

Abstract—Signal Transition Graph is a marked graph that

represents signal flow behavior in concurrent system. In this

paper, we are interesting in a Formal Verification for Signal

Transition Graphs. We propose a method of formal modeling

for Persistence checking of Signal Transition Graph

specification with Promela. Signal Transition Graphs are

modeled in Promela and run in SPIN Model Checker. Linear

Temporal Logic is used for defining Persistence and Safetyness

properties. Our method deals with both single-cycle and multi-

cycle Signal Transition graphs.

Index Terms— Formal verification, Model checking, Signal

Transition Graph, SPIN, Promela.

I. INTRODUCTION

Petri Nets are widely used for describing concurrent

systems. However, regarding to the complexity of Petri Nets,

Nowadays Signal Transition Graphs are interested to

represent the system behaviors, such as asynchronous circuit

[1] and genetic networks [2]. Signal Transition Graph is an

interpreted Petri Nets. It used to represent the signal

transition of concurrent systems. From Signal Transition

Graph, we can visualize important properties in order to

analyze or verify signal behaviors. However, automatic

techniques are still needed.

Model checking is one of powerful verification technique.

There are a lot of model checker software such as NusMV,

Blast, SPIN. SPIN supports language called Promela and

Linear Temporal Logic.

This paper was motivated by the interesting of formal

modeling and verification of Signal Transition Graph. The

proposed method can reduce the time on verification and run

in automatic by using SPIN.

There are a few papers [3] use model checking to verify

properties of Signal Transition Graph. In this paper, we

propose the method for Signal Transition Graph properties

 Kanut Boonroeangkaow is a graduate student of department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interest is Software Engineering (e-mail:

Kanut.B@student.chula.ac.th).

 Arthit Thongtak is currently an Assistant Professor of department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interests include Digital System Engineering, Digital Systems

Testing, Fault Tolerant Computing, Asynchronous System Design (e-mail:

arthit.t@chula.ac.th), IAENG member.

 Wiwat Vatanawood is currently an Associate Professor of department of

Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interests include Formal Specification, Formal Verification,

Software Architecture (e-mail: wiwat@chula.ac.th).

checking in Promela using SPIN. The types of Signal

Transition Graph that we focus are single-cycle and multi-

cycle. First, a model of Signal Transition Graph is written in

Promela. Then, properties on the system behavior are

specified by Linear Temporal Logic. Linear Temporal Logic

is written in description to define properties condition.

Finally, SPIN runs to check, if the model doesn’t meet

properties, SPIN will provide a counter example.

 The rest of this paper are organized as follows. Section 2

we present preliminaries on Signal Transition Graph, Model

checking, Promela and SPIN. Section 3, we present related

work. Section 4, we present Signal Transition Graph

specification. In section 5, we describe our persistence

checking scheme. In section 6, we present how to write each

properties in Linear Temporal Logic (LTL). Section 7, we

conclude the paper and give direction to the future work.

II. PRELIMINARIES

A. Signal Transition Graph

To specify behavior of system [3][1], we can use form of

the graph called Signal Transition Graph (STG). STG shows

the rising and falling transition of signals. If we specify

asynchronous system by using STG, there are three types of

signal: input, output and internal. It represents signal and the

transition by the signal name and transition like a+, a-. a+

means rising transition that signal a changes from 0 to 1. a-

means falling transition that signal a changes from 1 to 0.

Input signal name will be underlined. STG consists of 3-

tuples that formally define as ∑ = <T,F,M>. T is a finite set

of signal transition. F is a set of flow relations (arc). And M

is the set of marking or tokens. If the transition is enabled,

we call the transition is fired. Fig.1 adapted from [3] which

shows the example of STG of C-element.

Fig.1 Signal Transition Graph of C-element adapted from [3]

In this example, signal a and b are the inputs of the system.

a+ and b+ are the rising transition of signal a and b. a- and

Formal Modeling for Persistence Checking of

Signal Transition Graph Specification with

Promela

Kanut Boonroeangkaow, Arthit Thongtak and Wiwat Vatanawood

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

mailto:arthit.t@chula.ac.th

b- are the falling transition of signal a and b. Signal c is the

output of the system. The initial marking are at c-.

The properties that interested in this paper are Persistence

and Safetyness.

Persistence is defined as follow [4]: Transition s* is

persistent to a non-input transition t*. If s is a trigger

transition of t. And transition s*’ can be fired after t* has

been fired.

