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Abstract—This study discusses a design method for system
identification using multilayer hypercomplex–valued neural net-
works, such as complex, hyperbolic, bicomplex and quaternion
neural networks, and investigates its characteristics. The di-
rect transfer function identifier, which employs a multilayer
hypercomplex–valued neural network, is used to estimate the
output of the target system. A computational experiment involv-
ing estimation of a discrete–time dynamic plant is conducted
to evaluate the feasibility of the hypercomplex–valued neural
network–based direct transfer function identifier. As a practical
application of dynamic system identification, the direct transfer
function identifier is used to estimate historical foreign exchange
data and motion data of Taijiquan in addition to investigating its
characteristics. The experimental results show the effectiveness
of the proposed direct transfer function identifier.

Index Terms—Hypercomplex–valued neural network, System
identification, Dynamic systems, Historical data, Motion data.

I. INTRODUCTION

THE use of hypercomplex numbers for neural networks
has attracted increasing attention from engineering re-

search fields because it helps to learn to handle a wide variety
of geometric objects and their transformation in the form
of hypercomplex numbers. To overcome classically hard–to–
treat intractable problems with real–number neural networks,
high–dimensional neural networks based on hypercomplex
numbers, such as complex numbers and quaternions, have
been investigated [1] and their effectiveness in solving mul-
tidimensional problems has been demonstrated [2]. Complex
neural networks have been used successfully in various
engineering applications, for example, filtering, time–series
signal processing, communications, image processing and
video processing [3]. As an extension of complex numbers,
quaternions decrease computational complexity significantly
in three– or four–dimensional problems compared to real
numbers. Therefore, quaternion neural networks can cope
with multidimensional issues more efficiently by directly
employing quaternions. Several studies have used quaternion
neural networks in applications requiring multidimensional
signal processing, for instance, rigid body attitude control
[4], colour image processing [5], signal processing [6][7],
filtering [8], pattern classification [9] and inverse problems
[10]. In previous studies, we have presented control schemes
for robot manipulators [11] and servo–controllers [12][13].
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In this study, a method of system identification based on a
hypercomplex–valued neural network is discussed from the
viewpoint of its applicability to time–series signal processing
of dynamic systems. A method of designing a direct transfer
function identifier in which the neural network output serves
as an estimate of the output of a target system is presented.
Computational experiments for estimating the output of a
discrete–time dynamic plant, historical foreign exchange data
and motion data of Taijiquan movements are conducted to
evaluate the feasibility of the proposed neural network–based
direct transfer function identifier.

II. DIRECT TRANSFER FUNCTION IDENTIFIER BASED ON
HYPERCOMPLEX–VALUED NEURAL NETWORKS

Figure 1 shows a schematic of a direct transfer function
identifier using a neural network, where the output of the
neural network converges with the plant output after the
neural network is trained and the plant transfer functions
are composed in the neural network. Here y ∈ Rq is the
plant output, u ∈ Rp is the input to the plant and ŷ ∈ Rq

is the output of the identifier that consists of the output
from the hypercomplex–valued neural network. Assuming a
multilayer network topology that has one input layer, one
output layer and N hidden layers (N ≥ 0), the input–output
relationship of the hypercomplex–valued neural network
is defined. Because all signals, weights and thresholds of
a hypercomplex–valued neural network are hypercomplex
numbers, the algebra of hypercomplex numbers should be
followed to derive a training algorithm for hypercomplex–
valued neural networks. In this study, complex, hyperbolic,
bicomplex and quaternion numbers are considered so as to
consist of the neural networks.

Complex numbers consist of two real numbers and an
imaginary unit: C := {z = z0 + z1i|z0, z1 ∈ R, i2 = −1}.
The sum of two complex numbers z1 and z2 is given as

z1 ± z2 = (z10 ± z20) + (z11 ± z21)i,
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Fig. 1. Schematic of neural network–based direct transfer function
identifier.
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while the product of two complex numbers is given as

z1z2 = (z10z20 − z11z21) + (z10z21 + z11z20)i.

