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Abstract—In this paper the attitude dynamics of a 

spacecraft (SC) is considered under the control by the 

geometrical relocation of the internal position of the center of 

mass relatively the SC-frame. This relocation can, firstly, 

change the SC inertia tensor and, secondly, change the lever 

of force at the creation of the control torque from the jet 

thrust of the SC reaction-propulsion unit; so the SC attitude 

dynamics is complex and nonstationary. The internal 

relocation of the mass center is realized by moving the 

internal mass inside the SC-frame, and then the SC attitude 

control can be constructed basing on this mass internal 

motion.  

In this work the displacements of the internal mass are 

formed by the control system proportionally to the 

components of the angular velocity of the SC. In this case the 

dynamics can have the regimes with non-trivial effects, 

including Shilnikov’s attractors.   

 

Index Terms—spacecraft, attitude, control, internal 

movable mass, Shilnikov’s attractor 

 

I. INTRODUCTION 

his work is dedicated to an investigation of nonlinear 

aspects of attitude dynamics of spacecraft (SC) with the 

geometrically relocatable internal position of the center of 

mass relatively the SC frame. The internal relocation of the 

mass center (fig.1) is realized by moving the internal mass 

m inside the SC-frame. This relocation can, firstly, change 

the SC inertia tensor and, secondly, change the lever of 

force at the creation of the control torque from the jet thrust 

(P) of the SC reaction-propulsion unit. Basing on this 

dynamical effects it is possible to build the control system 

for attitude control of SC relatively the inertial frame 

OXYZ, where the origin O corresponds to the point 

coincided with the actual center of mass of complete system 

(the main SC-frame and the internal mass). 

Let us consider the motion of the SC with moving 

internal mass at its controlled displacements proportionally 

to the SC angular velocity components. 
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In is well known, the attitude dynamics of SC (rigid 

bodies with internal degrees of freedom) can be complex 

and nonstationary, and the phase space of the system can 

collect the complex irregular dynamical objects, e.g. strange 

chaotic attractors, chaotic homo/heteroclinic orbits. These 

nonlinear aspects are very interesting from the 

mathematical point of view [1-27], and, moreover, 

investigated properties of nonlinear phenomena can be used 

to design new effective control systems. Therefore, 

discovering and studying nonlinear irregular objects is the 

main goal of the work. 

 

 
 

Fig. 1.  The spacecraft with moving internal mass and  

corresponding coordinates systems 

 

In the next sections is described the corresponding 

mechanical and mathematical models of the motion of SC 

with the relocatable internal mass. Also the numerical 

modeling results are presented, including the emergence of 

well-known Shilnikov’s attractors [1-3] in the phase space.  
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II. THE MECHANICAL AND MATHEMATICAL MODELS 

Let us consider the attitude dynamics of SC which 

consists from the main body-frame (with its own mass 

center C and mass M) and internal moving mass m, which 

can relocate its position inside the main SC body only along 

plane Π (fig.1). The moving mass-point m  in technical 

sense can correspond to the mass center of internal weights 

of a system of special regulators or multifunctional 

equipment which has technical/constructional opportunities 

to implement the controlled planar displacements relative 

the body-frame Cxyz depending on time (x=x(t), y=y(t)). 

The mass center of complete system O has the following 

values of coordinates in the body-frame: 

           ;O Ox t mx t m M x t y t y t      (1)  

where  m m M   . Then it is possible to involve the 

main central connected coordinates frame Oξηζ of the 

complete mechanical system (fig.1) with the origin O in the 

system mass center and with axes parallel to axes of the 

body-frame Cxyz; and it is clear, that  

   1 ; 1 ;O Ox x x y y y z               (2)  

Assume that the inertia tensor of the main SC body in its 

own connected coordinates system Cxyz has the general 

diagonal form Ixyz=diag[Ab, Bb, Cb]. Taking into view the 

displacements of general axes, the inertia tensor of the SC 

body in the coordinates system Oξηζ will have the form 

which is depended on time (due to dependencies (1)): 
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Then the angular momentum of the SC-frame in connected 

coordinates system Oξηζ can be written  

body  K I ω            (4) 

where  , ,
T

p q rω  is the vector of the absolute angular 

velocity of the SC in projections on the connected 

coordinates system Oξηζ. 

