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Abstract—In the synthesis of control systems the dynamic
properties of a closed-loop system are very important. These
properties are determined by the choice of parameters of the
basic control law. The article focuses on the development of
the feedback, based on the implementation of the optimization
approach to the problem of the best compensation effect of
external disturbances.

Index Terms—control law, synthesis, feedback.

I. INTRODUCTION

MODERN systems of automatic motion control of
marine vehicles operate in different dynamic modes

defined by the specific assignment of command signals and
external disturbances acting on the control object. A natural
way to ensure all the required dynamic properties is to reach
a compromise on the quality of control processes in different
modes.

This compromise can be achieved with the use of multi-
purpose control laws with special structure [1]–[6]. In this
paper the approach to their formation is adopted. The main
ideas of this approach were firstly presented in [7]–[11]. The
mentioned structure includes some basic parts and several
additional separate items to be adjusted for an actual, sailing
environment.

This article primarily discusses questions related to the
mathematical formalization of marine vessels motion as
control objects. Also, the paper highlights the problem of
uncertainties in the assignment of external disturbances math-
ematical models, which is one of the major difficulties in the
analysis and synthesis of control systems.

In the paper an original method for minimizing the size
of the set of reactions, taking into account the additional
requirements to ensure the desired degree of stability for
the closed-loop system is proposed. This approach is an
omnibus technique with respect to the way of determining
the reactions set size, that allows us to use it for arbitrary
linear control laws with a fixed structure. The main attention
in this method is paid to stability and quality of the dynamic
processes.

II. THE PROBLEM OF SYNTHESIS OF STABILIZING
CONTROL

Let us consider the linear system of differential equations,
which presents a mathematical model of the marine vessel
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dynamics

ẋ = Ax+Bδ +Dw(t),

δ̇ = u, (1)
e = Mx,

y = Cx.

Here x ∈ En is a state vector (i.e. the deviation from
the equilibrium position), e ∈ Eke is a vector of controlled
variables, δ ∈ Em is a state vector of rudders deviations,
u ∈ Em is a vector of controls, y ∈ Ek is a vector
of measured variables, A,B,C,D,M are constant matrices
of corresponding dimensions. Further, we assume that the
vessel moves under the influence of external disturbances,
represented by a vector function w(t), w ∈ El.

The essence of an analytical synthesis problem is the
formation of feedback (controller) on the measured output

u = Wy(s)y +Wδ(s)δ, (2)

written in tf-form, where Wy(s) and Wδ(s)δ are transfer
matrices with fractionally rational components. The search
of these matrices is carried out in a solution of the corre-
sponding mathematical problem. At the same time we need
to provide the asymptotic stability of the zero equilibrium
position for a closed-loop system without disturbances. Be-
sides their choice is aimed at achieving the desired dynamic
properties of the control system.

The main problem is the absence of any information about
the function w(t) during the motion process. In such situation
the only fact of disturbances boundedness in a certain sense
is postulated.

The presence of these uncertainties in the external distur-
bances definition significantly complicates the design pro-
cess and requires the special formalization of the synthesis
problem with a focus on achieving the desired result for
any choice of the function w(t) from the admissible set of
functions.

We assume that the external disturbance w(t) affecting the
motion of the closed-loop system (1), (2) is an element of
the normed space R with the norm ∥w∥r.

Let us consider the admissible set Rwa ⊂ R of distur-
bances, defining it by the relation

Rwa = {w(t) ∈ R : ∥w∥r ≤ w0},

where w0 > 0 is the given real number.
We assume that the space R is such that it includes

the reaction e(t) of the closed-loop system (1), (2) to the
disturbance w(t) ∈ R , which is determined uniquely. Thus,
the mathematical model of this system with zero initial
conditions on the state vectors x and δ determines a linear
operator L : R → R. At the same time the set

Rea = L(Rwa) = {e(t) ∈ R : e = L(w)}
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we will call the set of reactions to valid disturbances.
Note that due to the asymptotic stability of the zero

equilibrium position of the closed-loop system (1), (2), the
reactions set will be limited by the norm of the space R, i.e.

Rea ⊂ R̃ea = {e(t) ∈ R : ∥e∥r ≤ e0},

where e0 > 0 is the real number.
The radius e0 of the sphere R̃ea will be called the set

Rea of reactions size to valid disturbances, if this number is
determined by the condition

e0 = sup
w∈Rwa

∥L(w)∥.

It is obviously, that for a fixed mathematical model (1) of
the control object and for a fixed number w0 the size e0 of
the reactions set is uniquely determined by the choice of the
transfer matrices Wy and Wδ in the feedback. Thus, in a set
of pairs {Wy,Wδ} the following functional is determined

e0 = Jwe ({Wy,Wδ}) .

Its value plays defining role in the analysis and design of
systems with uncertain external disturbances.

