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Abstract—Robust model matching control of input/output
switched asynchronous sequential machines is addressed in this
paper. The control objective is to determine the existence con-
dition and design algorithm for a corrective controller that can
match the stable-state behavior of the closed-loop system to that
of a reference model, while invalidating any transient faults that
cause unauthorized state transitions. Switching operations and
correction procedures are incorporated using output feedback
so that the controlled switched machine can show the desired
input /output behavior and fault tolerance. A matrix expression
is presented to address reachability of switched asynchronous
sequential machines with output equivalence with respect to a
model. The proposed reachability condition for the existence of
a controller and its design procedure are outlined in a simple
example.

Index Terms—asynchronous sequential machines, switched
systems, corrective control, fault tolerance.

I. Introduction

Asynchronous sequential machines, or clockless logic cir-
cuits as they are often called, are hardware/software systems
that operate sequentially with no global synchronizing clock
[1]. Since first invented in mid 1950’s [2], asynchronous
sequential machines have been used in various areas as an
important building block of the system, e.g., digital systems
[3], communication networks [4], parallel computation [5],
etc. Corrective control is a novel automatic control theory
developed exclusively for asynchronous machines. It utilizes
the unique feature of asynchronous machines that the speed
of their transient transitions is very fast (in zero time,
ideally). As long as the stable reachability is guaranteed from
a given state to a desired state, a corrective controller can
generate a control input sequence that drives the considered
machine towards the desired state. With the aforementioned
capability, corrective control has been successfully applied
to compensating the stable-state behavior of a given asyn-
chronous machine with various faulty behavior [6]–[9].

In this paper, we address the robust model matching
problem of switched asynchronous sequential machines. The
switched systems are a kind of hybrid systems that consist
of several submachines and a rule that coordinates switching
operations between them. Due to their importance in both
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theoretical and practical applicability, the study of switched
systems has drawn a great attention, especially in the field
of linear systems [10]. In event-driven dynamics, however,
few studies on switched systems have been reported so
far. Notable among them are switched Boolean networks
for gene regulatory networks [11] and control of switched
asynchronous sequential machines by the author [12].

In the prior work [12], the problem of model matching for
switched asynchronous sequential machines is investigated
in the framework of corrective control wherein submachines
have the characteristics of input/state machines, namely the
present state is given as the output. Compared with the
prior work [12], the contribution of the present study is
summarized as follows.

(i) In this study, we focus our concern on the case that
submachines have the form of input/output machines
whose output value is different from the present state
[7]. In contrast to the case of switched machines with
input/state submachines, the closed-loop system does
not have to match the behavior of the model in terms of
the input/state specification. Instead, model matching is
regarded as complete if the controlled machine provides
the same output as that of the reference model in
response to a given external input. The necessary and
sufficient reachability condition for the existence of
an appropriate corrective controller will be addressed
based on corrective control theory and asynchronous
mechanism.

(ii) We also consider the problem of fault tolerance for
switched asynchronous machines. In particular, we as-
sume that each submachine may suffer from a transient
fault that causes an unauthorized state transitions to
the submachine. In the case of controlling a single
asynchronous sequential machine, the condition for
tolerating this fault is that the machine must have
potential reachability from the deviated state to the
original state at which the fault occurs [13]. On the other
hand, this condition is relaxed in the case of switched
machines since there are other submachines that have
the same state space as the faulty submachine. Hence
fault tolerance is regarded as complete if the machine
can return to an equivalent state of the original state
in another submachine. A detailed analysis on fault
tolerance capability is addressed in this paper.

The rest of this work is organized as follows. Section
II provides a modeling formalism of input/output switched
asynchronous machines with transient faults and the problem
statement for model matching and robust corrective control.
In Section III, we address stable reachability of input/output
switched asynchronous machines in terms of Boolean ma-
trices and the condition for corrective controllability that
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achieves both model matching and fault tolerance. A sim-
ple example is provided in Section IV to demonstrate the
proposed methodology. Finally, Section V summarizes the
paper.

