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Abstract—This paper deals a tracking trajectory controller
design of a tricycle robot as a non-holonomic system with
a piecewise multi-linear (PML) model. The approximated
model is fully parametric. Input-output (I/O) dynamic feedback
linearization is applied to stabilize PML control system. We
also apply a method for a tracking control based on PML
models to the tricycle robot. Although the controller is simpler
than the conventional I/O feedback linearization controller, the
control performance based on PML model is the same as the
conventional one. Examples are shown to confirm the feasibility
of our proposals by computer simulations.

Index Terms—piecewise model, tracking trajectory conrol,
dynamic feedback linearization.

I. INTRODUCTION

WE propose the tracking trajectory control of a tricycle
robot using dynamic feedback linearization based

on piecewise multi-linear (PML) models. Wheeled mobile
robots are completely controllable. However they cannot be
stabilized to a desired position using time invariant continu-
ous feedback control [1]. The wheeled mobile robot control
systems have a non-holonomic constraint. Non-holonomic
systems are much more difficult to control than holonomic
ones. Many methods have been studied for the tracking
control of wheeled robots. The backstepping control methods
are proposed in (e.g. [2], [3]). The sliding mode control
methods are proposed in (e.g., [4], [5]), and also the dynamic
feedback linearization methods are in (e.g., [6], [7], [8]). For
non-holonomic robots, it is never possible to achieve exact
linearization via static state feedback [9]. It is shown that
the dynamic feedback linearization is an efficient design tool
to solve the trajectory tracking and the setpoint regulation
problem in [6], [7].

In this paper, we consider PML model as a piecewise
approximation model of the tricycle robot dynamics. The
model is built on hyper cubes partitioned in state space and is
found to be bilinear (bi-affine) [10], so the model has simple
nonlinearity. The model has the following features: 1) The
PML model is derived from fuzzy if-then rules with singleton
consequents. 2) It has a general approximation capability
for nonlinear systems. 3) It is a piecewise nonlinear model
and second simplest after the piecewise linear (PL) model.
4) It is continuous and fully parametric. The stabilizing
conditions are represented by bilinear matrix inequalities
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(BMIs) [11], therefore, it takes long computing time to obtain
a stabilizing controller. To overcome these difficulties, we
have derived stabilizing conditions [12], [13], [14] based
on feedback linearization, where [12] and [14] apply input-
output linearization and [13] applies full-state linearization.

We propose a dynamic feedback linearization for PML
control system and apply the tracking control [15] to a
tricycle robot system. The control system has the following
features: 1) Only partial knowledge of vertices in piecewise
regions is necessary, not overall knowledge of an objective
plant. 2) These control systems are applicable to a wider class
of nonlinear systems than conventional I/O linearization. 3)
Although the controller is simpler than the conventional I/O
feedback linearization controller, the tracking performance
based on PML model is the same as the conventional one.
Wheeled robot dynamics has some trigonometric functions.
The trigonometric functions are smooth functions and of
class C∞. The PML models are not of class of C∞. In
the tricycle robot control, we have to calculate the third
derivatives of the output. Therefore the derivative PML
models lose some dynamics. Thus we propose the derivative
PML models of the trigonometric functions.

This paper is organized as follows. Section II introduces
the canonical form of PML models. Section III presents a
dynamic feedback linearization of the car-like robot. Section
IV proposes a tracking controller design using dynamic
feedback linearization based on PML model of the tricycle
robot. Section V shows examples demonstrating the feasibil-
ity of the proposed methods. Finally, section VI summarizes
conclusions.

II. CANONICAL FORMS OF PIECEWISE BILINEAR
MODELS

A. Open-Loop Systems

In this section, we introduce PML models suggested in
[10]. We deal with the two-dimensional case without loss of
generality. Define vector d(σ, τ) and rectangle Rστ in two-
dimensional space as d(σ, τ) ≡ (d1(σ), d2(τ))

T ,

Rστ ≡ [d1(σ), d1(σ + 1)]× [d2(τ), d2(τ + 1)]. (1)

σ and τ are integers: −∞ < σ, τ < ∞ where d1(σ) <
d1(σ+1), d2(τ) < d2(τ +1) and d(0, 0) ≡ (d1(0), d2(0))