The norm of a complex number is defined as

|z| =
√

zz∗ =
√

z2
0 + z2

1 ,

where z∗ = z0−z1i is the conjugate of the complex number
z.

Hyperbolic numbers consist of two complex numbers and
an imaginary unit: D := {z = z0 + z1h|z0, z1 ∈ R, h2 = 1}.
The sum of two hyperbolic numbers z1 and z2 is given as

z1 ± z2 = (z10 ± z20) + (z11 ± z21)h,

while the product of two hyperbolic numbers is given as

z1z2 = (z10z20 + z11z21) + (z10z21 + z11z20)h.

The norm of a hyperbolic number is defined as

|z| =
√

zz∗ =
√

|z2
0 − z2

1 |,

where z∗ = z0 − z1h is the conjugate of the hyperbolic
number z.

Bicomplex numbers consist of two complex numbers and
an imaginary unit, that is four real numbers and three
imaginary units: T := {z = z1 + z2i2|z1,z2 ∈ C, i2

2 =
−1} = {z = z0 + z1i1 + z2i2 + z3h|z0, z1, z2, z3 ∈ R, i2

1 =
i2
2 = −1, i1i2 = h, h2 = 1}. The sum of two bicomplex

numbers z1 and z2 is given as

z1 ± z2 = (z10 ± z20) + (z11 ± z21)i1

+(z12 ± z22)i2 + (z13 ± z23)h,

while the product of two bicomplex numbers is given as

z1z2 = (z10z20 − z11z21 − z12z22 + z13s2h)
+(z11z20 + z10z21 − z13z22 − z12z23)i1

+(z12z20 − z13z21 + z10z22 − z11z23)i2

+(z13z20 + z12z21 + z11z22 + z10z23)h.

The norm of a bicomplex number is defined as

|z| =

√
zz† + z?(z†)?

2
=

√
z2
0 + z2

1 + z2
2 + z2

3 ,

where z? = z0−z1i1+z2i2−z3h, z∗ = z0+z1i1−z2i2−
z3h and z† = z0 − z1i1 − z2i2 + z3h are the conjugates of
the bicomplex number z.

Quaternion numbers consist of four real numbers and
three imaginary units: H := {z = z0 + z1i + z2j +
z3k|z0, z1, z2, z3 ∈ R, i2 = j2 = k2 = ijk = −1, ij =
−ji = k, jk = −kj = i, ki = −ik = j}. The sum of two
quaternion numbers z1 and z2 is given as

z1 ± z2 = (z10 ± z20) + (z11 ± z21)i
+(z12 ± z22)j + (z13 ± z23)k,

while the product of two quaternion numbers is given as

z1z2 = (z10z20 − z11z21 − z12z22 − z13z23)
+(z11z20 + z10z21 − z13z22 + z12z23)i
+(z12z20 + z13z21 + z10z22 − z11z23)j

+(z13z20 − z12z21 + z11z22 + z10z23)k.

The norm of a quaternion number is defined as

|z| =
√

zz∗ =
√

z2
0 + z2

1 + z2
2 + z2

3 ,

where z∗ = z0 − z1i − z2j − z3k is the conjugate of the
quaternion number z.

The output of the m-th neuron unit in the n-th layer x
(n)
m

is defined as follows:
x

(n)
m = fm(v(n)

m )

v
(n)
m =

∑
l

w
(n)
ml x

(n−1)
l + φ(n)

m
, (1)

where w
(n)
ml is the weight between the l-th neuron unit in

the (n − 1)-th layer and the m-th neuron unit in the n-th
layer, φ(n)

m is the threshold of the m-th neuron unit in the
n-th layer, and f(·) is an activation function of the neuron
unit. Here the activation function requires analyticity of the
function in the hypercomplex number domain [14].

