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Abstract—Autarkies are an important tool in algo-
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ing sovable substructures. In this paper we investi-
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1 Introduction

A fundamental problem in mathematics is the NP versus
P problem. The genuine and one of the most important
NP-complete problems is the propositional satisfiability
problem (SAT) for conjunctive normal form (CNF) for-
mulas [5], thus SAT forms the core of computational com-
plexity theory. SAT also plays a fundamental role in the
theory of designing exact algorithms, and it has a wide
range of applications because many problems can be en-
coded as a SAT problem via reduction [10, 9] due to the
rich expressiveness of the CNF language. Important areas
where SAT plays a vital role are formal verification [19],
bounded model checking [4], and artificial intelligence. In
industrial applications most often the modelling CNF for-
mulas are of a specific structure. And therefore it would
be desirable to have fast algorithms for such instances.
The applicational area is pushed by the fact that mean-
while several powerful solvers for SAT have been devel-
oped. Also from a theoretical point of view one is inter-
ested in classes for which SAT can be solved in polynomial
time. There are known several classes, for which SAT can
be tested in polynomial time, such as quadratic formulas,
Horn formulas, matching formulas, nested formulas etc.
[1, 3, 7, 11, 12, 18, 20]. So, the structure of the set of all
CNF formulas is of great importance. Specifically from
the point of view of algorithmics autarkies are of quite im-
portance. The concept of autark assignments within the
context of CNF-SAT has been introduced in [13]. Such
assignments satisfy independent parts of a formula pre-
serving its overall satisfiability status. The concept has
been successfully used in automated theorem proving and
was also subject of theoretical investigations. However
there are many questions open concerning the structure
of autarkies in a given CNF formula and also concern-
ing their algorithmical usefulness. The present paper is
devoted to provide some insight into structural aspects
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of autark assignments where the case of linear formula
classes is considered also. Specifically we are interested
in the fraction of unsatisfiable formulas admitting no au-
tarky at all. Moreover the concept of the variable closure
is exploited and several complexity issues of computa-
tional problems w.r.t. autarky are discussed.

2 Preliminaries

A Boolean variable x taking values from {0, 1} induces a
positive literal (variable x) or a negative literal (negated
variable x). Let L(U) denote the set of all literals de-
termined by the members of a finite, non-empty set U
of Boolean variables. A clause c is a non-empty, finite
disjunction of different literals, and is represented as a
finite, non-empty set c = {l1, . . . , l|c|}. Setting a literal
to 1 means to set the corresponding variable accordingly.
A (CNF) formula C is a non-empty, finite conjunction of
different clauses and is considered as a finite, non-empty
set of its clauses C = {c1, . . . , c|C|}. Let CNF denote
the set of all such non-empty formulas consisting of non-
empty clauses, and r-CNF := {C ∈ CNF : |c| ≤ r},
for fixed positive integer r. For a formula C (clause c),
by (V (C) (V (c)) denote the set of variables occurring in
C (c). A clause containing no negated literal is called
monotone. Let CNF+ denote the collection of all mono-
tone clause sets. A prominent concept in hypergraph
research is the linear hypergraph (V,E) [2]. Here each
pair e1 �= e2 ∈ E of hyperedges by definition fulfills
|e1 ∩ e2| ≤ 1. We call a hypergraph exact linear if for
all distinct hyperedges e1, e2 one has |e1 ∩ e2| = 1. Obvi-
ously monotone formulas can be regarded as hypergraphs
in which the hyperedges are the clauses. Thus a general-
ization of (exact) linear hypergraphs is given by (exact)
linear CNF formulas, where C ∈ CNF is called linear if
|V (c1)∩V (c2)| ≤ 1 and exact linear if |V (c1)∩V (c2)| = 1
for all c1, c2 ∈ C, c1 �= c2 [17]. Let LCNF denote the class
of all linear formulas, and XLCNF the collection of all ex-
act linear formulas. For a finite set M , let 2M denots its
powerset. Given C ∈ CNF, SAT asks whether there is a
truth assignment t : V (C) → {0, 1} such that there is no
c ∈ C all literals of which are set to 0. If such an assign-
ment exists it is called a model of C. Let SAT ⊆ CNF
denote the collection of all formulas for which there is
a model, and UNSAT := CNF \ SAT. r-SAT considers
only instances from r-CNF. Without loss of generality it
is assumed throughout that clauses only contain differ-
ent variables, hence pairs like x, x̄ are excluded because
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such clauses are always satisfied and could be removed.
Furthermore the existence of clauses containing exactly
one literal is excluded in formulas, because such clauses
also could be removed by either satisfying them all or
obtaining an unsatisfiable formula, immediately. Exactly
those clauses c of a formula C ∈ CNF which all have
the same variable set b = V (c) ⊆ V (C) yield the fibre
Cb = {c ∈ C : V (c) = b} of C over b [14]. The base
hypergraph H(C) = (V (C), B(C)) of C is given by the
vertex set V (C) and the hyperedge set B(C) := {V (c) :
c ∈ C} ∈ CNF+. Conversely, we can start with a fixed
arbitrary hypergraph H = (V,B) serving as a base hyper-
graph if its vertices x ∈ V �= ∅ are regarded as Boolean
variables such that for every x ∈ V there is a b ∈ B �= ∅
containing x. By Wb := {c ⊆ L(V ) : V (c) = b} denote
the collection of all possible clauses over a fixed b ∈ B,
similarly WV denotes the set of all clauses over V of car-
dinality |V |. Observe that WV ∈ UNSAT. To a formula
C ∈ CNF its formula graph GC has a vertex for each
clause, and the vertices c, d are joined by an edge in GC