T .
Superscript T denotes a transpose operation.
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For x ∈ Rστ , the PML system is expressed as
ẋ =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)fo(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

(2)

where fo(i, j) is the vertex of nonlinear system ẋ = fo(x),
ωσ1 (x1) = (d1(σ + 1)− x1)/(d1(σ + 1)− d1(σ)),
ωσ+1
1 (x1) = (x1 − d1(σ))/(d1(σ + 1)− d1(σ)),
ωτ2 (x2) = (d2(τ + 1)− x2)/(d2(τ + 1)− d2(τ)),
ωτ+1
2 (x2) = (x2 − d2(τ))/(d2(τ + 1)− d2(τ)),

(3)

and ωi1(x1), ω
j
2(x2) ∈ [0, 1]. In the above, we assume

f(0, 0) = 0 and d(0, 0) = 0 to guarantee ẋ = 0 for x = 0.
A key point in the system is that state variable x is also

expressed by a convex combination of d(i, j) for ωi1(x1)
and ωj2(x2), just as in the case of ẋ. As seen in equation (3),
x is located inside Rστ which is a rectangle: a hypercube
in general. That is, the expression of x is polytopic with
four vertices d(i, j). The model of ẋ = f(x) is built on a
rectangle including x in state space, it is also polytopic with
four vertices f(i, j). We call this form of the canonical model
(2) parametric expression.

B. Closed-Loop Systems

We consider a two-dimensional nonlinear control system.{
ẋ =fo(x) + go(x)u(x),

y =ho(x).
(4)

The PML model (5) is constructed from a nonlinear system
(4). {

ẋ =f(x) + g(x)u(x),

y =h(x),
(5)

where 

f(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)fo(i, j),

g(x) =

σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)go(i, j),

h(x) =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)ho(i, j),

x =
σ+1∑
i=σ

τ+1∑
j=τ

ωi1(x1)ω
j
2(x2)d(i, j),

(6)

and fo(i, j), go(i, j), ho(i, j) and d(i, j) are vertices of the
nonlinear system (4). The modeling procedure in region Rστ
is as follows:

1) Assign vertices d(i, j) for x1 = d1(σ), d1(σ+1), x2 =
d2(τ), d2(τ + 1) of state vector x, then partition state
space into piecewise regions (see Fig. 1).

2) Compute vertices fo(i, j), go(i, j) and ho(i, j) in equa-
tion (6) by substituting values of x1 = d1(σ), d1(σ+1)
and x2 = d2(τ), d2(τ + 1) into original nonlinear

d1(σ)

d1(σ + 1)

d2(τ)

d2(τ + 1)

f1(σ + 1, τ)

f1(σ, τ)

f1(σ, τ + 1)

f1(σ + 1, τ + 1)

ωσ+1
1

ωσ1

ωτ+1
2

ωτ2

f1(x)

Fig. 1. Piecewise region (f1(x) =
∑σ+1

i=σ

∑τ+1

j=τ
ωi1ω

j
2f1(i, j), x ∈

Rστ )

functions fo(x), go(x) and ho(x) in the system (4).
Fig. 1 shows the expression of f(x) and x ∈ Rστ .

The overall PML model is obtained automatically when all
vertices are assigned. Note that f(x), g(x) and h(x) in the
PML model coincide with those in the original system at
vertices of all regions.

III. DYNAMIC FEEDBACK LINEARIZATION OF TRICYCLE
ROBOT

We consider a tricycle robot model.
ẋ
ẏ

θ̇

ψ̇

 =


cos θ
sin θ

1
L tanψ

0

u1 +


0
0
0
1

u2, (7)

where x and y are the position coordinates of the center of
the rear wheel axis, θ is the angle between the center line of
the car and the x axis, ψ is the steering angle with respect
to the car. The control inputs are represented as

u1 =vs cosψ

u2 =ψ̇,

where vs is the driving speed. Fig 2 shows the kinematic
model of tricycle robot. The steering angle ψ is constrained
by

‖ψ‖ ≤M, 0 < M < π/2.