II. Notation and Basic

A. Modeling

Let us consider a switched asynchronous sequential ma-
chineΣ with m submachines. Assume that each submachine
is a single input/output asynchronous sequential machine,
namely the present output of the machine is different from
the state value.Σ is represented as

Σ “ tΣi |i P Mu

Σi “ pA,Y,X, x0
, fi , hiq

where M :“ t1, . . . ,mu, Σi is the ith submachine,A is the
input set,Y is the output set,X is the state set withn states,
x0 P X is the initial state,fi : XˆA Ñ X is the state transition
function partially defined onX ˆ A, andhi : X Ñ Y is the
output function. Since every submachine is assumed to have
an equal operational domain, the input, state, and output sets
of Σi are the same for everyi P M; only fi andhi differ from
one another.A is divided into

A “ An 9YAd

where An is the set of normal inputs andAd the set of
adversarial inputs causing unauthorized state transitions.

Each submachineΣi is operated according to the charac-
teristics of a single asynchronous sequential machine, that is,
it is not governed by any synchronizing clock and the state
transition is executed only in response to changes of external
inputs. A state–input pairpx, v1q P X ˆ A is a stable pair of
Σi if fipx, v1q “ x and x is a stable state. Iffipx, v1q , x, on
the other hand,x is a transient state andpx, v1q is a transient
pair. Note thatx may be stable or transient depending on the
value of the present input. Denote by

Uipxq :“ tv P A| fipx, vq “ xu

the set of external inputs that make a stable pair withx in
Σi . Owing to the absence of a synchronizing clock,Σi stays
at a stable pairpx, v1q indefinitely. If the inputv1 changes to
another valuev for which px, vq is a transient pair,Σi engages
in a series of transient transitions

fipx, vq “ x1

fipx1, vq “ x2

.

..

where v remains fixed. Assuming no infinite cycles,Σi

reaches thenext stable state xk such thatxk “ fipxk, vq at
the end of the chain withk transient transitions. Since the
transition speed of asynchronous sequential machines is very
fast, the meaningful behavior of asynchronous sequential
machines may be described merely in terms of stable states.
To this end, we introduce the stable recursion functions as
follows [6]:

si : X ˆ A Ñ X

sipx, vq “ x1

where x1 is the next stable state of a valid state–input pair
px, vq. A chain of transient transitions from a stable state to
its next stable state, as represented bysi , is termed a stable
transition. The domain ofsi can be expanded toXˆ A`

n in a
natural way as follows, whereA`

n is the set of all nonempty
strings of characters inAn.

sipx, v1v2 ¨ ¨ ¨ vkq “ sipsipx, v1q, v2 ¨ ¨ ¨ vkq,

v1v2 ¨ ¨ ¨ vk P A`

n .

B. Closed-Loop System

Fig. 1 shows the architecture of the corrective control
system for the switched asynchronous sequential machineΣ.
Here,C is the corrective controller,D is the demultiplexer,
P is the multiplexer,v P A is the external input,u P A is the
control signal,σ P M is the switching signal,yi P Y, i P M,
is the output ofΣi , and wi P Ad, i P M, is the adversarial
input occurring toΣi . Let Σc denote the closed-loop system
consisting ofC, D, P, andΣ.
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Fig. 1. Corrective control system for the switched asynchronous sequential
machineΣ.

SinceC is also designed in the form of an asynchronous
sequential machine,Σc has the asynchronous mechanism.C
providesΣ with u or σ, either of which is generated at a
time, but not simultaneously.D plays the role of determining
the active submachinewhose dynamics is manifested byΣ.
Upon receivingσ, D selectsΣσ as the active submachine and
delivers the present control signalu to Σσ. Hence changing
σ equals the activation of switching operation.P receivesm
output feedback values from all submachinesΣ1, . . . ,Σm and
selectsy, the feedback value generated byΣσ. P forwardsy
and i P M, the index of the active submachine, toC.

wi represents a transient fault occurring toΣi . wi forcesΣi

to undergo an unauthorized state transition. Unless corrected
immediately, the next behavior ofΣ would show unpre-
dictable and violating behavior. Assume thatwi is defined
at a statex of Σi . Then, the transient fault caused bywi is
described as follows.

sipx,wiq “ x1

where x1 is the deviated state reached fromx as the result
of the fault occurrence.