if V (c)∩V (d) �= ∅. For C ∈ CNF and ∅ �= U ⊆ V (C), let
C(U) = {c ∈ C : V (c) ∩ U �= ∅} ∈ CNF denote the sub-
formula of all clauses c containing a variable in U , where
in case U = {x} we write C(x). Let CU be the substruc-
ture called the U -retraction of C as introduced in [14] and
defined as CU := {c ∩ L(U) : c ∩ L(U) �= ∅, c ∈ C}. Note
that CU ∈ CNF only if it contains no unit clause.

3 (Co-)Autarkies in Linear Formulas

For C ∈ CNF, as introduced in [13] ∅ �= U ∈ 2V (C) is
called an autark set (of variables), if there exists a (par-
tial) truth assignment α : U → {0, 1} satisfying C(U), in
which case α is called an autark assignment or autarky.
Clearly α, U as well as C(U) as above can be identified
when speaking of an autarky. Hence, an autarky C(U)
can be removed from a formula without affecting its sat-
isfiability status.

Lemma 1 Let U be an autarky of C ∈ CNF then Wb �=
Cb ⊆ C(U) for all b ∈ B(C) with b ∩ U �= ∅.

Proof. Let b ∈ B with b ∩ U �= ∅ then Cb ⊆ C(U) and
as U is autark implying C(U) ∈ SAT it follows Cb �= Wb

for all b ∈ B. �

Let AUT ⊆ CNF denote the collection of all formulas for
which an autarky exists. Obviously one has SAT ⊆ AUT.
A CNF formula admitting no autarky is refered to as a
co-autarky, let the collection of such formulas be denoted
as AUT′ := CNF \ AUT then clearly AUT′ ⊆ UNSAT.
Next we state that AUT′ �= ∅, moreover AUT \ SAT �= ∅,
because AUT′ �= UNSAT.

Lemma 2 Let V �= ∅ be a finite set of Boolean vari-
ables and C ∈ CNF. Then WV ∈ AUT′ and C ∪ WV ∈
UNSAT \ AUT′ if C ∈ SAT with V (C) ∩ V = ∅.