 The angular momentum of the moving mass relative the 

point O in projections on the axes Oξηζ can be written as 

follows: 
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where 
e

mK  corresponds to the external part of the motion 

(the angular motion of the mass m around the point O as 

the part of the “frozen” SC-frame); and 
r

mK  is the relative 

angular momentum component of the “unfrozen” point 

(relatively the body).   

 Then the dynamical equations of the system angular 

motion follow from the law of the angular momentum 

changing, written with the help of the local derivation in 

the connected coordinates system Oξηζ: 

    e

body m body m O

d

dt
    K K ω K K M    (6) 

where e

OM  is the vector of the external torques.  

 Let us consider the SC angular motion under the action 

only the jet thrust P and small spin-up torque Mz forming 

by the SC reaction-propulsion unit (fig.1). Assume that the 

modules of the force P and the torque Mz are constant and 

quite small (the smallness of these modules allows to 

consider the SC as the system with constant mass, without 

considering the change of mass of the actuating medium in 

the propulsion unit). In this case the vector of external 

torques in projections on Oξηζ has the form: 

 , ,
Te

O O O zy P x P M M         (7)  

Now for constructing the attitude control system it is 

needed to define the control laws for the x-y-displacements 

of the internal mass-point m. In this work the linear form of 

the feedback control system is selected, which provides for 

the internal mass-point the following displacements-

dependencies (on p, q, r components): 
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 (8)  

where 
j

ic  are constants     , , ,0 , ,i p q r j x y  . 

 To describe the angular position of the SC in the inertial 

space OXYZ the well-known Euler’s kinematical equations 

can be added: 

cos sin ;

( sin cos ) sin ;
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      (9)  

So, the dynamical equations (6) together with the control 

laws (8) and the links (1), (2), and with kinematical 

equations (9) form the complete dynamical system for the 

modeling the attitude dynamics of the SC with the feedback 

control of the relocatable position of the center of mass. 

 The substantial simplification of the equations can be 

fulfilled at the assumption of the negligibly small relative 

angular momentum of the moving internal mass (in 

comparison with sum of the external angular momentum of 

the mass-point and the angular momentum of the main 

body), i.e. .r e

m body m K K K  And then it is possible to 

move the corresponding terms to the right part of 

dynamical equations and to consider it as a small 

perturbing torque. Moreover, in this work the following 

extreme simplification is taken:  

0r

m K           (10) 

In spite of the simplification (10) the equations (6) in the 

scalar form remain cumbersome and implicit, therefore we 

do not present the reducing results. 

In the next section the corresponding integration results 

of the equations (6) with control laws (8) at the 

simplification (10) are shown. As it will be numerically 

verified, this dynamical system has very interesting 

dynamical behavior, and, among other things, it contains 

Shilnikov’s attractors. 
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III. MODELING RESULTS 

Basing on the obtained in the previous section 

mathematical model we can realize numerical experiments 

with the integration dynamical equations (6) at different 

sets of the system parameters, initial conditions, and 

coefficients of the control laws (8).  

A. The Case A 

Let us to present the integration results (fig.2, fig.3) at 

the parameters and coefficients (tabl.A) which quite 

correspond to the class of small SC (micro-SC). 

At the fig.2-a we can see the complex phase-trajectory 

(in the framework of the classical mechanic it is called as 

“polhode”), which evolves in the time and proceeds to the 

Shilnikov’s attractor depicted separately at the fig.3-a. To 

realize this phase trajectory the control system must 

generate (basing on the p-q-r-feedback) as the result the 

relative motion of the internal moving mass (fig.2-b), that 

also evolves to the repeated cycles (fig.3-b) along the 

Shilnikov’s attractor (fig.3-a). Also it is possible to indicate 

the interesting intermediate spiral section of the attractor. 