The control objective is to present the existence condition
and design algorithm for a corrective controllerC that not
only invalidates all the transient faults, but also matches the
stable-state behavior ofΣc to that of a reference model

Σ1 “ pA,Y,Z, z0
, f 1
, h1q.
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Note thatΣ1 has the same input and output set as those ofΣ

whereas its state set

Z “ tz1, . . . , zru

differs fromX. Accordingly, f 1 andh1 have mapping relations
f 1 : Z ˆ A Ñ Z and h1 : Z Ñ Y. We also assume thath1

is an injective function, namely eachz P Z corresponds to a
distinctive output value.

We regard that model matching betweenΣc and Σ1 is
accomplished if two machines show the same input/output
behavior, i.e., for an external input, they provide an identical
output value. Moreover, each submachineΣi can serve as
structural redundancy ofΣ in model matching control. In
the case of input/output control for single asynchronous
machines [7], model matching is infeasible if the considered
machine does not have enough reachability to realize the
matched behavior withΣ1. However, the switched machine
Σ can change its mode to another submachine whenever the
active submachine does not have the required reachability,
and can active the correction procedure to take the new active
submachine toward the desired state. The foregoing property
will be similarly applied to constructing fault-tolerant control
mechanism.

To avoid unpredictable behaviors caused by the absence of
a synchronizing clock, we assume thatΣc always preserves
the principle of fundamental mode operations [14] whereby
a variable must change its value when bothC andΣ are in
stable states, and no two or more variables can be altered
simultaneously.

III. M ain Result

A. Skeleton Matrices

We first introduce several skeleton matrices that are needed
to describe stable reachability of switched machines for
model matching control.

Definition 1. Given Σ1 “ pA,Y,Z, z0, f 1, h1q with the stable
recursion function s1, the one-step skeleton matrix S1pΣ1q is
an r ˆ r matrix whosepp, qq entry is defined as

S1
p,qpΣ1q “

"

1 Dv P An such that s1pxp, vq “ xq

0 otherwise

S1pΣ1q epitomizes stable reachability of the modelΣ1 via
unit input characters. Note that we have to consider only one-
step stable reachability ofΣ1 since model matching control
will be activated upon the transmission of an input character
to Σ andΣ1.

Definition 2. Given Σi “ pA,Y,X, x0, fi , hiq and Σ1 “
pA,Y,Z, z0, f 1, h1q, the output equivalence list ofΣi with
respect toΣ1 is EpΣi ,Σ

1q :“ tEi
1, . . . ,E

i
ru where

Ei
p :“ tx P X|hipxq “ h1pzpqu, p “ 1, . . . , r.

Ei
p P X represents the subset ofX every element of which

has the same output aszp P Z. If Σi andΣ1 stay atx P Ei
p

andzi , respectively, they are said to have output equivalence.

Definition 3. Given the output equivalence list EpΣi ,Σ
1q “

tEi
1, . . . ,E

i
ru, the fused skeleton matrix∆piq is an rˆr matrix

whosepp, qq entry is defined as

∆p,qpiq “

$

&

%

1 @x P Ei
p, Dx1 P Ei

q and tP A`

n

such that sipx, tq “ x1

0 otherwise

∆piq depicts stable reachability ofΣi in terms of elements
of EpΣi ,Σ

1q. ∆p,qpiq “ 1 if every state ofEi
p can reach at least

a state ofEi
q via a chain of stable transitions (sipxp, tq “ xq).