Fig.2 Example of non-persistence STG adapted from [4]

Example in Fig.2 adapted from [4] which shows the example

of STG of C-element. s* is the trigger transition of t*. s*’

can be fired before t*. So The STG is non-persistence.

Safetyness is defined as follow : Not more than one token

in an Arc.

B. Model checking Techniques

In formal verification [5], theorem proving and model

checking is well known method that can be use for

verification. Model checking is the method that can be

exhaustively checking and confirming that the model meets

the given specification. Theorem proving can check infinite

space but it is hard to do automatically. Model checking can

verify automatically. Because of this reason, model checking

has been chosen for our method.

C. Promela and SPIN

We use SPIN [6][7] as a Model Checker. Language that

supports in SPIN called Promela (Process Meta Language).

Promela is one of verification language. It is nearly same as

C language, and common for developers. The variable type is

nearly same as C such as int, long, etc. This process declared

by the word proctype. SPIN can also use for concurrent

processes. It can make exhaustive search and simulation for

formal model.

 Moreover, SPIN can used as a full LTL model checking

system. LTL can check logic in a linear time. This ability of

LTL helps confirming STG properties. LTL description in

SPIN will write ltl at first. Then the name of LTL will be the

next. Then the temporal operator will define. The logic of the

signal will be the last. The logic of the signal can define out

of the description such as “#define p1(p1==0);”. In this

paper, LTL used for define properties of the STG and

combined with the Promela code. The checking are done by

SPIN.

III. RELATED WORK

Signal Transition Graph was propose by Tam-An Chu [1].

STG is an interpreted Petri Nets that easy to understand. The

STG properties describe in this work.

S.Park [4] proposed the generated method from STG. He

generates asynchronous circuits by STG. The verification

properties check by lock-relation in manual method.

W.Lawsunnee [3] proposed verification method via SPIN.

His method used SPIN to simulation. Then he checks the

lock-relation from the STG. Then he compares the

simulation result with lock relation. The method can check

only Persistence and Liveness properties. However, this

method was manually checking.

Zohra SbaY, etc [8] proposed a verification technique of

business processes by model checking. The model was in

Petri nets. This work didn’t show the persistence, liveness,

safetyness properties verification. However, this model can

be adapted for STG.

IV. STG SPECIFICATION

 STGs are categorized based on the cycle of signal transition

which are single-cycle STGs and multi-cycle STGs. In this

paper, we consider both STGs.

A. Single-cycle STG

Fig.3 Example of Single-cycle STG adapted from [1]

 The example of STG in Fig.3 adapted from [1] is single-

cycle STG that has persistence problem. There are two input

signals and two output signals represented in Ai, Ri, Ao and

Ro respectively. Each signal consists of two kinds of possible

value: plus (+) and minus (-). The initial marking are at Ao-,

Ai- and Ro-. It can be seen that Ao+ are enabled when the

tokens from Ri+ and Ro- are arriving. Then the tokens are

consumed by Ao+ and it produces double tokens on arcs

(Ao+ to Ro+ and Ao+ to Ri-). In this status both Ro+ and

Ri- are enabled. If Ri- is fired before Ro+ and also Ao- is

fired, the token on the arc of Ao+ to Ro+ is removed, since

signal value of Ao is changed to minus.

B. Multi-cycle STG

Fig.4 Example of Multi-cycle STG adapted from [1]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

The example of STG in Fig.4 adapted from [1] is multi-cycle

STG that has persistence problem. There are three input

signals and one output signal represented in s, r and en and

out respectively. The output signal has two cycles that

represented as out/1 and out/2. The initial marking are at s-

and out-/2. It can be seen that out+/1 is enabled when the

tokens from s- and en+ are arriving. Then the tokens are

consumed by out+/1 and it produces double tokens on arcs

(out+/1 to s+ and out+/1 to r+). In this status both s+ and

r+ are enabled. If r+ is fired before s+ and also out-/1 is

fired, the token on the arc of out+/1 to s+ will be removed,

since signal value of out is changed to minus. The multi-cycle

STGs have to check all represent signals that have more than

one cycle. If out+/2 have the same situation, the value of

signal out is change too.

V. OUR PERSISTENCE CHECKING SCHEME

 Fig.5 Our persistence checking scheme

 In this paper, our Persistence checking scheme is shown in

Fig.5. In the beginning, The given STG is translated

(modeled) to Promela. Then properties, such as Persistence,

will be specified in LTL description. The LTL description is

referred from STG. Then Promela and LTL description are

loaded to SPIN. Finally, the verification of the above

descriptions are executed via SPIN. The result is shown as

Yes or counter example.