 

 
(a) 

 

 
(b) 

Fig. 2.  The polhode/trajectory (a) in the phase space {p, q, r} and the time-

history (b) for coordinates of the moving internal mass  

 

TABLE A 

The SC control parameters 

INERTIA 

MOMENTS 

[kg∙m2], MASS 

[kg], FORCE [N], 

TORQUE [N∙m] 

CONTROL 

COEFFICIENTS 
j

ic  [m s] 

INITIAL ANGULAR 

VELOCITIES [1/S] 

AND ANGLES 

[RAD] 

Ab 8 
x

pc  0.00025 

p0 1.0 Bb 6 
x

qc  0.0625 

Cb 4 
x

rc  -0.0375 

M 60 
0

xc  0 

q0 0.0 m 6 
y

pc  0.075 

P 1 
y

qc  0.00025 

Mz 1 
y

rc  0.0375 
r0 0.0 

μ 0.09 
0

yc  0 

 

 

 

 
(a) 

 

 
(b) 

Fig. 3.  The Shilnikov’s attractor (a) in the phase space {p, q, r} and the 

time-history (b) for coordinates of the moving internal mass  
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B. The Case B 

The second case of the Shilnikov’s attractor (fig.4) can 

be initiated in the phase space at the parameters (tabl.B).  

 
TABLE B 

The SC control parameters 

INERTIA 

MOMENTS 

[kg∙m2], MASS 

[kg], FORCE [N], 

TORQUE [N∙m] 

CONTROL 

COEFFICIENTS 
j

ic  [m s] 

INITIAL ANGULAR 

VELOCITIES [1/S] 

AND ANGLES 

[RAD] 

Ab 8 
x

pc  0.0375 

p0 1.0 Bb 6 
x

qc  0.75 

Cb 4 
x

rc  -0.375 

M 60 
0

xc  -0.0373 

q0 0.0 m 6 
y

pc  0.75 

P 1 
y

qc  0.0375 

Mz 1 
y

rc  0.375 
r0 0.0 

μ 0.09 
0

yc  -0.75 

 

 
(a) 

 

 
(b) 

Fig. 4.  The Shilnikov’s attractor (a) in the phase space {p, q, r} and the 

time-history (b) for coordinates of the moving internal mass  

C. The Case C 

The additional case (tabl.C) of the dynamics with the 

Shilnikov’s attractor (fig.5) is possible.  

 
TABLE C 

The SC control parameters 

INERTIA 

MOMENTS 

[kg∙m2], MASS 

[kg], FORCE [N], 

TORQUE [N∙m] 

CONTROL 

COEFFICIENTS 
j

ic  [m s] 

INITIAL ANGULAR 

VELOCITIES [1/S] 

AND ANGLES 

[RAD] 

Ab 1.5 
x

pc  0.0005 

p0 0.2 Bb 1.2 
x

qc  0.125 

Cb 1 
x

rc  -0.075 

M 10 
0

xc  0 

q0 0.3 m 1 
y

pc  0.15 

P 1 
y

qc  0.0005 

Mz 0.1 
y

rc  0.075 
r0 0.6 

μ 0.09 
0

yc  0 

 

 
 (a) 

 
(b) 

Fig. 5.  The Shilnikov’s attractor (a) in the phase space {p, q, r} and the 

time-history (b) for coordinates of the moving internal mass  
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Also the strong dissipative regimes can realize (fig.6). 

 

 
Fig. 6.  The dissipative possible regime  

 

So, the modeling results clearly show possibility of using 

the attitude control by the displacement of the mass center 

due to moving the internal mass, even in the cases of the 

intentional creating complex regimes with Shilnikov’s 

attractors in SC dynamics. 

IV. CONCLUSION 

In the paper the SC attitude dynamics was considered 

under the control by the geometrical relocation of the 

internal position of the center of mass. This relocation 

fulfilled with the help of moving internal mass. 

Undoubtedly, the considered control method uses the 

well-known dynamical scheme, which based on the 

dynamics of rigid bodies with internal degrees of freedom 

(moving parts), but the suggested way of SC attitude control 

implementation can be indicated as original. Concretized 

constructional parameters, including mass-inertia and 

geometrical parameters, and real intervals of dynamical 

parameters, certainly, must be defined/predefined in the 

separate self-contained research. 

The dynamics of the SC is complex, and the Shilnikov’s 

attractors can realize. This nonlinear dynamical object in its 

turn can generate the Smale’s horseshoes and produce the 

corresponding dynamical chaos. The extended study of the 

SC with attitude control by mowing internal mass and also 

chaotic aspects investigation in the SC motion along the 

Shilnikov’s attractors are the next tasks for further 

research. 
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