Proof. For every ∅ �= U ∈ 2V one directly obtains
WV (U) = WV ∈ UNSAT. So WV ∈ AUT′ for every
V . The second claim follows because V (C) �= ∅ is autark
for C ∪ WV ∈ UNSAT. �

The next result provides a characterization of co-autar-
kies.

Lemma 3 C ∈ AUT′ if and only if C(x) ∈ UNSAT for
every x ∈ V (C).

Proof. Let C ∈ AUT′ and assume there is x ∈ V (C)
such that C(x) ∈ SAT then U = {x} is an autark set
yielding a contradiction. Reversely let C ∈ AUT and let
∅ �= U ∈ 2V (C) be an autarky then there is x ∈ U such
that C(x) ⊆ C(U) ∈ SAT verifying the assertion. �

Regarding Lemma 2 one might guess that formulas in
AUT′ always contain a complete fibre Wb. But this is
not true. The next result shows that even some linear
formulas lie in AUT′. Observe that the fibres of a linear
formula C have the property that |Cb| = 1 for all b ∈
B(C) because unit clauses are excluded.

Theorem 1 XLCNF ⊆ AUT and LCNF ∩ AUT′ �= ∅.

Proof. According to [17] an exact linear formula with-
out complementary unit clauses is satisfiable thus one
has directly XLCNF ⊆ AUT because unit clauses are
excluded in any case. Regarding the second assertion as-
sume the contrary, i.e., LCNF ⊆ AUT. According to [17]
there exists C(0) ∈ LCNF∩UNSAT admitting an autark
set U (0) �= ∅. Clearly ∅ �= C(1) := C(0) \ C(0)(U (0)) ∈
LCNF ∩ UNSAT admitting an autark set U (1) and so
on up to an unsatisfiable linear formula ∅ �= C(i) :=
C(i−1) \ C(i−1)(U (i−1)) ∈ AUT, for positive integer i.
Since C(0) was finite in the next step i+1 either the empty
set is obtained which is impossible as C(0) ∈ UNSAT, or
∅ �= C(i+1) ∈ AUT′ yielding a contradiction and proving
the claim. �

As a direct consequence of the last proof the next result
follows.

Corollary 1 C ∈ LCNF∩AUT∩UNSAT if and only if
there is ∅ �= C(0) ∈ SAT ∩ LCNF and ∅ �= D ∈ AUT′ ∩
LCNF such that C = C(0) ∪ D.

Proof. If C ∈ AUT ∩ UNSAT is linear then remove
iteratively autark subformulas as long as possible; the
union of these subformulas defines C(0) ∈ SAT. Since the
remaining formula D is neither the empty set nor lies in
AUT we have the only if direction. The reverse direction
is clear because the presence of C(0) ∈ SAT∩LCNF states
that C ∈ AUT and the presence of D ∈ AUT′ ∩ LCNF
verifies that C ∈ UNSAT, finally C ∈ LCNF follows. �
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Another property of linear formulas w.r.t. autarky is
stated next which does not hold for arbitrary members
in CNF, because WV serves as a counterexample. Let
LCNF �= := {C ∈ LCNF : ∀x, y ∈ V (C), x �= y : C(x) �=
C(y)} and LCNF= := LCNF \ LCNF �=.

Theorem 2 Let C ∈ LCNF. Then C ∈ AUT′ implies
C ∈ LCNF �=.

Proof. Take C ∈ LCNF arbitrarily then as C by def-
inition is non-empty, free of unit clauses and moreover
clauses are assumed to be free of complementary literals,
V (C) contains at least two variables x �= y. Assume that
C(x) = C(y) which is equivalent with x, y ∈ V (c), for
all c ∈ C(x) = C(y) which because of the linearity of
C is equivalent with the existence of exactly one clause
c ∈ C such that x, y ∈ V (c), and C(x) = C(y) = {c} =
C({x, y}). Therefore U = {x, y} is an autark set of C
which thus cannot lie in AUT′. �

In view of the last result one has LCNF �= ∩ AUT′ �= ∅
and LCNF= ⊆ AUT. Note that the reverse direc-
tion in the previous theorem does not hold in general
as is indicated by C0 ∪ D ∈ LCNF �= ∩ AUT where
C0 := {{xy}, {yz}, {xz}} ∈ CNF+ with clauses repre-
sented as literal strings over the variables x, y, z, and
D ∈ LCNF ∩ AUT′ is chosen arbitrarily.