The hypercomplex–valued neural network is trained to
minimize the cost function J defined by the norm of the
output error ε(t) as follows:

J(t) =
1
2

∑
σ

∑
k

|εk(t)|2, (2)

where εk(t) = dk − x
(o)
k (t), dk is the desired output of the

k-th neuron unit in the output layer and the superscript n of
o indicates the output layer and t is the iteration number.
Assuming increment of the network parameters in the t-
th iteration ∆ω(t) = ω(t + 1) − ω(t) where the vector
ω(t) is composed of network parameters such as weights
and thresholds, variation of the cost function ∆J can be
calculated as follows:

∆J = J(t + 1) − J(t)

≈
(

∂J(t)
∂ω(t)

)T

∆ω(t) +
(

∂J(t)
∂ω∗(t)

)T

∆ω∗(t).

Setting ∆ω(t) = −η
∂J(t)
∂ω∗(t)

and ∆ω∗(t) = −η
∂J(t)
∂ω(t)

yields

∆J = −2η

∣∣∣∣ ∂J(t)
∂ω(t)

∣∣∣∣2 ≤ 0,

where the factor η is positive. Increment of the parameters
in the output layer is given as

∆w
(o)
kj (t) = η

∑
σ

δk(t)x∗(n−1)
j (t)

∆φ
(o)
k (t) = η

∑
σ

δk(t)
, (3)

where δk(t) = εk(t)f ′
k(v(o)

k (t)), and the superscript (n− 1)
indicates the hidden layer links to the output layer, while
increment of the parameters in the hidden layer is given by

∆w
(n)
ji (t) = η

∑
σ

δj(t)x
∗(n−1)
i (t)

∆φ
(n)
j (t) = η

∑
σ

δj(t)
, (4)

where δj(t) =
∑

k

δ
(n+1)
k (t)w(n)

kj (t)f ′
j(v

(n)
j (t)).
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To define the input of the identifier simply, we assume that
the plant is represented by a linear combination of single–
input single–output discrete–time linear systems as follows:

y(t + d) =
n∑

s=1

Aysy(t − s + 1) +
m+d−1∑

s=0

Ausu(t − s) (5)

where Ays =
[
αys

ll′

]
and Aus =

[
αus

ll′

]
(l =

1, 2, · · · , q, l′ = 1, 2, · · · , p) are plant parameter matri-
ces, n and m are plant orders, d is plant dead time
and y(t) =

[
y1(t) y2(t) · · · yq(t)

]T
, u(t) =[

u1(t) u2(t) · · · up(t)
]T

. Considering the condition
lim

t→∞
{y(t + d) − ŷ(t + d)} = 0 yields

ŷ(t + d) = ΛI(t), (6)

where

Λ =
[

Ay1 Ay2 · · · Ayn

Au0 Au1 · · · Aum+d−1

]
,

and

I(t) =
[

y(t) y(t − 1) · · · y(t − n + 1)

u(t) u(t − 1) · · · u(t − m − d + 1)
]T

.

Representing the mapping function of the hypercomplex–
valued neural network as F nn(·) yields

x(o)(t) = F nn (ω(t), ξ(t)) , (7)

where ξ(t) is the input to the hypercomplex–valued neural
network. By comparing Eqs. (6) and (7), we choose the
vector I(t − d) as input to the hypercomplex–valued neural
network ξ(t).

III. COMPUTATIONAL EXPERIMENTS

To investigate the feasibility of the direct transfer function
identifier using the hypercomplex–valued neural network,
we conducted several computational experiments. In the
experiments, we employed a split function as the activation
function [15] [16], for example, f(z) = f0(z0) + f1(z1)i+
f2(z2)j + f3(z3)k in the quaternion neural network, where
the function fl(x) = 1/(1 + e−x) (l = 0, 1, 2, 3) is a real–
valued function. The split function is not analytic in each
hypercomplex number domain; however, we use it for the
sake of computational convenience.