The constraint [8] is represented as

ψ =M tanhw,

where w is an auxiliary variable. Thus we get

ψ̇ =Msech2wµ2 = u2,

ẇ =µ2

We substitute the equations of ψ and w into the tricycle robot
model. The model is obtained as

ẋ
ẏ

θ̇
ẇ

 =


cos θ
sin θ

1
L tan(M tanhw)

0

u1 +


0
0
0
1

µ2 (8)
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x
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(x, y)

θ

ψ

L

0

Fig. 2. Kinematic model of tricycle robot

In this case, we consider η = (x, y)T as the output, the time
derivative of η is calculated as

η̇ =

(
ẋ
ẏ

)
=

(
cos θ 0
sin θ 0

)(
u1
µ2

)
.

The linearized system of (8) at any points (x, y, θ, w) is
clearly not controllable and the only u1 affects η̇. To proceed,
we need to add some integrators of the input u1. Using
dynamic compensators as

u̇1 =ν1, ν̇1 = µ1,

the tricycle robot model (8) can be dynamic feedback lin-
earizable. The extended model is obtained as

ẋ
ẏ

θ̇
ẇ
u̇1

ν̇1

 =


u1 cos θ
u1 sin θ

u1
1
L
tan(M tanhw)

0
ν1
0

+


0
0
0
0
0
1

µ1 +


0
0
0
1
0
0

µ2 (9)

The time derivative of η̇ is calculated as

η̈ =

(
L2
fh1

L2
fh2

)
=

(
ν1 cos θ − u21 1

L tan(M tanhw) sin θ
ν1 sin θ + u21

1
L tan(M tanhw) cos θ

)
,

where (h1, h2) = (x, y). Since the controller (µ1, µ2) doesn’t
appear in the equation η̇, we continue to calculate the time
derivative of η̈. Then we get

η(3) =L3
fh+ LgL

2
fhµ

=

(
L3
fh1

L3
fh2

)
+

(
Lg1L

2
fh1 Lg2L

2
fh1

Lg1L
2
fh2 Lg2L

2
fh2

)(
µ1

µ2

)
. (10)

Equation (10) shows clearly that the system is input-output
linearizable because state feedback control

µ = −(LgL2
fh)
−1L3

fh+ (LgL
2
fh)
−1v

reduces the input-output map to y(3) = v.
The matrix LgL2

fh multiplying the modified input (µ1, µ2)
is non-singular if u1 6= 0. Since the modified input is
obtained as (µ1, µ2), the integrator with respect to the input v
is added to the original input (u1, u2). Finally, the stabilizing
controller of the tricycle robot system (7) is presented as a
dynamic feedback controller:{

u̇1 =ν1, ν̇1 = µ1,

u2 =Msech2wµ2

(11)

IV. PML MODELING AND TRACKING CONTROLLER
DESIGN OF THE TRICYCLE ROBOT MODEL

A. PML Model of the Tricycle Robot Model
We construct PML model of the tricycle robot system (9).

The state spaces of θ and w in the tricycle robot model (9) are
divided by the 13 vertices x3 ∈ {−π,−5π/6, . . . , π} and the
13 vertices x4 ∈ {−3.0,−2.5, . . . , 3.0}. The state variable
is x = (x1, x2, x3, x4, x5, x6)

T = (x, y, θ, w, u1, v1)
T .

ẋ=



σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))x5

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))x5

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x5

0
x6
0


+


0
0
0
0
0
1

µ1 +


0
0
0
1
0
0

µ2.

(12)

We can construct PML models with respect to f1(x), f2(x)
and f3(x). The PML model structures are independent of
the vertex positions x5 and x6 since x5 and x6 are the linear
terms. This paper constructs the PML models with respect
to the nonlinear terms of x3 and x4.

Note that trigonometric functions of the tricycle robot (9)
are smooth functions and are of class C∞. The PML models
are not of class C∞. In the tricycle robot control, we have to
calculate the third derivatives of the output y. Therefore the
derivative PML models lose some dynamics. In this paper
we propose the derivative PML models of the trigonometric
functions.