4 Autarkies and Variable Closures

Given C ∈ CNF, then for every U ⊆ V (C) the set
HC(U) := {x ∈ V (C) : x �∈ V (C \ C(U))} ⊆ V (C(U))
is called the variable closure of U as introduced in [14],
for short we refer to HC(U) as the hull of U . Clearly
U ⊆ HC(U), moreover one can show that HC is a finite
closure operator on 2V (C) [15]. Let H(C) := {HC(U) :
U ∈ 2V (C)} denote the image of HC , i.e., the collection
of all hulls of C. Useful properties of the hull concept are
stated next.

Lemma 4 Let C ∈ CNF then C(U) = C(HC(U)).
Moreover one has:
(1) C(U) = C(U ′) if and only if HC(U) = HC(U ′).
(2) HC(U) is an autarky of C ∈ CNF if U ⊆ V (C) is an
autarky of C.

Proof. Statements (1) and (2) are shown in the proof
of Lemma 3 in [15]. The first claim above follows from
(1) and HC(HC(U)) = HC(U) which is the idempotence
property of a closure operator. �

The converse of the claim (2) in Lemma 4 does not hold
in general: Let U = {x, y} and consider C := {c ∪ {z} :
c ∈ WU} ∪D for any D ∈ CNF such that x, y, z �∈ V (D).
Then C(U) = {c ∪ {z} : c ∈ WU} cannot be solved on
basis of U but on basis of HC(U) = {x, y, z}. Hence

HC(U) is an autarky but not U itself. Relying on the
hull concept we have another characterization of AUT′,
respectively of AUT.

Theorem 3 C ∈ AUT if and only if there is an autark
set U ∈ H(C).

Proof. The if-part is obvious. For the reverse direction
assume that C ∈ AUT hence there is an autark set U ∈
2V (C) thus HC(U) ∈ H(C) is autark for C by Lemma 4
part (2). �

According to [14] a variable hull is called free if it is min-
imal with respect to the inclusion relation. Observe that
in general V (C(U)) �= HC(U). Besides clarifying when
equality is true here, the next result states several con-
nections between C(U), HC(U) and CU .

Theorem 4 For C ∈ CNF and U ⊆ V (C) one has:
(a) GC(U), GC\C(U) are distinct connected components of
GC if and only if V (C(U)) = HC(U).
(b) U is an autarky if and only if CU is satisfiable.
(c) Let U ∈ H(C) then CU ⊆ WU if and only if U is free.
(d) U ∈ H(C) if CU = C(U).

Proof. First, V (C(U)) = HC(U) is equivalent with
V (C \ C(U)) ∩ V (C(U)) = ∅ which is the same as
that for every clause c ∈ C \ C(U) and every clause
d ∈ C(U) we have V (c) ∩ V (d) = ∅; meaning that
there exists no egde between the vertices in GC(U) and
the vertices in GC\C(U). So, (a) is proven. Obviously
CU = {c∩L(U) : c ∈ C(U)}, therefore if CU is satisfiable
there is α : U → {0, 1} satisfying CU and also C(U) hence
U is an autarky of C. Conversely, if U is an autarky then
specifically C(U) ∈ SAT for a partial model on U hence
specifically CU is satisfiable proving (b). Observe that
the if-part of (c) is already proven in [14], namely in the
proof of Theorem 2 there. So it suffices to verify the con-
verse direction for which we let CU ⊆ WU meaning that
U ⊆ V (c) for all c ∈ C(U). Thus C(x) = C(U) for all
x ∈ U , otherwise there are x ∈ U and c ∈ C(U) such that
x /∈ V (c) ⊇ U which is impossible. Because of Lemma
4 (1) and U ∈ H(C) one obtains HC(x) = HC(U) = U ,
for all x ∈ U . According to Lemma 2 (1) in [14], a hull
U is free if and only if HC(x) = U , for all x ∈ U , so
the proof of (c) is finished. Finally, CU = C(U) implies
U = V (CU ) = V (C(U)) ⊇ HC(U), thus U = HC(U),
hence (d). �

Note that given C ∈ CNF and U ∈ H(C) for the hull
structure of the subformula C ′ := C \ C(U) in general
it does not hold that H(C ′) ⊆ H(C). In fact, for Q =
{a, b, c} and U = {v, x, y, z} consider C = WQ∪W{x,y,z}∪
{c} with c := {avxyz} represented as a literal string.
Then C(U) = W{x,y,z} ∪ {avxyz}, C ′ = WQ and U ∈
H(C), however HC′(Q) = Q �= HC(Q) = Q∪{v}. Instead
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the hull structure of C ′ can be characterized as follows
also providing a co-autarky criterion discussed later.

Lemma 5 Let C ∈ CNF and U ∈ H(C) then H(C \
C(U)) = {U ′ \ U : U ′ ∈ H(C)}.

Proof. Again set C ′ := C \ C(U) and define D :=
{U ′ \ U : U ′ ∈ H(C)}. Consider the inclusion from left
to right and let Q ∈ H(C ′) then Q = HC(Q) \ U ∈ D.
Indeed, if Q ∈ H(C) then Q = HC(Q) and we are done.
So, assume that Q �∈ H(C). First, Q ∩ U = ∅ otherwise
there is x ∈ Q ∩ U and c ∈ C ′ with x ∈ V (c) imply-
ing c ∈ C(U) yielding a contradiction. Next, for every
x ∈ HC(Q)\Q =: S �= ∅ there is a clause c ∈ C(U)∩C(Q)
such that V (c) ∩ Q �= ∅ with x ∈ V (c) \ Q. Suppose
that there also is a clause c′ ∈ C ′ with x ∈ V (c′). As
x �∈ Q ∈ H(C ′), x must occur in c′ and also in a clause
c′′ ∈ C ′ \ C ′(Q). The latter implies x ∈ V (C \ C(Q))
while x ∈ V (C(Q)) thus x �∈ HC(Q) contradicting the
main assumption. Now, as U ∈ H(C) and x �∈ V (C ′) we
must have x ∈ U , therefore S ⊆ U in summary verifying
that Q = HC(Q) \ S = HC(Q) \ U ∈ D. For the reverse
inclusion we show that D � Q := U ′ \ U ∈ H(C ′) for
every pair U, U ′ ∈ H(C). If U = ∅ one has C ′ = C and
H(C ′) = H(C). So, let U �= ∅ and assume Q �∈ H(C ′).
Then ∅ �= Q � HC′(Q) meaning that there is c ∈ C ′(Q)
with x ∈ V (c) such that neither x ∈ V (C ′ \ C ′(Q)) nor
x ∈ Q but V (c) ∩ U ′ �= ∅ hence c ∈ C(U ′). Now, either
one of the following situations can occur:
Case 1, x ∈ U ′: Then x ∈ U ∩ U ′ because U �= ∅, but as
U ∈ H(C) one obtains x �∈ V (C ′) yielding a contradiction
to x ∈ V (C ′(Q)).
Case 2, x �∈ U ′: Then either x ∈ U \ U ′ yielding a con-
tradiction as above. Or x �∈ U thus x �∈ U ′ ∪ U . As
∅ �= U ∈ H(C), x ∈ V (C(U)) implies x �∈ V (C ′(U)) yield-
ing a contradiction to x ∈ V (C ′(Q)), hence x �∈ C(U).
And we can focus on C ′. As U ′ ∈ H(C) it follows that
there is a further clause c′ ∈ C ′\C ′(U ′) ⊆ C ′\C ′(Q) with
x ∈ V (c′). On the other hand, since x ∈ HC′(Q) there
can be no clause in C ′ \ C ′(Q) containing x establishing
a contradiction also in this case and finishing the proof.
�

The next result characterizes the co-autarky of a super-
hull which especially holds if the underlying co-autark
hull is free.