 In this section, we focus on the Promela modeling from

the given STG. The structure of Promela modeling consists

of 4 parts as follows.

1) Define all signal names

 2) Define transition rule

 3) Define initial marking

 4) Define the flow relation

 Since STGs is interpreted Petri-Nets by reducing places,

the tokens on the place have to be located on its arc.

Therefore, we define the signal name in STG including each

input and output signal transition with its arc. For example in

Fig.6a, the signal name is defined as “x1px2m”. In Fig.6b,

there are 2 signal names defined as “x1px2m” and

“x1px3p”.

There are three status in STG that are defined as enable

status, disable status, and firing status. Enable status is the

status that every input arc of signal transition have at least

one token each. Disable status is the status that at least one

input arc has no token. Firing status is the status that output

arc of signal transition has token.

Fig.6 a) Signal name with one output b) Signal name with

two outputs

The transition rule consists of enable status and its related

firing status. When an enable status occurs, then firing status

will occur respectively. The number of token on all inputs arc

will be reduced by one, and the number of token on all

outputs arc will be added by one. From this transition rule,

signal persistence in every enable status will be retained until

the related firing status occurs.

In Fig.7, The left side of Fig.7a and 7b shows enable

status and the right side shows firing status.

Fig.7 a) Flow relation with one input and one output b) Flow

relation with two inputs and two outputs

The transition rule is defined by number of signal named in

enable status and firing status. Input arc of signal transition is

defined as:

“inpn(x1,…,xn) ((x1>0)&&…&&(xn>0))-> x1--,…,xn--”.

 The output arc is defined as:

“outpn(x1,…,xn) x1=x1++,…,xn++”.

The initial marking is defined with signal name and its

value as:

“signal name = value”.

The flow relation is defined by atomic statement and

covered by loop statement in order to generate all possible

paths. In the atomic statement, this input arc implys with

output arc. For Example in Fig.7a, the flow relation is

defined as:

“atomic{inp1(x1px2m) -> outp1(x2mx3p)}”.

In Fig.7b, the flow relation is defined as:

“atomic{inp2(x1px3p,x2mx3p) -> outp2(x3px1m,x3px2p)}”

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

- Single-cycle STG

Single-cycle Promela modeling is as same as the rule

explained in this section.

- Multi-cycle STG

 Multi-cycle STG has to remark for the signal name

declared. For example in Fig.8, signal x3 has two cycles, so

the signal name will be declared including with the number of

its cycle. The above signal will be declared as “x3p1x1p”

and “x3p1x2m”. The below signal will be declared as

“x3p2x1m” and “x3p2x2p”. Others part are the same.

 The example of Promela modeling structure for single-

cycle STG on Fig.3 is shown in Fig.9

Fig.8 Example of multi-cycle signal

Fig.9 Example of Promela modeling

VI. LTL DESCRIPTION FOR PROPERTIES AND VERIFICATION

This section, we present LTL description for persistence

property checking, each type of STG and result of the

verification.

A. Persistence Property

 Persistence confirm correctness of all transition of the

signal in STG. In the previous section, single-cycle and

multi-cycle STG Promela modeling was shown. The LTL

description rule for single-cycle and multi-cycle STG have a

little bit difference.

 The step to construct for the LTL description is shown as

following

1) Find trigger signal name of concurrent path in STG

2) Define the truth value of the opposite trigger signal

name as 1, and connect the signal name and truth value

from all of this opposite trigger signal name with AND

condition. If the STG is multi-cycle and same trigger

signal name connected it with OR condition.

3) Define the truth value of the trigger signal name as 0,

and connect signal name and truth value from all of this

trigger signal name with AND condition for both types.

4) Specify the LTL description by implies condition and

global for temporal logic.

5) If STG have more than one trigger signal names,

connect LTL description by AND condition.