Note that the final state ofEi
q is unspecified since stable

reachability between elements ofEpΣi ,Σ
1q is measured with

respect to outputs, that is, any state ofEi
q shows identical

output characteristic.
Switching capability ofΣ implies the ability ofΣ to change

its mode from a submachine to another submachine at a
specific stable state. In the prior work [12], a constraint
is imposed on the switching operation that as the result of
switching, the active submachine always takes the same state
possessed by the previous submachine. In this study, we
generalize the switching operation by relaxing the foregoing
constraint. In other words, the new active submachine does
not necessarily transfer to the same state at which the old
one has stayed before switching. To address the switching
relation between two submachines, we define the following
matrix.

Definition 4. Wpi, jq, the switching incidence matrix of two
submachinesΣi andΣ j , is an n̂ n matrix whosepp, qq entry
is

Wp,qpi, jq “

$

&

%

1 Σ switches the mode fromΣi at xp

to Σ j at xq

0 otherwise

Wpi, jq represents switching capability ofΣ in the most
general way, that is, the state of the present submachine may
differ from the previous one after switching. The motiva-
tion for introducingWpi, jq stems from the fact that some
switched machines have multiple submachines that share the
same system module to compose the state space. As the
switching operation depends on this implementation restraint,
the next state may be different from the previous one.

Note that for switching fromΣi at xp to Σ j at xq, there
must exist an external inputa P A that makes a stable pair
with both xp of Σi and xq of Σ j , i.e.,

Wp,qpi, jq “ 1 ñ Uipxpq X U jpxqq , ∅. (1)

Under the principle of fundamental mode operations,Σi

should stay at the stable statexp at the moment that the
switching signalσ changes. Hence the present control signal
is u P Uipxpq. Moreover,u must also make a stable pair with
xq in Σ j , namelyu P U jpxqq; otherwiseΣ j could not maintain
xq upon completion of the switching operation. However, the
condition u P U jpxqq may not be always valid sinceu is
determined only by the past state trajectory ofΣi . Still, as
long asUipxpq X U jpxqq , ∅ is held true,C can achieve
the switching operation by changing the control signal to
u1 P Uipxpq X U jpxqq right before transmitting the switching
signalσ “ j. In this sense, (1) is a requisite for guaranteeing
consistent switching.

While the switching incidence matrixWpi, jq is defined
based on states, it can be transformed into a matrix based on
the entries of the output equivalence list as follows.
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Definition 5. Let EpΣi ,Σ
1q and EpΣ j ,Σ

1q be the output
equivalence ist ofΣi andΣ j with respect toΣ1, and let Wpi, jq
be as defined in Definition 4. Gpi, jq, the switching incidence
matrix of Σi andΣ j with output equivalence with respect to
Σ1, is an rˆ r matrix whosepp, qq entry is

Gp,qpi, jq “

"

1 @xp1 P Ei
p, Dxq1 P Ei

q s.t. Wp1,q1 pi, jq “ 1
0 otherwise

In short,∆piq shows stable reachability of single subma-
chines andGpi, jq provides switching capability ofΣ between
different submachines, both represented in terms of output
equivalence with respect toΣ1. The following definition
combines stable reachability and switching capability ofΣ
in one matrix expression.

Definition 6. C kpΣq, the one-step switching skeleton matrix
of Σ with output equivalence withΣ1 (k “ 1, 2, . . .), is an
rm ˆ rm matrix recursively defined as

C
1pΣq :“

¨

˚

˚

˚

˝

∆p1q Gp1, 2q ¨ ¨ ¨ Gp1,mq
Gp2, 1q ∆p2q ¨ ¨ ¨ Gp2,mq
...

...
...

...

Gpm, 1q ¨ ¨ ¨ ¨ ¨ ¨ ∆pmq

˛

‹

‹

‹

‚

C
kpΣq :“ C

k´1pΣq ˆB C
1pΣq

where ‘̂ B’ denotes the Boolean product of two Boolean
matrices where logic AND and OR are used instead of
multiplication and plus operations in the matrix product.