First, the quaternion neural network was applied to the
direct transfer function identifier. The following discrete–
time nonlinear plant was considered the target system:

y(t) = 1.3y(t − 1) − 0.3y(t − 2) + u(t − 1)
+0.2u(t − 2) + 0.03y(t − 3) + 0.2y2(t − 1),

where the second–order system is dominant. In the exper-
iment, the plant input u(t) was synthesized by a digital
proportional controller to make the plant output y(t) follow
a reference model ym(t). Here, the reference model was a
first–order linear system ym(t) = 0.6ym(t−1)+0.4r(t), and
the reference input r(t) was a rectangular wave. The number
of samples within one cycle of the rectangular wave was 100,
and the amplitude of the wave was ±0.5. Considering the
dominant part of the plant for designing the direct transfer
function identifier, the input of the hypercomplex–valued
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Fig. 2. Experimental results of system identification using quaternion neural
network with 1–3–1 (H) network topology, where the grey line indicates
plant output and the black line indicates output of the quaternion neural
network (Top: initial adaptation stage of quaternion neural network; bottom:
final adaptation stage of quaternion neural network).
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Fig. 3. Comparison of normalized cost function obtained by the
hypercomplex–valued neural network–based direct transfer function iden-
tifiers (CNN: complex neural network with 2–5–1 (C) network topology;
HNN: hyperbolic neural network with 2–5–1 (D) network topology; BNN:
bicomplex neural network with 1–3–1 (T) network topology; QNN: quater-
nion neural network with 1–3–1 (H) network topology).

neural network was defined as ξ(t) = y(t − 1) + y(t −
2)i + u(t − 1)j + u(t − 2)k. The estimated plant output
comprised one of the imaginary parts of the quaternion neural
network’s output, that is, ŷ(t) = Imk[x(o)(t)], where Imk
denotes the imaginary part of the imaginary unit k. Figure
2 shows an example of the system response when the direct
transfer function identifier consisted of the quaternion neural
network with a 1–3–1 network topology. As shown in Fig. 2,
the identifier output converges with the plant output. Figure
3 shows the normalized cost function averaged within one
period of the reference input. Here, the normalized cost
function is averaged using 100 results of each neural network
within the range [9000, 10000]. The topology of each neural
network was defined so that the number of parameters, such
as weights and thresholds, corresponded to the number in
the quantum neural network. The normalized cost function
of the quaternion neural network is smaller than that of the
other neural network. These results indicate the feasibility
of the proposed direct transfer function identifier using the
hypercomplex–valued neural network.

Second, the characteristics of the direct transfer function
identifier were investigated with historical foreign exchange
data for currency pairs of the Japanese Yen and four major
currencies (US Dollar, British Pound, Euro and Swiss
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Fig. 4. Experimental results of quaternion neural network for finding
optimal network topology based on AIC, where M indicates the number of
neurons in the hidden layer.
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Fig. 5. Comparison of estimation performance obtained by the
hypercomplex–valued neural network–based direct transfer function iden-
tifiers (RNN: real number neural network; CNN: complex neural network;
HNN: hyperbolic neural network; BNN: bicomplex neural network; QNN:
quaternion neural network).

Franc) as the target system. Here, the total number of data
points was 3523 (4/Jan./2002 ∼ 5/Aug./2016). We split
the data into two sets, namely, training set (4/Jan./2002
∼ 2/Jun./2009) and test set (3/Jun./2009 ∼ 5/Aug./2016).
The training set was used in closed tests for evaluating the
training accuracy, while the test set was used in open tests
for evaluating the estimation accuracy of the proposed direct
transfer function identifiers. Assuming that the dynamics
of historical data can be represented by the autoregressive

(AR) model yl(t) =
m∑

s=1

alsyl(t − s) + ul(t) (l = 1, 2, 3, 4),

the input vector of the hypercomplex–valued neural network
in the direct transfer function identifier was defined as
ξ(t) = [ y(t − 1) y(t − 2) · · · y(t − m) u(t) ]T. In
the experiments, y1, y2, y3 and y4 denoted the currency pairs
USD/JPY, GBP/JPY, EUR/JPY and CHF/JPY, respectively,
and ul(t) was random noise generated in the interval
[−0.02, 0.02]. Figure 4 shows the result of network
topology optimization of the quaternion neural network
by using the Akaike Information Criterion (AIC) in the
closed test. Here the components of the input vector were
y = y1 + y2i + y3j + y4k and u = u1 + u2i + u3j + u4k,
while the estimation results were given by ŷ(t) =
[ Re[x(o)(t)] Imi[x(o)(t)] Imj[x(o)(t)] Imk[x(o)(t)] ]T.