B. Tracking Controller Design Using Dynamic Feedback
Linearization Based on PML Model

We define the output as η = (x1, x2)
T in the same manner

as the previous section, the time derivative of η is calculated
as

η̇ =

(
Lfph1
Lfph2

)
=

(
ẋ1
ẋ2

)
=

σ3+1∑
i3=σ3

wi33 (x3)

(
f1(d3(i3))x5
f2(d3(i3))x5

)
where the vertices are f1(d3(i3)) = cos d3(i3) and
f2(d3(i3)) = sin d3(i3). The time derivative of η doesn’t
contain the control inputs (µ1, µ2). We calculate the time
derivative of η̇. We get

η̈1 =L2
fph1 =

σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))x6

+

σ3+1∑
i3=σ3

wi33 (x3)f
′
1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x
2
5,

η̈2 =L2
fph2 =

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))x6

+

σ3+1∑
i3=σ3

wi33 (x3)f
′
2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))x
2
5,
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where f3(d4(i4)) = tan(M tanh d4(i4))/L. We continue to
calculate the time derivative of η̈. We get

η
(3)
1 =L3

fph1 + Lg1L
2
fph1µ1 + Lg2L

2
fph1µ2

=x35

σ3+1∑
i3=σ3

wi33 (x3)f
′′

1 (d3(i3))

(
σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi33 (x3)f
′

1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi33 (x3)f1(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi33 (x3)f
′
1(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f
′
3(d4(i4))µ2,

η
(3)
2 =L3

fph2 + Lg1L
2
fph2µ1 + Lg2L

2
fph2µ2

=x35

σ3+1∑
i3=σ3

wi33 (x3)f
′′

2 (d3(i3))

(
σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

)2

+3x5x6

σ3+1∑
i3=σ3

wi33 (x3)f
′

2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f3(d4(i4))

+

σ3+1∑
i3=σ3

wi33 (x3)f2(d3(i3))µ1

+x25

σ3+1∑
i3=σ3

wi33 (x3)f
′
2(d3(i3))

σ4+1∑
i4=σ4

wi44 (x4)f
′
3(d4(i4))µ2.

The vertices f
′′

1 (d3(i3)), f
′′

2 (d3(i3)) and The controller of
(12) is designed as

(µ1, µ2)
T =− (LgL

2
fph)

−1L3
fph+ (LgL

2
fph)

−1v

=−
(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1(
L3
fp
h1

L3
fp
h2

)
+

(
Lg1L

2
fp
h1 Lg2L

2
fp
h1

Lg1L
2
fp
h2 Lg2L

2
fp
h2

)−1
v

where v is the linear controller of the linear system (13).{
ż =Az +Bu,

y =Cz,
(13)

where z = (h1, Lfph1, L
2
fp
h1, h2, Lfph2, L

2
fp
h2)

T ∈ <6,

A=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B=


0 0
0 0
1 0
0 0
0 0
0 1

 , C=


1 0
0 0
0 0
0 1
0 0
0 0



T

.

If x5 6= 0, there exists a controller (µ1, µ2)
T of the tricycle

robot model (12) since det(LgL
2
fp
h) 6= 0.

In this case, the state space of the tricycle robot model is
divided into 13×13 vertices. Therefore the system has 12×12
local PML models. Note that all the linearized systems of
these PML models are the same as the linear system (13).

In the same manner of (11), the dynamic feedback lin-
earizing controller of the PML system is designed as

ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fph+ LgL
2
fhv.

(14)

The stabilizing linear controller v = −Fz of the linearized
system (13) is designed so that the transfer function C(sI −
A)−1B is Hurwitz.

Note that the dynamic controller (14) based on PML
model is simpler than the conventional one (11). Since the
nonlinear terms of controller (14) contain not the original
nonlinear terms (e.g., sinx3, cosx3, tan(M tanhx4)) but
the piecewise approximation models.

C. Tracking Control for PML System
We apply a tracking control [15] to the tricycle robot

model (7). Consider the following reference signal model{
ẋr =fr,

ηr =hr.

The controller is designed to make the error signal e =
(e1, e2)

T = η − ηr → 0 as t → ∞. The time derivative
of e is obtained as

ė =η̇ − η̇r =
(
Lfphp1
Lfphp2

)
−
(
Lfrhr1
Lfrhr2

)
.

Furthermore the time derivative of ė is calculated as

ë =η̈ − η̈r =
(
L2
fp
hp1

L2
fp
hp2

)
−
(
L2
fr
hr1

L2
fr
hr2

)
Since the controller µ doesn’t appear in the equation ë, we
calculate the time derivative of ë.

e(3) =η(3) − η(3)r

=

(
L3
fp
hp1

L3
fp
hp2

)
+ LgL

2
fph

(
µ1

µ2

)
−
(
L3
fr
hr1

L3
fr
hr2

)
The tracking controller is designed as

ü1 =µ1,

u2 =Msech2x4µ2,(
µ1

µ2

)
=L3

fph− L
3
frhr + LgL

2
fphv.

