
 

 

Abstract—An algorithm is presented for in situ 

omnidirectional vision-based bee counting on landing pads of 

Langstroth beehives. The concept of the 1D Haar Wavelet 

Spike is developed. The spikes are detected in the 1D Haar 

Wavelet Transforms of image rows.  The algorithm is 

implemented in Python 2.7.9 with OpenCV 3. The performance 

of the algorithm was tested in situ on a Raspberry Pi 3 Model B 

computer with an ARMv8 processor and 1GB RAM with a 

sample of 382 720 x 480 PNG images. The images were 

captured by a Raspberry Pi Camera Board v2 connected to a 

multi-sensor electronic beehive monitoring device.  The 

algorithmic bee counts approached a human beekeeper’s counts 

within a margin of 5 bees on 63% of the images, within a 

margin of 10 bees on 94% of the images, and within a margin of 

15 bees on 99% of the images.  

 
Index Terms—computer vision, discrete wavelet transform, 

biosensors, electronic beehive monitoring, sustainable 

computing   

I. INTRODUCTION 

rofessional and amateur beekeepers use visual estimates 

of forager traffic levels to evaluate bee colonies’ health. 

Higher levels of forager traffic may indicate onsets of 

swarms or colony robbing activities; lower levels of forager 

traffic may indicate mite infestations, failing queens, or 

chemical poisonings [1, 2].   

Advances in electronic sensors have made it feasible to 

transform apiaries into sensor networks that collect multi-

sensor data in situ to estimate bee colonies’ health [3]. 

Electronic beehive monitoring (EBM) can help researchers 

and practitioners collect data on colony behavior and 

phenology without invasive beehive inspections [4]. 

In this paper, an in situ computer vision (CV) algorithm is 

presented for omnidirectional bee counting on landing pads 

of Langstorth beehives [5] used by many U.S. apiarists [6]. 

The algorithm is omnidirectional, because it does not 

distinguish between incoming and outgoing bee traffic.  Bee 

counts can be used as forager traffic level estimates.  

The algorithm has been developed with open source 

software tools and tested on a hardware device assembled 

with off-the-shelf hardware components. A fundamental 

objective of this project is to create a suite of replicable 

hardware and software tools for citizen scientists to build 

their own EBM devices (EBMDs) and to promote the 

grassroots development of EBM cyberinfrastructures [7]. 
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The remainder of this paper is organized as follows. In 

Section II, related work is reviewed. In Section III, the 

hardware and software details of BeePi© [8], a multi-sensor 

solar-powered EBMD, are presented. In Section IV, the 

concept of a 1D Haar Wavelet Spike (1D HWS) is formally 

developed. Section V describes the proposed algorithm. In 

Section VI, the algorithm performance is analyzed. In 

Section VII, conclusions are drawn. 

II. RELATED WORK 

EBM has been evolving for over half a century. In the 

1950’s, Woods placed a microphone in a beehive and 

subsequently built Apidictor, an audio beehive monitoring 

tool [4]. Bencsik [9] equipped several hives with 

accelerometers and observed increasing amplitudes a few 

days before swarming, with a sharp change at the point of 

swarming. Evans [10] developed Arnia, a beehive 

monitoring system that uses weight, temperature, humidity, 

and sound. The system breaks down hive sounds into flight 

buzzing, fanning, and ventilating and sends digital alerts to 

beekeepers. 

S. Ferrari et al. [11] assembled a system for monitoring 

swarm sounds in beehives. The system consisted of a 

microphone, a temperature sensor, and a humidity sensor 

placed in a beehive and connected via underground cables to 

a computer in a nearby barn. Rangel and Seeley [12] 

investigated signals of honeybee swarms. Five custom 

designed observation hives were sealed with glass covers. 

The captured video and audio data were monitored daily by 

human observers. The researchers found that approximately 

one hour before swarm exodus, the production of piping 

signals gradually increased and ultimately peaked at the start 

of the swarm departure.  