1 2

3 4

5

Fig. 6. Representation of movement ‘Push down and stand on one leg’ in
24–form Taijiquan with CG model based on captured motion data.

As shown in Fig. 4, the optimal order of the input m
is one and the optimal number of neurons in the hidden
layer M is one because of the lowest number of the AIC.
Figure 5 shows the normalized cost function averaged
within the range of each test. Here, the normalized cost
function is averaged using 20 results of each neural network.
Although the normalized cost functions in the closed test
are almost identical, the normalized cost function of each
hypercomplex–valued neural network in the open test is
smaller than that of the real number neural network. These
results indicate the effectiveness of the hypercomplex–valued
neural network in applications involving multiple–input
multiple–output system identification.

Next, the direct transfer function identifier was applied to
estimate human movements acquired by an optical motion
capture system. Here, the basic routine of 24–form Taijiquan
was considered as the movement and the motion data of
the movement ‘Push down and stand on one leg’, shown in
Fig. 6, in which one arm is raised and the other is lowered
while simultaneously standing on one leg – a crouching step
changes the high position to a low one and then one leg
is raised with a weight supported by the other one – was
used as the target system. A subject (Japanese male, age:
22, height: 177 cm) who learned Taijiquan for six months
from a Taijiquan instructor performed the movement twice,
and the 3D motion data of 36 body parts were captured
at a sampling rate of 30 fps [17]. In the motion capture
system, the x– and the z–axes comprise the horizontal
plane, and the y–axis is perpendicular to the aforementioned
plane. In the computational experiment, 3D motion data
of the head (xh(t), yh(t), zh(t)) and centre of the waist
(xw, yw(t), zw(t)) were considered as the target data. The
total number of data points was 2646, and the data was split
up into two sets – training set covering the range [0, 1322]
and test set covering the range [1323, 2646]. Given that
the motion had a constant acceleration characteristic, the
second–order AR model was assumed to define the input
vector of the hypercomplex–valued neural network ξ(t) =
[ yh(t − 1) yw(t − 1) yh(t − 2) yw(t − 2) uh(t)
uw(t) ]T, where yl = xli + ylj + zlk and

ul = ul1i + ul2j + ul3k (l = h,w) represent
random noise. The x–, y– and z– positions of the
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Fig. 7. Experimental results of motion data estimation using quaternion
neural network with 6–2–2 (H) network topology; the black line indicates
the measured data and the grey line indicates the output of the quaternion
neural network (Top: 3D position of head, bottom: 3D position of waist).

head and waist were estimated from the imaginary
parts of the quaternion neural network’s output:
ŷ(t) = [ Imi[x(o)(t)] Imj[x(o)(t)] Imk[x(o)(t)] ]T.
Figure 7 shows the system response for the case in
which the direct transfer function identifier consisted of a
quaternion neural network with a 6–2–2 network topology.
As shown in the figure, the output of the quaternion neural
network could approximate the motion data in the closed
and the open tests. This result indicates the usefulness of
the proposed direct transfer function identifier using the
hypercomplex–valued neural network.

IV. CONCLUSIONS

In this study, the capability of hypercomplex–valued neural
networks was investigated and their application to system

identification was explored. A direct transfer function iden-
tifier in which the output of a target system is estimated by
the multilayer hypercomplex–valued neural network was de-
signed and its characteristics were evaluated. Computational
experiments using a complex neural network, hyperbolic
neural network, bicomplex neural network and quaternion
neural network were conducted to estimate the output of a
discrete–time dynamic plant, historical foreign exchange data
and the motion data of Taijiquan movements. The experimen-
tal results confirmed the feasibility and effectiveness of the
proposed hypercomplex–valued neural network–based direct
transfer function identifier.
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