Definition 7. ΠpΣq, the switching skeleton matrix ofΣ with
output equivalence withΣ1, is an rmˆ rm matrix defined as

ΠpΣq :“
nḿ 1
ÿ

k“1

`B
C

kpΣq

where ‘̀ B’ denotes the Boolean addition of two matrices.

C kpΣq shows whether an element of the output equivalence
list of a submachine can be reachable from another element
of the output equivalence list of another submachine in
exactlyk steps. Here, “one-step” implies thatΣ takes either
one switching operation or a chain of stable transitions.
ΠpΣq is a generalized description of stable reachability for
the switched asynchronous sequential machineΣ interpreted
in term of output equivalence with respect to the given
modelΣ1. Not only doesΠpΣq represent stable reachability
within each submachine, it also elucidates whether a state
of a submachine can be reached from another state of a
different submachine by a combination of stable transitions
and switching operations wherein both start and final state
are represented as entries of the corresponding output equiv-
alence list. SinceΣ hasnm states in total, any state inΣ can
be reached withinnm´ 1 steps of switching and correction
procedures. HenceC 1pΣq, . . . ,C nḿ 1pΣq are sufficient to
express the entire reachability ofΣ.

Note thatEi
j P EpΣi ,Σ

1q, or the jth entry of the output
equivalence list ofΣi , has the jth position of theith block
of C kpΣq andΠpΣq. Denoting byθij P t1, . . . , rmu the index
of Ei

j , we have

θ
i
j “ pi ´ 1qr ` j. (2)

B. Model Matching

Remind that forΣ1 with its state setZ “ tzr , . . . , zru,
the output equivalence list of submachineΣi is denoted by
EpΣi ,Σ

1q “ tEi
1, . . . ,E

i
ru, i “ 1, . . . ,m. Hence for each

zj P Z, we havem equivalent subsets of states, namely
E1

j , . . . ,E
m
j .

Definition 8. Given Σ and Σ1, Φ, a subordinate state list
with output equivalence with respect toΣ1, is

Φ :“ tx j P E
i j

j |i j P M, j “ 1, . . . , ru.

KpΦq, the skeleton matrix ofΦ, is an r ˆ r matrix whose
pp, qq entry is defined as (p, q P t1, . . . , ru)

Kp,qpΦq :“ Πp1,q1 pΣq

whereΠpΣq is the switching skeleton matrix ofΣ with output
equivalence withΣ1 introduced in Definition 7, and p1 “ θ

ip
p

and q1 “ θ
iq
q (see (2)).

Φ consists ofr states, each statex j taken from an entry
E

i j

j of the output equivalence list ofΣi j . i j implies that

submachineΣi j having the entryEi j

j may differ from eachzj .
In other words,Φ represents a collection ofr states that are
output equivalent withZ, while elements ofΦ may belong
to different submachines.

UsingΦ and the skeleton matrices defined in the previous
discussion, we now present the existence condition for a
corrective controller that solves the model matching problem
betweenΣc andΣ1.

Theorem 1. Given the switched asynchronous sequential
machineΣ and the modelΣ1, a corrective controller C
in Fig. 1 exists that matches the stable-state behavior of
Σc to that of Σ1 if and only if a subordinate state list
Φ “ tx j P E

i j

j |i j P M, j “ 1, . . . , ru exists for which

KpΣ1q ď KpΦq. (3)

Condition (3) means thatΣ possesses a subordinate state
list Φ “ tx1, . . . , xru whose stable reachability is greater than
the modelΣ1. Provided that (3) is valid, assumeKp,qpΣ1q “ 1
for somep, q P t1, . . . , ru, which implies thatΣ1 has a stable
transition fromzp to zq. But sinceKpΣ1q ď KpΦq, Kp,qpΦq “
1. According to Definition 8, the latter leads toΠp1,q1 pΣq with
p1 “ pip ´ 1qr ` p andq1 “ piq ´ 1qr ` q, which means that
xp P Φ of Σip can be reached toxq P Φ of Σiq through a
sequence of switching operations and correction procedures.
Hence we can design a controller module that realizes the
corresponding feedback path.

