.

C. Interactive method based on aspiration levels

Since scalarization approaches only capture a part of
the original Pareto front, they are modified as the para-
metric criteria to find other Pareto optimal solutions.
Several parametric criteria cannot fit in part of the
original Pareto front. For example, weighted summation∑K

j=1 wifj(Xj) cannot fit several non-convex parts of the
original Pareto front. Since weighted min/max(Tchebycheff
function) min/maxKj=1wifj(Xj) is not Pareto optimal, its
variant with a tie-break by summation is Pareto optimal and
fits the original Pareto front well. Therefore, this scalarization
function is commonly used.

In this approach, the appropriate parameters depend on a
user’s preferences. To determine the parameters, interactive
solution methods are employed, where a problem is repeat-
edly solved with different user-specified parameters [8]. In
interactive methods, ideal points are employed as the base
levels of objective values. Ideal point f∗

i of fi is determined
as the ideal value of fi. For a minimization problem1, the
following type of interactive methods is employed.

minimize
[max
fi∈F

wi(fi(Xi)− f∗
i ),

∑
fi∈F

wifi(Xi)]. (1)

Here the summation part is employed as a tie-break on the
maximization part. While the user can modify parameters wi

by referring to the previous results in this framework, weight
values wi are not intuitive.

As an intuitive approach, the aspiration level is em-
ployed [8], [9]. Aspiration level f

t

i is a desirable value of
fi at the tth interaction step. For a minimization problem,
an interactive method employs f

t

i as follows.

minimize
[max
fi∈F

wi(fi(Xi)− f
t

i),
∑
fi∈F

wifi(Xi)] (2)

where wi = 1/(f
t

i − f∗
i ). (3)

In this case, the user directly determines the desirable value
of fi, and wi becomes a normalization value.

1Here a simple case of minimization problems is shown to combine
‘unsatisfactory’ and cost values.
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Fig. 2. Interactive method for agents

III. FRAMEWORK OF INTERACTIVE SOLUTION METHOD
FOR AGENTS

A. Interactive method for agents

The original interactive methods were developed for single
users to provide an intuitive user interface. On the other hand,
in multiagent settings, such methods can be considered as
interaction between a solver and a set of agents. In such a
framework, the solver serves as a mediator among the agents.
In the interaction, the agents repeatedly set their aspiration
levels and the mediator solves the problem. To determine
the next aspiration level, the mediator must reveal some
information about the current solution.

Figure 2 shows the concept of the proposed framework,
where user and solver correspond to a set of agents and a
mediator. In the case of a multiagent, the mediator might
hide the details of individual private objectives for all agents.
Instead, some statistical information can be provided about
the solution quality as well as some suggestions or strategies
to choose another solution. Based on such information,
agents adjust the aspiration levels for their own objectives,
and the mediator solves the problem again.

For the above framework, two major parts of the system
must be addressed: (i) the solver should manage the fairness
among agents. (ii) some schemes are necessary to choose
the next aspiration levels. Below, the leximax criterion for
fairness is applied to modify the weighted Tchebycheff
function for aspiration levels. Also, an experimental strategy
to determine the aspiration levels for the interactions of
agents is investigated.

B. Criteria for agents

Here we focus on the maximization problem. While utility
functions can be redefined as cost functions, Eqs. (2) and (3)
are modified for maximization problems as follows:

minimize
[max
fi∈F

wi(f
t

i − fi(Xi)),−
∑
fi∈F

wifi(Xi)](4)

where wi = 1/(f∗
i − f

t

i). (5)

Note that the ‘unsatisfactory’ values are still minimized.
On the other hand, the summation values for tie-breaks are
maximized in this case.