As mentioned above, the influence of external disturbances
to the object is negative, i.e. a well-functioning control
system should to suppress them in relation to the con-
trolled output of the closed-loop system. If the set Rwa

of admissible disturbances w(t) is given, then we need to
take into account this uncertainty. It should be noted, that
during designing the feedback it is unknown which specific
disturbance will act to the system.

Mathematical formalization of such design problems can
be performed in different ways, however, in this paper we
assume that the defining value that characterizes the quality
of the closed-loop system (1), (2) is the size e0 of the
reactions set. The smaller the value of the functional Jwe

is, the better the control system works with uncertainties.
We need to emphasize, that for a concrete formulation of

the synthesis problem, it is necessary to specify the choice
of the set R to which the disturbances w(t) belong, and to
specify the definition of the controlled variables e(t).

The problem of the synthesis of the stabilizing feedback
(2) for the object with the mathematical model (1) in the
presence of uncertainty in the definition of external distur-
bances will be called the optimization problem

e0 = Jwe ({Wy,Wδ}) → inf
{Wy,Wδ}∈Ωa⊂Ω

(3)

of the analytical search the best pair {Wy,Wδ} providing the
minimum size of the set of reactions and the implementation
of the complex of structural and dynamic requirements to a
closed-loop system. Here the set Ωa is a narrowing of the
set Ω of stabilizing controllers is defined by the introduction
of these requirements.

We emphasize that for a particular formulation of the
synthesis problem (3), first of all, we need to specify the
set R, which owns the disturbance w(t) and the controlled
variables e(t).

Depending on the environmental conditions and on the
choice of the operating mode of the control system, the
following three cases [20] are often considered.

1) R = L2 is the space of bounded to the square vector
functions w(t) with finite 2-norms:

∥w∥2r = ∥w∥22 =

∫ ∞

0

w′(t)w(t)dt.

Note, that the square of the norm here characterizes
the energy of the disturbance.

2) R = L∞ is the space of essentially bounded vector
functions w(t) with finite ∞-norms:

∥w∥r = ∥w∥∞ = sup
t∈[0,∞)

w′(t)w(t).

These norms describe the intensity of external influ-
ences.

3) R = L1 is the space of absolutely integrable vector
functions w(t) with finite 1-norms:

∥w∥r = ∥w∥1 = sup
t∈[0,∞)

√
w′(t)w(t).

Similar spaces can be entered for the variables w = {w[ν]}
and e = {e[ν]} in discrete time ν ∈ N1. In this case they
are spaces l2, l∞ and l1 respectively.

In connection with considered particular cases of normed
spaces R of external disturbances, let introduce into con-
sideration the norms of linear operators L induced by them
of the closed-loop systems (1), (2). These operators will be
specified by mathematical models of these systems in the
tf-form

e = H(s)w, (4)

where H(s) is the transfer matrix from input w to the output
e.

In connection with the stated above spaces of disturbances
in the constructive methods of modern control theory the
following matrix norms that characterize the quality of the
LTI-system functioning [20] are used:

1) The norm of the space H2 whose elements are matrices
H(s) with dimension dim e×dimw and strictly correct
fractional-rational components:

∥H∥2 =

√
1

2πj

∫ j∞

−j∞
tr[H ′(−s)H(s)]ds.

2) The norm of the space H∞ whose elements are matri-
ces H(s) with the same dimension and strictly correct
rational components:

∥H∥∞ = max
ω∈[0,∞)

σ(ω).

3) The norm of the space H1 for discrete-time LTI-
systems whose elements are matrices H(z) with cor-
rect rational components:

∥H∥1 =
∞∑
ν=0

√
h′[ν]h[ν],

where h[ν] are the samples of the impulse response of
the closed-loop system.

To connect the norms of disturbances and the correspond-
ing reactions the following relations are used in practice [20]:

• for the space R = L2

∥e∥2 ≤ ∥H∥∞∥w∥2; (5)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



• for the space R = l∞

∥e∥∞ ≤ ∥H∥1∥w∥∞. (6)

Note that there are no input disturbances w(t) in the set
R, for which there is an equality in (5), (6). But then for the
spaces R = L2 and R = l∞ it is easy to determine the size
e0 of the set of reactions to disturbances w(t) ∈ Rwa:

e0 = w0∥H∥∞ or e0 = w0∥H∥1.

It is obviously, that for a fixed mathematical model (1)
of the control object the values of the matrix norms ∥H∥∞
and ∥H∥1 are uniquely determined by the choice of transfer
matrices Wy and Wδ in the feedback equation (2). Thus,
the following functionals are defined in the set Ω of pairs
{Wy,Wδ}

J∞ = J∞ ({Wy,Wδ}) = ∥H∥∞,

J1 = J1 ({Wy,Wδ}) = ∥H∥1.