C. Fault Tolerance

Provided that a subordinate state list exists that satisfies
condition (3) of Theorem 1, we now consider the problem
of fault tolerance against transient faults. In a similar way to
∆piq, we can interpret the characteristics of all unauthorized
state transitions from the input/output viewpoint and express
them by anr ˆ r matrix KdpΣiq whosepp, qq entry is defined
as

Kd
p,qpΣiq “

$

&

%

1 Dwi P Ad, Dx P Ei
p, Dx1 P Ei

q

such thatsipx,wiq “ x1

0 otherwise
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If Kd
p,qpΣiq “ 1, Σi may experience an unauthorized

state transition such that the output value is changed from
h1pzpq to fromh1pzqq. Fault recovery against this unauthorized
transition implies thatΣi should be controlled to a state that
provides the original output valueh1pzpq.

Meanwhile, recall thatΣ must have a subordinate state list
Φ “ tx j P E

i j

j |i j P M, j “ 1, . . . , ru satisfying condition (3)
of Theorem 1 to solve the model matching problem. This
means that during the entire operation,Σ will have only an
element ofΦ as its stable state. Hence we do not have to
consider adversarial inputs that are not defined at the states
of Φ. Further, even though fault tolerance may be regarded
as complete if the machine returns to a state that is output
equivalent to the original state, in our problem setting the
machine must return to the exact state at which it has stayed
at the moment of fault tolerance to maintain model matching
with Σ1.

To describe the fault situation forΦ, we define the
following fault indicator set:

Definition 9. For x j P Φ with xj P E
i j

j (i.e., xj is a state
of submachineΣi j having the output h1pzjq), Dpx jq Ă X is a
subset of X such that

@xk P Dpx jq, Dw P Ad s.t. si j px j ,wq “ xk.

According to the above definition, ifDpx jq , H, Σi j can
undergo an unauthorized state transition fromx j to xk. To
overcome this fault in the framework of corrective control,
x j must be stably reachable fromxk through a chain of
stable transitions by a normal input string [6]. The former is
addressed as follows.

@xk P Dpx jq, Dt P A`

n s.t. si j pxk, tq “ x j . (4)

We combine condition (4) and Theorem 1 to induce the
existence condition for a corrective controller that solves both
model matching and fault tolerance. The following theorem
is the main discussion of this paper.

Theorem 2. Given the switched asynchronous sequential
machineΣ and the modelΣ1, a corrective controller C in
Fig. 1 exists that matches the stable-state behavior ofΣc to
that ofΣ1 while invalidating all the transient faults if and only
if a subordinate state listΦ “ tx j P E

i j

j |i j P M, j “ 1, . . . , ru
exists for which the following two conditions are valid.
(i) KpΣ1q ď KpΦq; and
(ii) @ j “ 1, . . . , r, @xk P Dpx jq, Dt P A`

n s.t. si j pxk, tq “ x j .

After constructing each controller module for all stable
transitions ofΣ1 and all unauthorized state transitions char-
acterized byDpx jq’s, the overall controllerC is completed by
assembling each controller module usingjoin operation [8]
that combines two corrective controller modules. A detailed
algorithm for constructingC is omitted in this study.

IV. I llustrative Example

Consider a simple switched asynchronous sequential ma-
chineΣ “ tΣ1,Σ2u (M “ t1, 2u) shown in Fig. 2, whereX “
tx1, x2, x3u with x0 :“ x1, An “ ta, b, cu, Ad “ tw1,w2u, and
Y “ t1, 2, 3u. The output of each state is marked after dash
‘ /’ in the figure. For simplicity, we setfipx, vq “ sipx, vq
for all i “ 1, 2 and px, vq P X ˆ A. Solid arrows represent
state transitions in submachines and dashed arrows switching

x2 x3

c

c

b

b

1Σ

x1

a

/1

/1 /2

c,w1
a

x2 x3

c

c

b

b

2
Σ

x1

a

/1

/3 /3

c
w2

Fig. 2. State flow diagram ofΣ “ tΣ1,Σ2u.

z2 z3

c

c

b

b

z1

a

/1

/2 /3

c

Fig. 3. State flow diagram ofΣ1.

capability betweenΣ1 and Σ2. Fig. 3 shows the state flow
diagram of the modelΣ, where the state set isZ “ tz1, z2, z3u.