While the minimization on the Tchebycheff function op-
timizes the worst case, it does not capture fairness among
objective values. In multiagent settings, it is natural to
employ another criterion for fairness. Therefore, we employ
leximin-based criteria. Since each wi(fi(Xi) − f

t

i) should
be minimized in such cases, the sorted objective values are
compared in descending order. Therefore, minimization on
‘leximax’ is applied to the sorted vectors:

minimize
[v1, · · · , vK ] based on leximax (6)

where vi = wi(f
t

i − fi(Xi)) (7)

wi = 1/(f∗
i − f

t

i). (8)

Note that the summation part for the tie-break is now
unnecessary, since leximax repeats it between the values of
the vectors in descending order.

As shown above, a criterion based on the aspiration level
can be applied to interactive methods. On the other hand,
in the case of multiagents, the scale of the criterion might
be common for all agents, while weight value wi in the
above criterion emphasizes aspiration levels that are closer to
ideal points. In some interaction strategies for agents, simpler
weight values will be intuitive.

The simplest weight value is a constant value wi = 1. In
this case, the criterion directly represents the ‘unsatisfactory’
values of agents with a common scale.

A different weight value can be defined based on f⊤
i and

f⊥
i , which are the maximum and minimum values of fi(Xi),

as follows.

wi = (f⊤
i −min

j
f⊥
j )/(max

j
f⊤
j −min

j
f⊥
j ). (9)

This emphasizes the agents, whose f⊤
i values are relatively

large, when the summation of all the objective values is
considered.

C. Interaction among agents

When the interactive solution method is considered to be
a mediator, the solution method should provide information
of the current solution to determine the next aspiration levels
of the agents. Such information includes the number of
agents, the summation of the objective values, the minimum
objective value, and other statistic values, so that agents are
aware of their position in the current solution. Based on the
solution’s information, the agents modify their aspiration lev-
els to search for another solution. This approach is considered
as analysis or games performed by agents. Since there are
various strategies and criteria to choose the aspiration levels,
here a simple case of trade-offs among agents is addressed
as the preliminary study.

When all agents i set their aspiration levels to the max-
imum value of objective function fi(Xi), the problem re-
sembles a maximization problem with fi(Xi) and a leximin
criterion. Even though its optimal solution will improve the
minimum objective value and fairness, the summation of
the objective values will be decreased. Assuming a property
transfer, the influences of several agents on the solution can
be analyzed to improve the summation of the objective val-
ues. Note that an external assumption on property transfers
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TABLE I
PARETO FRONT

func. arity Pareto Pareto
a opt. slts. front sz.

uniform 3 707 654
5 4285 4268

gamma 3 1362 1297
5 9057 9053

TABLE II
SOLUTIONS OF ASPIRATION LEVEL METHODS

func. uniform gamma
arity a 3 5 3 5

asplb [%] criteria P N P N P N P N
100 wgttbc 1 0 1.2 0 1 0 1 0

lexmax 1 0 1.1 0 1 0 1 0
75 wgttbc 1 0 1 0 1 0 1 0

lexmax 1 0 1 0 1 0 1 0
50 wgttbc 1 0 1 0 1 0 1 0

lexmax 1 0 1 0 1 0 1 0
0 wgttbc 1 0 1 0 1 0 1 0

lexmax 1 0 1 0 1 0 1 0

P: Pareto optimal solutions. N: Non Pareto optimal solutions.

TABLE III
SOLUTIONS IN ASPIRATION LEVEL METHOD (UNIFORM, a = 3)

asplb criteria asp. org.
[%] min max sum mTheil var. min max sum Theil var.
100 wgttbc 031.97 134.4 0.313 145.95 6.8 10 85.70.0103 1.425

lexmax 031.97 134.4 0.313 145.95 6.8 10 85.70.0103 1.425
75 wgttbc -0.913 2.80 4.6 0.234 1.97 4.72 1082.25 0.0304 3.262

lexmax-0.903 2.80 5.1 0.233 1.87 4.7 9.9981.61 0.0308 3.257
50 wgttbc -0.951 1.11 -2.0 0.230 0.68 4.62 1082.03 0.0312 3.343

lexmax-0.946 1.11 -1.7 0.227 0.64 4.619.9981.38 0.0321 3.375
0 wgttbc -0.977 0.13 -5.7 0.231 0.20 4.55 1081.78 0.0354 3.559

lexmax-0.974 0.13 -5.6 0.228 0.19 4.529.9981.25 0.0357 3.557

is necessary, since the agents already have a Pareto optimal
solution.