Meikle and Holst [13] placed four beehives on precision 

electronic scales linked to data loggers to record weight for 

over sixteen months. The researchers investigated the effect 

of swarming on daily data and reported that empty beehives 

had detectable daily weight changes due to moisture level 

changes in the wood. Bromenshenk et al. [14] developed 

electronic SmartHive© devices equipped with electronic 

scales, infrared bee counters, temperature and humidity 

sensors, digital weather stations, and wireless 

communication lines for Internet-based remote monitoring. 

The investigation in this paper continues our research on 

CV algorithms for omnidirectional bee counting [15]. Two 

algorithms have been previously proposed [16]. Unlike the 

algorithm in this paper, the previous algorithms were not in 

situ and had lower bee counting accuracies (see Sections VI 

and VII for comparative performance details). 
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Fig. 1. Main hardware components of BeePi: 1) battery; 2) RPi; 3) 

RPi camera board; 4) car charger; 5) breadboard; 6) solar charge 

controller; 7) solar panel wires. 

 

III. MULTI-SENSOR EBM 

CV is one of the sensors in BeePi, a multi-sensor, solar-

powered EBMD. Each BeePi consists of a Raspberry Pi 

(RPi) computer, a camera, a solar panel, a temperature 

sensor, a battery, a hardware clock, and a solar charge 

controller. The current version of BeePi is 1.1. The main 

BeePi hardware components are shown in Fig. 1 and  

include a RPi 3 Model B with 1GB RAM (Model B+ 

512MB RAM was used in BeePi 1.0), an RPi T-Cobbler, a 

full-size breadboard for sensor integration, a waterproof 

DS18B20 digital temperature sensor, an RPi Camera Board 

(CB), and a USB microphone hub.   

Unlike BeePi 1.0, the previous version of BeePi, BeePi 

1.1 uses the RPi CB v2 instead of v1. In BeePi 1.0, the 

camera of the RPi CB was protected only with a plastic 

cover, which was found to provide inadequate protection 

against rain, snow, and strong wind after five weeks of field 

deployment in Northern Utah in 2014-2015 [15, 16].  In 

BeePi 1.1, the camera is not only placed under a plastic 

cover, but also is attached to a wooden plank for improved 

balance; the plank is attached with screws and metallic 

brackets to the super with the BeePi hardware, as shown in 

Fig. 2. The camera is protected from the elements by a 

wooden protection box opened at the bottom and attached to 

a hive lid with screws and metallic brackets (see Fig. 3a). 

When the lid is placed on the super with the BeePi hardware 

(see Fig 3b), the box protects the camera (and all other 

sensors on the plank) against the elements from above and 

the four sides.  

For solar harvesting, we continue to use Renogy 50 watts 

12 Volts monocrystalline solar panels, Renogy 10 Amp 

PWM solar charge controllers, Renogy 10ft 10AWG solar 

adaptor kits, and the UPG 12V 12Ah F2 sealed lead acid 

AGM deep-cycle rechargeable batteries. The solar panels 

are placed either to the right or left of a beehive or behind a 

beehive on the ground.  

It takes approximately 25 minutes to wire a BeePi EBMD 

for deployment. Fig. 4 shows the author wiring two EBMDs 

for deployment in Northern Utah in early May 2016. Data 

collection is done on the RPi. The collected data are saved 

on a 32G sdcard inserted into the RPi. Data collection 

software is written in Python 2.7.9. When the system starts, 

three data collection threads are spawned. The first thread 

collects temperature readings every 5 minutes and saves 

them into a text file. The second thread collects 30-second 

wav recordings every 5 minutes. The third thread saves PNG 

pictures of the beehive’s landing pad every 5 minutes.  A 

cronjob monitors the threads and restarts them after 

hardware failures. 

 

 
Fig. 2. Camera (1) under plastic cover attached to wooden plank 

(2); plank is attached with metallic brackets (3) to box with BeePi 

hardware; camera looks down on hive’s landing pad (4). 
 

 
(a) Protection box from inside 

(1); box is attached to 

migratory lid (2). 