(15)

The linearized system (13) and controller v = −Fz
are obtained in the same manners as the previous sub-
section. The coordinate transformation vector is z =
(e1, ė1, ë1, e2, ė2, ë2)

T .
Note that the dynamic controller (15) based on PML model

is simpler than the conventional one on the same reason of
the previous subsection.

V. SIMULATION RESULTS

We apply the previous tracking control method to the
tricycle robot model (7). Although the controller is simpler
than the conventional I/O feedback linearization controller,
the tracking performance based on PML model is the same as
the conventional one. In addition, the controller is capable to
use a nonlinear system with chaotic behavior as the reference
model. In the following simulations, the tricycle length L is
1.0 [m] and the angle constrain M is π/3 [rad.].
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A. Ellipse-shaped reference trajectory

Consider an ellipse model as the reference trajectory.(
xr1
xr2

)
=

(
R1 cos θ + xr1(0)
R2 sin θ + xr2(0)

)
,

where R1 and R2 are the semiminor axes and
(xr1(0), xr2(0)) is the center of the ellipse. Fig. 3
shows the simulation result. The dotted line is the reference
signal and the solid line is the tricycle tracking trajectory.
The semiminor parameters R1 and R2 are 10 and 25.
The initial positions are set at (x(0), y(0)) = (5, 0) and
(xr(0), yr(0)) = (10, 0). Fig. 4 shows the control inputs u1
and ν1 of the tricycle. Fig. 5 shows the error signals of the
tricycle position (x, y).

B. Trajectory tracking control using ellipse-shaped reference
models

Arbitrary tracking trajectory control can be realized using
the ellipse-shaped tracking trajectory method. The controller
design procedure is as follows:

1) Assign passing points (px(i), py(i)), i = 1, . . . , n.
We consider the passing points: (0, 0), (10, 20),
(26, 30), (18, 50) and (2, 70)

2) Construct some ellipses trajectories to connect the
passing points smoothly.
From (0, 0) to (10, 20), the trajectory 1:(

xr1
xr2

)
=

(
10 cos θ + 10

20 sin θ

)
, (16)

where π/2 ≤ θ ≤ π.
From (10, 20) to (26, 30), the trajectory 2:(

xr1
xr2

)
=

(
16 cos θ + 10
10 sin θ + 30

)
, (17)

where −π/2 ≤ θ ≤ 0.
From (26, 30) to (18, 50), the trajectory 3:(

xr1
xr2

)
=

(
8 cos θ + 18
20 sin θ + 30

)
, (18)

where 0 ≤ θ ≤ π/2.
From (18, 50) to (2, 70), the trajectory 4:(

xr1
xr2

)
=

(
16 cos θ + 18
10 sin θ + 60

)
, (19)

where −π/2 ≤ θ ≤ −π/2.
3) Design the controllers (15) for the ellipse tracking

trajectories (16)-(19).

We show a tracking trajectory control example for the tricycle
robot system. Fig. 6 shows the reference signals (16)-(19)
and the tricycle tracking trajectory. The dotted line is the
reference signal and the solid line is the tricycle tracking
trajectory. Fig. 7 shows the control inputs u1 and ν1 of the
tricycle. Fig. 8 shows the error signals with respect to the
tricycle position (x, y).
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Fig. 3. Ellipse-shaped reference signal and the tricycle tracking trajectory
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VI. CONCLUSIONS

We have proposed a trajectory tracking controller design
of a tricycle robot as a non-holonomic system with PML
models. The approximated model is fully parametric. I/O
dynamic feedback linearization is applied to stabilize PML
control system. PML modeling with feedback linearization is
a very powerful tool for analyzing and synthesizing nonlinear
control systems. We also have applied a method for tracking
controller to the tricycle robot. Although the controller is
simpler than the conventional I/O feedback linearization
controller, the tracking performance based on PML model
is the same as the conventional one. Examples have been
shown to confirm the feasibility of our proposals by computer
simulations.
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