Theorem 5 For C ∈ CNF, let ∅ �= U ∈ H(C).
(1) If U is co-autark, then any superhull Û of U is also
co-autark if one of the following holds (i) (Û \ U) ∩
V (C(U)) = ∅ or (ii) Û \U is co-autark for C(Û) \C(U).
(2) If U is free then U can be checked for co-autarky in
linear time.

Proof. In case (1), (i), no variable of Û \ U appears
in C(U) thus C(U) cannot be satisfied by variables in

Û outside U . In case (1), (ii), let C ′ := C \ C(U) then
by Lemma 5, Q := Û \ U is a hull in H(C ′). Clearly
C ′(Û) = C(Û)\C(U), thus if Q is not autark then C ′(Û)
cannot be satisfied over Q, hence there is no way for
satisfying C(Û) over Û . The proof of claim (2) can be
found in [14]. �

Clearly the previous theorem specifically holds in the case
of linear formulas. The following two lemmas collect some
further properties of autarkies that are not hard to verify,
so the proofs are omitted.

Lemma 6 Let C ∈ CNF, have two autarkies αi : Ui →
{0, 1}, i = 1, 2. Then α1|α2 : U1 ∪ U2 → {0, 1} and
α2|α1 : U1 ∪ U2 → {0, 1} defined by

αi|αj(x) :=
{

αi(x);x ∈ Ui

αj(x);x ∈ Uj − Ui

where i �= j ∈ {1, 2}, also are autarkies of C.�

Lemma 7 Let C ∈ CNF and U ⊆ V (C) be arbitrary. If
α : U ′ → {0, 1} is an autarky of C, then the restriction
α|U ′ ∩ V (C \ C(U)) is an autarky of C \ C(U). �

5 Complexity Aspects

It is no surprise that both characterizations above do not
provide an efficient algorithm for the computational prob-
lem AUT, which given C ∈ CNF asks whether C ∈ AUT.
Since SAT ⊆ AUT deciding AUT is at least as hard as
deciding SAT hence AUT is NP-complete which below
we prove rigorously. Let the formula class AUTk ⊆ AUT
be defined as the collection of formulas such that there
exists an autark set U of cardinality at most k, which is
a fixed positive integer. Then AUTk corresponds to the
following computational problem:
Given: C ∈ CNF, k ∈ N,
Question: ∃U ⊆ V (C), |U | ≤ k autark?
For positive integer r, define r-AUT as AUT restricted
to r-CNF formulas. Similarly, we proceed for r-AUTk.

Theorem 6 Let r, k be positive integers. (1) AUT and
AUTk are NP-complete. (2) r-AUT and r-AUTk are NP-
complete, for each fixed r ≥ 3.

Proof. Clearly AUT is in NP and assume it is not NP-
complete. Then for C ∈ CNF in polynomial time we can
decide whether there is a set U ⊆ V (C) which is autark.
Assume that there is no such U , then clearly C is unsat-
isfiable . On the other hand, if there is an autark set U
we can proceed with C \C(U) and so on until we achieve
a subformula that has no autark set, then C is unsatisfi-
able, or we obtain the empty set. Obviously, this amounts
to a polynomial time procedure for deciding SAT yielding
a contradiction and the first claim. Since r-SAT is NP-
complete we can proceed for r-AUT analogously. Next,
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obviously AUTk ∈ NP and its NP-completeness can be
derived as follows. Let AUT=

k be the special version of
AUTk for which U is required to have cardinality ex-
actly k, then we claim CNF-SAT ≤p AUT=