 
(b) Hive lid (1) with protection 

box (2) on hive; solar panel (3) 

on ground. 
Fig. 3. RPi camera board protection against elements. 

 

 
Fig. 4. Wiring BeePi 1.1 hardware for deployment. 

 

IV. 1D HAAR WAVELET SPIKES 

In the 1D Haar Wavelet Transform (1D HWT), a signal is 

a vector in .,2, NknR kn   Following the formalization 

in [17], let 
 k

aW be a 
kk 22  matrix for computing k scales 

of the 1D HWT. This matrix can be effectively computed 

from the n canonical base vectors of .nR If 

 
120 ,...,


 kxxx  is a signal in
nR , then y  is the k-scale 

1D HWT of x  is defined in (1).  
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In (2), 
 0

0a =  y  and 
 j
ic  is the coefficient of the 

thi  

basic Haar wavelet at scale j [18].  
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Fig. 5. Up-down spikes. 

 

HWTs are used to detect significant changes in signal 

values [19]. In this paper, it is proposed that some changes 

can be characterized as signal spikes. Specifically, four types 

of spikes are proposed: up-down triangle, up-down 

trapezoid, down-up triangle, and down-up trapezoid. The 

difference between up-down and down-up spikes is the 

relative positions of the climb and decline segments.  In 

trapezoid spikes, flat segments are always in between the 

climb and decline segments.  Fig. 5 shows up-down triangle 

and trapezoid spikes; Fig. 6 shows down-up triangle and 

down-up trapezoid spikes. In both figures, the lower graphs 

represent possible values of the corresponding Haar 

wavelets at a given scale k. Formally, a spike is a nine 

element tuple whose elements are real numbers given in (3). 

 

           ,,,,,,,, eseses ddffuu                               (3) 

 

The first two elements, su and eu , are the abscissae of the 

beginning and end of the spike’s climb segment, 

respectively, when the wavelet coefficients of the 1D HWT 

increase. If 
 k

scu and 
 k

ecu are the k-th scale wavelet 

coefficient ordinates at su and ,eu  respectively, then the 

climb segment of the spike is measured by the angle 
    .,1tan 1 k

s

k

ese cucuuu    The decline segment of the 

spike is characterized by ,sd ,ed and ,  where 

sd and ed are the abscissae of the beginning and end of the 

spike’s decline segment, respectively, when the wavelet 

coefficients decrease. If  k

scd and  k

ecd  are the k-th scale 

wavelet coefficient ordinates at sd and ,ed  respectively, 

then the decline segment of the spike is measured by the 

angle     k

s

k

ese cdcddd   ,1tan 1 . 

In trapezoid up-down or down-up spikes, the flat segment 

is characterized by ,sf ,ef and , where sf and ef are the 

abscissae of the beginning and end of the spike’s flat 

segment, respectively, over which the wavelet coefficients 

either remain at the same ordinate or have minor ordinate 

fluctuations. If 
 k

scf and 
 k

ecd  are the k-th scale wavelet 

coefficients corresponding to sf and ,ef  respectively, the 

spike’s flatness angle is     k

s

k

ese cfcfff   ,tan 1 .  

The absolute values of  are close to 0.  

V. BEE COUNTING ALGORITHM 

Given an image, spikes can be computed for each row. 

When spikes are computed for row r , the column indices of 

the actual pixels covered by each spike at scale j are 

computed by the formula in (4), where s and e are the 

positions of the starting and ending wavelet coefficients in 

the 1D HWT at scale j, respectively. For up-down spikes 

sus  and edd  , whereas, for down-up spikes, 

sds  and .eue   

 

    1122|,,  eisiesjp jj              (4) 

 

 
Fig. 6. Down-up spikes. 

 

Let n be the number of rows in an image and let rU be the 

set of up-down spikes in row ,r  .10  nr  The set 

of pixel columns in row r  covered by the up-down spikes in 

r  is given in (5), where j is a scale and zs and ze are the 

beginning and end positions of an up-down spike z in row 

,r  respectively.  