For a maximization problem with leximin, the agents
of the minimum objective value are basically ‘bottle-neck’
agents that relate to implicit constraints on the criterion. How
they affect the solution can be an interest. The bottle-neck
agents are aware of that when the solver provides a current
partial solution for each agent and the statistic information of
the objective values. Then such agents reduce their aspiration
levels and the solution method is performed again. Here the
influences of the aspiration levels on the solution quality, in-
cluding Pareto optimality, are mainly addressed with simple
cases.

IV. EVALUATION

A. Fairness among agents in aspiration level method

In the first experiment, the effects of the criteria on the
aspiration level methods are evaluated. The problem consists
of ten ternary (i.e., |Di| = 3) variables and ten functions for
ten agents. Since the Pareto optimal solutions and the Pareto
front were enumerated using a brute-force search, the size
of the problems was restricted. Arity a (i.e., the scope sizes)
of the functions was either three or five. The following two
cases of function values were evaluated:

• uniform: an integer value in [1, 10] based on uniform
distribution.

TABLE IV
SOLUTIONS IN ASPIRATION LEVEL METHOD (UNIFORM, a = 5)

asplb criteria asp. org.
[%] min max sum mTheil var. min max sum Theil var.
100 wgttbc 0 33 152 0.396 155.8 6.7 10 84.8 0.01111.558

lexmax 0 33 154 0.375 138.4 6.7 10 84.6 0.00981.384
75 wgttbc -0.8947 2.07 4.32 0.284 1.164.76 10 81.85 0.03043.304

lexmax-0.8863 2.07 4.51 0.285 1.134.79 10 81.53 0.03063.302
50 wgttbc -0.9297 0.63 -2.18 0.279 0.314.71 10 81.24 0.03283.447

lexmax-0.9292 0.63 -2.16 0.278 0.314.72 10 81.25 0.03243.407
0 wgttbc -0.9619 -0.15 -5.91 0.279 0.094.67 10 81.18 0.03303.485

lexmax-0.9617 -0.15 -5.89 0.277 0.084.69 10 81.09 0.03293.464

TABLE V
SOLUTIONS IN ASPIRATION LEVEL METHOD (GAMMA, a = 3)

asplb criteria asp. org.
[%] min max sum mTheil var. min max sum Theil var.
100 wgttbc 4.8852.9326.2 0.376 254.25 17.8 31.5 236.9 0.0150 17.66

lexmax 4.8852.9330.1 0.341 225.92 17.5 31.7 236.3 0.0153 17.86
75 wgttbc -0.76 5.8 18.8 0.259 5.8013.58 35.28 236.010.0416 45.74

lexmax-0.69 5.8 19.7 0.250 5.2713.25 35.08 232.310.0435 46.53
50 wgttbc -0.86 2.9 5.5 0.250 1.9913.45 34.98 235.110.0419 45.64

lexmax-0.82 2.9 6.1 0.242 1.8213.26 34.88 231.810.0431 45.86
0 wgttbc -0.93 1.1 -1.9 0.245 0.6213.06 35.21 235.050.0445 47.82

lexmax-0.91 1.1 -1.6 0.234 0.57 13.2 35.02 231.910.0440 46.69

TABLE VI
SOLUTIONS IN ASPIRATION LEVEL METHOD (GAMMA, a = 5)

asplb criteria asp. org.
[%] min max sum mTheil var. min max sum Theil var.
100 wgttbc 20.66 56.2 437.5 0.447 149.70 18.7 33.5 240.2 0.0166 20.84

lexmax23.63 56.2 438.8 0.423 132.41 18.8 32.8 239.9 0.0155 19.45
75 wgttbc 0.06 6.9 32.4 0.283 6.4212.19 37.68 233.940.0591 64.14