k meaning
the existence of a polynomial-time reduction. Indeed, if
C ∈ CNF is a SAT input instance then we assign to it the
instance (C, |V (C)|) for AUT=

k . Now C ∈ SAT if and only
if there is a (partial) truth assignment α : V (C) → {0, 1}
satisfying C if and only if (C, |V (C)|) ∈ AUT=

k . In or-
der to show that r-AUTk is NP-complete, as above, we
use the reduction from r-SAT to r-AUT=

k , for each fixed
r ≥ 3. �

Theorem 7 Given C ∈ CNF, positive integer k with k <
|V (C)| =: n, then in time O(nkT (k-SATk)), one can test
whether C ∈ AUTk and if, find a model for C, where T (k-
SATk) denotes the time for solving k-SAT on instances
over k variables.

Proof. For each set U ⊂ V (C) with |U | ≤ k in linear
time compute the retraction of C over U and, if necessary,
remove all unit clauses from it by evaluating it accord-
ingly. Obviously, the resulting formula CU ∈ k-CNF and
|V (CU )| ≤ |U | ≤ k, hence we can check in time T (k-
SATk) whether CU ∈ SAT yielding the decision whether
U is autark according to Theorem 4. There are O(nk)
subsets of V (C) of at most k elements yielding the claim.
�

The last result amounts to an FPT algorithm [6] for rec-
ognizing membership of k-CNF formulas in AUTr, for a
fixed positive integer k.

Corollary 2 For C ∈ k-CNF and r ∈ N, it can be tested
in time {

O(|C|2kT (r-SATr);r ≤ k
O(|C|rkT (k-SATr);r > k

whether C ∈ AUTr, where again T (i-SATj) denotes the
time of the currently best known algorithm for solving i-
SAT for an input instance of j variables.

Theorem 8 2-AUT is polynomial-time solvable.

Proof. First in polynomial time construct the formula
graph GC for an instance C ∈ 2-CNF with n variables
and m clauses. The number of vertices in GC is upper
bounded by m = m(n) ∈ O(n2). Next, in polynomial
time compute the connected components Gi, 1 ≤ i ≤ s,
of GC , where also s = s(n) ∈ O(n2). According to Theo-
rem 4 (a), exactly those subformulas Ci of C determined
by Gi correspond to the variable hulls in C, more pre-
cisely H(C) = {V (Ci) : 1 ≤ i ≤ s}. Thus according
to Theorem 3 it suffices to check whether Ci ∈ 2-SAT,
1 ≤ i ≤ s, which for each i can be done in linear time
[1]. In summary 2-AUT is shown to be polynomial-time
decidable. �

6 Concluding Remarks and Open Prob-
lems

The autarky and co-autarky structure specifically of lin-
ear formulas was investigated regarding the classical sat-
isfiability problem. Several tasks remain for future work
such as the autarky structure of diagonal fibre transver-
sals or of exact-linearly based formulas, which have an
exact linear base hypergraph. An open question is how
linear formulas in AUT′ can be characterized and recog-
nized. Also the hull structure of formulas needs to be
investigated further. Specifically, assume there are hulls
U ′, U such that U is not autark, Q := U ′ \ U is au-
tark in C ′ := C \ C(U) and Q ∩ V (C(U)) �= ∅, then the
question remains whether U ′ is autark in C according to
Theorem 5 (1). Specifically the hull structure of linear
formulas is of interest as they are the hardest in most
algorithmic approaches. Observe that the method in the
proof of Theorem 8 cannot be transfered immediately to
2-AUTk because there might be autark sets contained in
autark hulls thus having a smaller size, so the complexity
of this problem remains open. Finally, it would be rele-
vant to transfer the autarky notion also to other branches
of satisfiability such as exact satisfiablity or not-all-equal
satisfiability. The latter problems which in general are
NP-complete [8] have been investigated recently from a
complexity theoretical point of view when restricted to
various linear formula classes [16]. Intending an algorith-
mic progress for these variants of SAT the investigation
of a related autarky structure might be useful.
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