 

 
rUz

zz

r
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

 ,,,
 

  (5) 

 

Let rD be the set of down-up spikes in row ,r  

.10  nr  The set of pixel columns in r  covered by 

the down-up spikes is given in (6), where j is a given scale 

and zs and ze are the beginning and end positions of a 

down-up spike z in row ,r respectively. 
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The number of unique column pixels covered by the up-

down and down-up spikes in row r  is given in (7). The 

formula in (8) gives the actual number of pixels covered by 

the up-down and down-up spikes in an image I with n rows.  
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For example, consider three 16 x 16 images in Fig. 7. 

Suppose it is required to separate bee pixels from non-bee 

pixels in the original bee image on the left.  The bee pixels 

are those covered by up-down and down-up spikes in each 

row. The middle image in Fig. 7 shows the only up-down 

spike detected in row 8 after a single scale of the 1D HWT. 

The right image in Fig. 7 shows the only down-up spike 

detected in row 7. Both spikes are triangle ones.  

 

   

Fig. 7. Bee image (left); up-down spike in row 8; down-up spike in row 8; 

up-segments are red; down-segments are blue. 

 

The up-down spike, shown in the middle image in Fig. 7, 

is defined in (9), where, per notation in equation (3), 

,4/  ,3/  ,0 and the rest of the values are as 

follows: 3su , 4eu , 5sd , and 5ed . The value 

of 1  for sf and ef  indicates that the spike does not have a 

flat segment.  

 

  ,5,5,,1,1,,4,3   (9) 

                                          

The down-up spike (see the right image in Fig. 7) is 

defined in (10). Since this is a down-up spike, the beginning 

and end positions of the climb segment, i.e., 3 and 4, follow 

the beginning and end positions of the decline segment, i.e., 

1 and 2, and the absolute values of , , and  are 

approximately the same as in the up-down spike in (9). 

 

  ,2,1,,1,1,,4,3   (10) 

 

Using (5), the pixel columns of the up-down spike in (9) 

are given in (11). 

 

    116|5,3,18

1,  iipZU
 (11) 

 

Using (6), the pixel columns of the down-up spike in (10) 

are given in (12).  

  

    92|4,1,18

1,  iipZD
 (12) 

 

Using (7), the set of pixel columns covered by the two 

spikes in row 8 in Fig. 7 (middle and right) is given in (13). 
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(13) 

Given the number of scales 1j , the number of bee 

pixels in the left image in Fig. 7 is given in (14), where I is 

the left image in Fig. 7. 

 

  44
15

0

11 
r

rZIX  (14) 

 

The pseudocode of the bee counting algorithm is given in 

Fig. 8. The algorithm takes an image I (e.g. the upper image 

in Fig. 9), the normalizer N, and the number of scales j of the 

1D HWT. The algorithm also takes the thresholds for the 

angles of  up-down, flat, and down-up spikes, i.e., α, γ, β, 

omitted for simplicity. In the current implementation, α = β 

= 60° and γ = 5°.  

 

 

 

 

 

 

 

 

 
 

Fig. 8. Algorithm’s pseudocode. 

 

In line 2 of Fig. 8, the landing pad is detected and cropped 

from the original image. In Fig. 9, the lower image shows 

the landing pad cropped from the upper image. The landing 

pad localization algorithm is described in [15, 16]. 

In Fig. 10, all stages of image pre-processing, defined in 

lines 2 – 7 in Fig. 8, are shown beginning from the cropped 

landing pad region (Fig. 10a). The image in Fig. 10b is the 

result of the Gaussian blur of the image in Fig. 10a with a 7 

x 7 kernel followed by the pyramid mean shift filter.  The 

image in Fig. 10c shows the result of applying the max RGB 

filter to the image in Fig. 10b. The image in Fig. 10d shows 

the image where all blue pixels in Fig. 10c  are set to white,  

which eliminates some shades that turn out as blue after the 

application of the max RGB  filter. This bleached image in 

Fig. 10d is converted into grayscale, as shown in Fig. 10e. 