lexmax 0.08 6.9 33.1 0.276 6.1212.16 37.57 230.320.0597 63.28
50 wgttbc -0.45 3.9 13.2 0.263 2.9411.98 38.1 233.380.0621 67.08

lexmax -0.43 3.9 13.5 0.256 2.8511.94 38.09 229.660.0632 66.89
0 wgttbc -0.70 1.8 2.3 0.248 1.0711.86 38.31 233.010.0629 67.81

lexmax -0.68 1.8 2.5 0.241 1.0311.59 38.22 228.790.0650 68.03

• gamma: a rounded integer value based on a gamma
distribution with (α = 9, β = 2), similar to [5], [10].

Also, the following criteria were employed2:
• wgttbc: a weighted Tchebycheff function in Eqs. (4)

and (5).
• lexmax: a leximax criterion in Eqs. (6), (7), and (8).

Aspiration level f
t

i is randomly set from (f⊤
i − asplb ·

(f⊤
i −f⊥

i ), f⊤
i ] with uniform distribution based on parameter

asplb = 100, 75, 50, 0%. The results are averaged for ten
problem instances with ten random parameters of asplb. For
multiple optimal solutions, these results are averaged, while
a single solution is found in most cases.

Table I shows the Pareto front of the original problems.
Also, Table II shows the average number of solutions re-
ported by aspiration level methods. Note that the optimiza-
tion of solution methods are based on the aspiration levels,
while these evaluations are for the Pareto optimality in the
original problems. Although the aspiration level methods

2Ideal point f∗
i = f⊤

i +0.01(f⊤
i − f⊥

i ) is used to avoid zero-division,
where f⊤

i and f⊥
i are the maximum and minimum values of fi(Xi).
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TABLE VII
MODIFICATION ON ASPIRATION LEVELS (SUM, UNIFORM, a = 3)

weight last · first [%] best · first [%] best step [%]
LT EQ GT EQ GT first others last

wsu 20 60 20 80 20 80 20 0
wa1 10 50 40 60 40 60 40 0
wah 10 50 40 60 40 60 40 0

·: comparison. LT: less than. EQ: equal to. GT: greater than.

TABLE VIII
MODIFICATION ON ASPIRATION LEVELS (SUM, UNIFORM, a = 5)

weight last · first [%] best · first [%] best step [%]
LT EQ GT EQ GT first others last

wsu 30 50 20 80 20 80 20 0
wa1 30 50 20 80 20 80 20 0
wah 30 50 20 80 20 80 20 0

TABLE IX
MODIFICATION ON ASPIRATION LEVELS (SUM, GAMMA, a = 3)

weight last · first [%] best · first [%] best step [%]
LT EQ GT EQ GT first others last

wsu 20 40 40 60 40 60 40 0
wa1 10 60 30 70 30 70 30 0
wah 30 40 30 70 30 70 30 0

optimized their own criteria, their optimal solutions were
on the Pareto front of the original problems because the
aspiration level method does not limit the improvement of
the solutions even if the aspiration level is satisfied.

Tables III-VI show the statistic information of the solutions
both in the aspiration level method and the original problems.
Note that here the original problems were not directly solved.
The results show the summation/minimum/maximum values,
the variance, and the Theil index, a well-known measurement
of inequality, which is defined as follows.

T =
1

|A|
∑
ai∈A

(vi
v
ln

vi
v

)
(10)

Here v denotes the average value for all vi. For the aspiration
level methods, the following modified Theil index ‘mTheil’
is used so that negative values are allowed.

T =
1

|A|
∑
ai∈A

(
v′i
v′

ln
v′i
v′

)
(11)

where v′i = (max
i

vi)− vi (12)

These criteria take a minimum value zero when all the values
are equal.

The result shows that both methods minimized the maxi-
mum value of the aspiration level criteria. The method with
leximax also improved the fairness among agents in the
aspiration level criteria in most cases. This means that the
fairness among agents with similar requirements is relatively
well optimized using leximax.