- Single-cycle STG

The example of LTL description refer from Fig.3

1) The trigger signal name are Ao+ and Ro-

2) Signal name from Ao- and Ro+ are defined the truth value

as:

“#define op_A(aomrip == 1)” and

“#define op_R(ropaip == 1)”

3) Signal name from Ao+ and Ro- are defined the truth value

as:

“#define A((aoprim == 0) && (aoprop == 0))” and

“#define R((romaim == 0) && (romaop==0))”

4) Specify LTL description. The LTL description defined

from the definition of Persistence property. This means the

trigger signal of the concurrent signal will not have any token

if the opposite of trigger signal has token. So we can define

as globally and check implies from op_A to A, and op_R to

R. So the LTL will be:

“[](op_A->A)” and “[](op_R->R)”

5) There are more than one trigger signal, so connected it by

AND condition. The LTL will be:

“[]((op_A->A)&&(op_R->R))”

- Multi-cycle STG

The example of LTL description refer from Fig.4

1) The trigger signal name are out+/1 and out+/2. out/1 and

out/2 represent the same signal “out”. So both represent

trigger signal name out+.

2) The transition from out/1- and out/2- are defined the truth

value as:

“#define op_out((outm1enm==1) || (outm2enp==1))”

3) The transition from out+/1 and out+/2 are defined truth

value as:

“#define out((outp1sp == 0) && (outp1rp == 0)

&& (outp2sm == 0) && (outp2rm == 0))”

4) The LTL description is specifying as one trigger signal

name. So the LTL will be:

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

“[](op_out->out)”

B. Safetyness Property

STG must have token in every transition not more than

one token at all time. We will be defined as:

“#define safe(All signal name <=0)”

The LTL description for safetyness is “globally safe”. To

check that all the time so all signal not have more than one

token, therefore the LTL will be:

“[]safe”

SPIN will show an error, if the token in any signal name

not meet the description.

 C. Result

 The example single-cycle STG in Fig.3 was run in SPIN,

the result shown in Fig.10

Fig.10 Result of example single-cycle STG

The result shows error, this single-cycle STG is non-

persistence.

The example multi-cycle STG in Fig.4 was run in SPIN,

the result shown in Fig.11

Fig.11 Result of example multi-cycle STG

 The result shows error, this multi-cycle STG is non-

persistence.

VII. CONCLUSION

In this paper, we present a method of formal modeling for

persistence checking of signal transition graph specification

with Promela. SPIN model checker was used. As the result,

we can find non-persistence properties, as well as safetyness

properties for both single-cycle and multi-cycle STGs.

Future works include formal modeling for checking of

others properties, and extend this work for free-choice

STGs.

REFERENCES

[1] Tam-Anh Chu, “Synthesis of self-timed VLSI circuits from graph-

theoretic specifications”, PhD thesis, Massachusetts Institute of

Technology, June 1987.

[2] R. Banks, V. Khomenko, and L. J. Steggles, “A Case for Using

Signal Transition Graphs for Analysing and Refining Genetic

Networks,” Electron. Notes Theor. Comput. Sci., vol. 227, no. C,

pp. 3–19, 2009.

[3] W. Lawsunnee, A. Thongtak, and W. Vatanawood, “Signal

persistence checking of asynchronous system implementation

using SPIN,” Lect. Notes Eng. Comput. Sci., vol. 2, pp. 604–609,

2015.

[4] Park,S.B, “Synthesis of Asynchronous VLSI Circuits from Signal

Transition Graph Specifications. Doctoral dissertation,

Department of Engineering-Computer Science, Tokyo Institute of

Technology,1996.

[5] Christel Baier and Joost-Pieter Katoen, “Principles of Model

Checking”, The MIT Press Cambridge, Massachusetts London,

England, 2008.

[6] M. Ben-Ari, Principles of the SPIN Model Checker. 2008.

[7] Gerard J. Holzmann, “Principles of the Spin Model Checker”,

Springer-Verlag London Limited, 2008.

[8] Z. Sbai, a Missaoui, K. Barkaoui, and R. Ben Ayed, “On the

verification of business processes by model checking techniques,”

Softw. Technol. Eng. ICSTE 2010 2nd Int. Conf., vol. 1, pp. V1–

97, 2010.

(Spin Version 6.4.5 -- 1 January 2016)

 + Partial Order Reduction

Full statespace search for:

 never claim + (p1)

 assertion violations + (if within scope of claim)

 acceptance cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 36 byte, depth reached 23, errors: 1

 14 states, stored

 2 states, matched

 16 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

(Spin Version 6.4.5 -- 1 January 2016)

 + Partial Order Reduction

Full statespace search for:

 never claim + (p1)

 assertion violations + (if within scope of claim)

 acceptance cycles + (fairness disabled)

 invalid end states - (disabled by never claim)

State-vector 36 byte, depth reached 14, errors: 1

 8 states, stored

 0 states, matched

 8 transitions (= stored+matched)

 0 atomic steps

hash conflicts: 0 (resolved)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