In line 8 of Fig. 8, all pixels covered by up-down and 

down-up spikes in all rows are counted and the total count is 

normalized. The total count of bee pixels is normalized by 

N. In the current implementation, N=60 since the average 

number of pixels per bee is 60.  The total number of bee 

pixels detected by spikes normalized by the average number 

of pixels per bee gives an integer approximation to the 

number of bees on the pad. 

VI. EXPERIMENTS 

The algorithm’s accuracy was evaluated on a sample of 

three-hundred eighty two images captured by a BeePi 

EBMD deployed in Northern Utah. The images on which the 

1. procedure countBees(I, N, j) 

2.   L = localizeLandingPad(I); 

3.   gaussianBlur(L); 

4.   pyramidMeanShiftFilter(L); 

5.   maxRGBFilter(L); 

6.   bleachBluePixels(L); 

7.   convertToGrayscale(L); 

8.   return    NLX j / ; 
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proposed algorithm was evaluated were captured in 

September 2016 when it is vital for beekeepers to keep 

abreast of colonies’ health as they prepare them for winter.  

In each image, the landing pad was localized and 

automatically cropped by the landing pad localization 

algorithm described in [15, 16]. A human beekeeper 

manually counted the bees in each image with a cropped 

pad. This beekeeper’s bee counts were taken as the ground 

truth. The algorithm was run on the same images and the 

number of bees detected in each image was recorded. Table 

I gives several lines from a file that contains the human and 

computer counts of bees for each image.  

 

 

 
Fig. 9. Original image (above); cropped landing pad (below). 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 10. Original image (a); blurred and mean shifted (b);  max RGB 

filtered (c); bleached (d); grayscaled (e). 
Table II gives the accuracy of the computer algorithm 

compared with the ground truth. The first column, Error 

Margin, gives the allowed margin of error between the 

human and computer counts for each image. Images where 

the counts differed by more than the set margin were 

classified as inaccurate whereas images where the counts 

were within the allowed margin of error were classified as 

accurate.  

 
TABLE I 

Human vs computer counts of bees in images. 

Image Name Human Counts Computer Counts 

2016-09-20_11-24-40.png 31 21 

2016-09-21_18-14-43.png 30 33 

2016-09-20_12-34-40.png 11 8 

2016-09-21_07-54-42.png 1 1 

 

The second column, Accuracy, in Table II gives the 

percentage of accurate images. Thus, for the margin of error 

equal to 5, 63% of the images were classified as accurate. 

When the margin of error is 10, 94% percent of the images 

were classified as accurate. When the margin of error is 15, 

99% of the images were classified as accurate. The results in 

Table II suggest that the proposed algorithm is reasonably 

accurate in approximating human bee counts on pads. 

Further analysis revealed that all errors, i.e., images where 

algorithmic counts differed from human counts by more than 

a given error margin were either excessively bright or had 

many shades. In Fig. 11, two sample images are shown on 

which the human and computer counts differed by more than 

10 bees. Both images were taken by an EBMD mounted on a 

hive facing south. The upper image has a luminosity (a total 

amount of energy radiated by an object) above 253. On 

bright images, taken between 12:00 and 1:00pm, when the 

sun was directly above the hive, the algorithm undercounted. 

Specifically, in the upper image in Fig. 11, the human 

beekeeper counted 12 bees whereas the algorithm found 

only 1 bee.  

 
Table II 

Error margin vs accuracy. 

Error Margin Accuracy (%) 

5 63 

10 94 

15 99 

 

 

 
Fig. 11. Two sample images on which bee counts differ by more than 10. 

 

The lower image in Fig. 11 shows an image, taken 

between 4:00 and 6:00pm, when the sun was west of the 

hive. While the luminosity of such images is lower (the 

luminosity of the lower image in Fig. 11 is 206), there are 

noticeable shades to the east of some bees.  Since some of 

these shades were not removed by the bleaching operation, 

the detected spikes included some shade pixels, which 

caused higher bee counts. Specifically, in the lower image of 

Fig. 11, the human beekeeper counted 33 bees whereas the 

algorithm found 65 bees.   