B. Modification of aspiration levels

Next, the influence of modification on part of the aspiration
levels was investigated. In this experiment, the simple case
shown in Section III-C was employed. In the first step, the
problem is solved with the aspiration levels of the maximum

TABLE X
MODIFICATION ON ASPIRATION LEVELS (SUM, GAMMA, a = 5)

weight last · first [%] best · first [%] best step [%]
LT EQ GT EQ GT first others last

wsu 70 20 10 90 10 90 10 0
wa1 30 50 20 80 20 80 20 0
wah 20 60 20 80 20 80 20 0

values of the objective functions. Then in the following
steps, the aspiration levels of the agent, whose objective
values are the minimum values in the current solution, are
decreased. Based on the new aspiration levels, the problem
is solved again. In this experiment, ten interaction steps
were performed. To clarify the margin of the trade-offs, each
aspiration level is evenly decreased in each step so that the
final value is to be the minimum objective value.

Here how the aspiration levels with different weight values
affect the solutions was addressed. The leximax was em-
ployed as a criterion of the aspiration level and the following
weight values wi shown in Section III-B were compared.

• wsu: the weight values for a single user as shown in
Eq. (8).

• wa1: the weight values for the agents. All are set to 1.
• wah: the weight values for the agents. Higher objective

values are preferred as shown in Eq. (9).
Tables VII-X show the results of the modifications of

the aspiration levels. ‘last · first’ and ‘best · first’ denote
comparisons among the first, last and best summation val-
ues. Since these interaction strategies simply decrease the
aspiration levels that are selected based on the results in the
first step, a decrement of several aspiration levels decreased
the summation of the objective values in several cases. It
was also observed that other agents are affected by the
modification of some of the aspiration levels. In addition,
the summation value can be non-monotonic to the aspiration
levels. Such influences were varied in different weight values
and problems. While wsu was relatively ineffective in the
cases of (uniform, a = 3) and (gamma, a = 5), the
results are different in other cases. The results reveal that the
interactive approach is affected by both interaction strategies
and ‘unsatisfactory’ values.

The tables also show the information of the step when the
best summation value was obtained (‘best step’). The ratio
of steps are categorized into the first, last and other steps.
Since the aspiration level only gives a bias on the objective
values, there are thresholds that change the solutions before
the last aspiration levels, which are the minimum objective
values.

V. DISCUSSION

This paper proposed a framework based on interactive
solution methods for asymmetric constraint optimization
problems on multiagent systems. Since this class of problem
needs relatively high computational cost for dense problems,
partial centralization approaches of solution methods might
be practical. In the case of asymmetric multi-objective prob-
lems in multiagent systems, agents require information about
its position on the current solution and need to know the
possibility of another solution. When agents have additional
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hidden preferences, such solution methods resemble a plat-
form of games.

In this work, a brute-force search was employed for the
preliminary study, but there are several opportunities of effi-
cient solution methods, including the pruning of search space
and the decomposition of problems. Genetic algorithms are
another well-known approach for multi-objective problems.
On the other hand, the quality of the approximation method
might need several investigations.

The aspiration level method was originally developed for
a single user. For multiagents, other weighting approaches
might be necessary, since the aspiration level can easily affect
other objectives. This idea also relates to how Pareto optimal-
ity is ensured. Sensitivity analysis is another important issue
to provide wider information to agents and reduce redundant
computations.

VI. CONCLUSION

In this study, the framework of an interactive solution
method for asymmetric multi-objective constraint optimiza-
tion problems on multiagent systems was investigated. This
framework is based on an approach of the interactive aspira-
tion level methods. For multiagents, a scalarization criterion
leximax that considers unfairness among agents was applied
and the proposed approach was experimentally evaluated
with an example interaction case.

The future work will include more sophisticated pa-
rameterizations/strategies in interactive methods, norms to
represent additional preferences of agents, efficient solution
methods, and investigations in practical domains.
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