Then the question of searching the minimum of the
functional on the admissible set Ωa ⊂ Ω is equivalent to
the synthesis problem (3): i.e. for the spaces R = L2 and
R = l∞ we have

J∞ = J∞ ({Wy,Wδ}) → min
{Wy,Wδ}∈Ωa⊂Ω

, (7)

J1 = J1 ({Wy,Wδ}) → min
{Wy,Wδ}∈Ωa⊂Ω

. (8)

Constructive methods for solving H∞-optimization prob-
lem (7) under the condition Ωa = Ω are provided in
numerous works on the control theory. In particular, the
spectral approach for the SISO situation is proposed in [6]
in two ways.

The problem (8) under the condition Ωa = Ω was first
discussed and solved in [20], the further development of
methods of its solutions is given in the works of Granichin.

The disadvantage of these approaches is the fact that for
any narrowing Ωa ⊂ Ω of the set of stabilizing feedbacks
the direct application of these methods is not possible. That
requires a corresponding modification of the theory and
construction of computing synthesis algorithms.

We note in particular that there is another method to
estimate the size Jwe of the set of reactions that is not
directly associated with the matrix norms. This method is
given significant attention in the paper. Its main advantage is
the simplicity of calculation the functional values Jwe and
the relative simplicity of solution of the problem (3) at least
for a set Ω of stabilizing controls.

Let us consider the question of solving the synthesis
problem of the stabilizing feedback (2) for the object with
the mathematical model (1) in the presence of uncertainty
in assignment of disturbances w(t) in a particular case with
the introduction of the feasible set Ωa ⊂ Ω. This set of
pairs {Wy,Wδ} of transfer matrices we will define by two
requirements:

a) the feedback structure (2) is initially fixed (for example,
it can be included in the asymptotic observer) with the
allocation of customizable vector h ∈ Ep of numerical
parameters, i.e., the controller has the form

u = Wy(s, h)y +Wδ(s, h)δ; (9)

b) the selection of vector h must be within the admissible
set

Ωh =
{
h ∈ Ep : δi(h) ∈ C∆, i = 1, nd

}
,

where δi(h) are roots of the nd-degree characteristic poly-
nomial ∆3(s, h) of the closed-loop system (1), (9). In
other words, for any given vector h from the given set the
spectrum of roots must be located entirely in a predetermined
region C∆ of the complex plane. As this area we will take
C∆ = {s = x ± jy ∈ C1 : x ≤ −αd}, where αd > 0 is a
given real number that determines the stability degree of the
closed-loop system.

Now let us introduce into consideration the functional Jd
characterizing the size of the set Rea of reactions for the
system (1), (9) to the admissible disturbance w ∈ Rwa.

The problem of parametric minimizing the size of the
reactions set for the closed-loop system (1), (9) in presence
of an uncertainty in the assignment of disturbances will be
called finite-dimensional problem of searching the extremum

Jd = Jd(h) → min
h∈Ωh

(10)

that is in this particular case obviously equivalent to the
problem of the stabilizing feedback synthesis.

III. PROBLEM SOLUTION

To solve this problem an original method for minimizing
the size of the reactions set, taking into account the additional
requirements to ensure the desired degree of stability for
the closed-loop system was developed. It consists of the
following steps:

1. Take any point γ ∈ End and form an auxiliary
polynomial ∆∗(s, γ) according to the formulae

∆∗(s, γ) = ∆∗(s, γ) if nd is even, and

∆∗(s, γ) = (s+ ad+1(γ, αd))∆
∗(s, γ) if nd is odd,

where αd > 0 is the desired degree of stability of the
polynomial. Here

∆∗(s, γ) = Πd
i=1

(
s2 + a1i (γ, αd)s+ a0i (γ, αd)

)
,

d = [nd/2], a
1
i (γ, αd) = 2α+ γ2

i1,

a0i (γ, αd) = α2
d + γ2

i1αd + γ2
i2, i = 1, d

ad+1(γ, αd) = γ2
d0 + αd,

γ = {γ11, γ12, γ21, γ22, . . . , γd1, γd2, γd0}.

2. Construct the system of nonlinear equations

Q(h) = χ(γ),

that provides the identity ∆3(s, h) ≡ ∆∗(s, γ), which is
always consistent. If its solution is not the only one, it is
necessary to implement an arbitrary choice of the vector
hc ∈ Enc of free variables in relation to this system.

3. After substituting the received vector ε = {γ, hc} ∈ Eλ

in the system from the second step we will find its solution
h = h∗(ε).

4. Substitute the found vector h = h∗(ε) of configurable
parameters in the feedback (9) and find for a closed-loop
system (1), (9) the corresponding value of the size of the set
of reactions Jd = Jd (h

∗(ε)) = J∗
d (ε).
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