Since the primary objective of the proposed algorithm is 

to keep abreast of the forager traffic levels and their changes 

over a period of time, the exact bee counts are less important 

than reliable, albeit approximate, indicators of traffic 

volumes.  For example, it is insignificant, when forager 

traffic increases, to detect 60 bees when a human beekeeper 

detects 65 or 70, because both counts indicate an increase in 

forager traffic. Similarly, at smaller traffic levels, it is 

acceptable to detect 2 or 3 bees when a human beekeeper 

detects 5 or 7 bees, because both counts indicate a decline in 

forager traffic.  

While algorithms’ accuracy is important, smaller RAM 

footprints should not be discounted, because they make 

feasible in situ execution on smaller computational devices 

with smaller power consumption footprints. Toward that 

end, the algorithm was implemented in Python 2.7.9 with 

OpenCV 3.0 on a RPi 3 Model B with an ARMv8 processor 

and 1GB of RAM. The real performance of the algorithm 

was evaluated with the Python timeit utility on the RPi. The 

timings, measured in seconds, for three different runs on all 

test images were 868.40, 869.76, and 863.07, with the mean 

time equal to 867.08. Thus, the algorithm, on average, took 

2.27 seconds to process one image in situ. Since in deployed 

 

 

 (a) 

 

   

 (b) 

 

 

 (c) 

 

 

 (d) 

 

 

 (e) 
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BeePi EBMDs static frames of landing pads are taken every 

five minutes, the proposed algorithm, when executed on 

EBMDs, has sufficient time to process each picture and log 

timestamped bee counts.  

VII. CONCLUSION 

An algorithm was presented for in situ omnidirectional 

bee counting on Langstroth landing pads. The concept of the 

1D Haar Wavelet Spike was developed. The algorithm was 

implemented in Python 2.7.9 with OpenCV 3.0 on a 

Raspberry Pi 3 Model B computer with an ARMv8 

processor and 1GB of RAM.   

The performance of the algorithm was tested in situ on the 

same computer with a sample of 382 720 x 420 PNG 

images. The algorithm took an average of 2.27 seconds per 

image. The algorithmic counts approached a human 

beekeeper’s counts within a margin of 5 bees on 63% of the 

images, within a margin of 10 bees on 94% of the images, 

and within a margin of 15 bees on 99% of the images. The 

algorithm is more accurate than our previous two algorithms 

for omnidirectional bee counting: the highest accuracy of the 

previous algorithms within a margin of 10 bees was 85.5% 

[8, 16]. Furthermore, unlike the algorithm presented in this 

paper, our previous two algorithms were not in situ in that 

they were implemented in JAVA with OpenCV 2 and 

evaluated on a 10GB RAM PC with Ubuntu 12.02 LTS. 

Since the presented algorithm can operate on low voltage 

devices with smaller RAMs, it is more suitable for 

ecologically sustainable computing. Most approaches to 

EBM depend on the grid for power and on the cloud for data 

transmission (e.g., [9, 10, 11]). However, grid- and cloud-

dependent EBM enlarges the electricity consumption and 

carbon footprints of cloud data centers which already 

account for two percent of overall U.S. electrical usage [20].  

According to the Smart 2020 forecast by the Climate 

Group of the Global e-Sustainability Initiative [21], so far 

quite accurate, the global carbon footprint of cloud data 

centers is expected to grow, on average, 7% per annum 

between 2002 and 2020. In 2010, McAfee, a U.S. computer 

security company, reported that the electricity required to 

transmit the trillions of spam e-mails annually is equivalent 

to powering two million U.S. homes and generates the same 

amount of greenhouse gas emissions as that produced by 

three million cars [22]. Thus, there is a critical need to seek 

ecologically sustainable EBM solutions that use renewable 

power sources, capture data with software tools with smaller 

electricity consumption footprints, and minimally depend or 

do not depend at all on the cloud for data transmission or 

analysis. The proposed algorithm is a step on the long 

journey to ecologically sustainable EBM. 
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