First, we derive the output equivalence list ofΣ1 andΣ2

with respect toΣ1.

EpΣ1,Σ
1q “ pE1

1,E
1
2,E

1
3q “ ptx1, x2u, tx3u,∅q

EpΣ2,Σ
1q “ pE2

1,E
2
2,E

2
3q “ ptx1, x2u,∅, tx3uq.

Next, referring to Figs. 2 and 3, we compute the fused
skeleton matrix and switching incidence matrix as follows.

∆p1q “

¨

˝

1 1 0
1 1 0
0 0 0

˛

‚

∆p2q “

¨

˝

1 0 1
0 0 0
1 0 1

˛

‚

Gp1, 2q “

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚

Gp2, 1q “

¨

˝

0 0 0
0 0 0
0 1 0

˛

‚

The one-step switching skeleton matrixC 1pΣq is derived
as

C
1pΣq “

ˆ

∆p1q Gp1, 2q
Gp2, 1q ∆p2q

˙

“

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 0 0 1
1 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 1 0 1

˛

‹

‹

‹

‹

‹

‹

‚

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



The one-step skeleton matrixS1pΣ1q of the modelΣ1 is
computed as

S1pΣ1q “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

To determine the existence of a corrective controller for
model matching betweenΣ andΣ1, we computeC kpΣq, k “
2, . . . , 5, so as to derive the switching skeleton matrixΠpΣq
according to Definitions 6 and 7.

ΠpΣq “

¨

˚

˚

˚

˚

˚

˚

˝

1 1 0 1 0 1
1 1 0 1 0 1
0 0 0 0 0 0
1 1 0 1 0 1
0 0 0 0 0 0
1 1 0 1 0 1

˛

‹

‹

‹

‹

‹

‹

‚

Referring to the above result, take a subordinate state listΦ

as follows.

Φ “ tx1 P E1
1, x3 P E1

2, x3 P E2
3u.

The corresponding index set ofΦ is t1, 2, 6u. Finally, by
Definition 8, we derive the skeleton matrixKpΦq of Φ as

KpΦq “

¨

˝

1 1 1
1 1 1
1 1 1

˛

‚

For instance,K1,3pΦq “ Π1,6pΣq “ 1 and K3,2pΦq “
Π6,2pΣq “ 1. Clearly, sinceΦ satisfies condition (3), by
Theorem 1 a corrective controllerC can be designed that
solves the model matching problem betweenΣ andΣ1.

To consider fault tolerance, we derive the fault indicator
set Dpx jq according to Definition 9 as follows.

Σ1 :: Dpx1q “ tx3u

Dpx2q “ Dpx3q “ H

Σ2 :: Dpx3q “ tx1u

Dpx1q “ Dpx2q “ H.

Referring to Fig. 2, it is clear thats1px3, aq “ x1 and
s2px1, cq “ x3. Therefore, condition (4) is held true and by
Theorem 2 a corrective controller exists that solves model
matching as well as fault tolerance, and the subordinate state
list Φ derived above can be still used to realize fault-tolerant
control procedures.

V. Conclusion

In this paper, we have presented a control theoretic strat-
egy for model matching and fault tolerance of a class of
switched asynchronous sequential machines. When switched
asynchronous sequential machines are endowed with sub-
machines having the form of input/output machines, their
reachability are described in terms of output equivalence
with respect to a given model. We have addressed that
stable reachability and switching capability of switched
asynchronous sequential machines can be represented by
matrix expressions, which leads to the existence condition
for a corrective controller solving the problem of model
matching and fault tolerance against transient faults. The
examination of the controller existence has been provided
in the illustrative example.
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