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Abstract—In this paper, we present a new method for
forecasting time series data. Firstly, we give a brief review of five
standard statistical techniques from the literature, namely the
ARIMA, Holt’s method, Holt-Winters method, Decomposition
method and Regression analysis. Then, we apply feedback
control theory to five well-known forecasting methods. By
introducing the concept of mean absolute error, different results
are obtained and compared via feedback control theory. In
summary, the comparison results illustrate that the new method
proposed in this paper provides improved forecasting accuracy
and significantly decrease the forecasting error than the existing
individual forecasting methods.

Index Terms—ARIMA, Holt’s Method, Decomposition
Method, Regression Analysis, Feedback Control Theory.

I. INTRODUCTION

Nowadays, people often use forecasting techniques to
model and predict economic activities, population growth,
stocks, insurance/re-insurance, industrial and science [1].
Over the past decades, several models have been developed
for time series forecasting. ARIMA is the method first
introduced by Box and Jenkins and until now become the
most popular models for forecasting univariate time series
data. This model has been originated from the autoregressive
model (AR), the moving average model (MA) and the
combination of the AR and MA, the ARMA models.

In the case where seasonal components are included
in this model, then the model is called as the SARIMA
model. Box and Jenkins procedure that contains three main
stages to build an ARIMA model, i.e. model identification,
model estimation and model checking is usually used for
determining the best ARIMA model for certain time series
data [2]. Moreover, the exponential smoothing methods of
forecasting involve a mix of adaptive levels, growth rates
and seasonal effects [3]. The exponential smoothing is an
extension of ES designed for trend time series [4]. The Holt-
Winters method (triple exponential smoothing) takes into
account both seasonal changes and trends. They provide good
forecasts with imply formulations, allowing the incorporation
of error, trend and seasonal component in a comprehensive
manner [5-9]. Furthermore, time series regression basically
relates the dependent variable to functions of time describing
trend and seasonal component. It is most profitably used
when the components describing the time series to be
forecast remain constant overtime [10] and it application
by many researchers in many areas [11-14]. Additionally,
decomposition models to forecast time series that exhibit
trend and seasonal effects. These models have been found
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useful when the parameters describing a time series are not
changing over time [10]. There are a number of papers
in the literature which deal with the extrapolation of time
series through the extrapolation of individual components.
However, in all applications of the classical decomposition
technique, the residual component after the elimination of
any trend, cyclical and seasonal variations is always assumed
to be a random variable with a constant variance, and is
therefore exclude from the forecasting process [15]. Then,
we apply feedback control theory to five well-known fore-
casting methods. Moreover, we demonstrate an illustrative
example of these methods with real data set and compare
different results via feedback control theory by introducing
the concept of mean absolute error (MAE).

In this paper, a new forecasting method is developed via
feedback control theory with application to real data set.
The five forecasting methods namely the ARIMA, Holt’s
method, Holt-Winters method, Decomposition method and
Regression analysis are included in the analysis and can be
implemented readily in a software package. The statistical
software used in this paper are SPSS and Minitab.

In the following section, we review the five modeling
approaches to time series forecasting and we prefer the
time series via feedback control theory. Empirical results for
comparing the forecasting techniques from five real data set
are illustrated in Section 3. The final section provides the
conclusion.

II. METHODOLOGY

In this paper, we focus on the basic principles and
modeling process of the ARIMA, Exponential smoothing,
Decomposition and Regression analysis.
2.1 The ARIMA Model [10]:

Classical Box-Jenkins models are describe the stationary
time series. A time series is stationary if the statistical
properties (for instance, the mean and the variance) of time
series are essentially constant through time. If n-number of
values seem to fluctuate with constant variation around a
constant mean µ, then it is reasonable to believe that the time
series is stationary. If the n values do not fluctuate around
the constant mean or do not fluctuate with constant variation,
then it is reasonable to believe that the time series is nonsta-
tionary. In this paper, we consider only nonstationary time
series. In this case where the data have trend component, we
call an autoregressive integrated moving average or ARIMA
(p, d, q). While, the data have seasonal component. We call
SARIMA (P,D,Q) and the data have both of trend and
seasonal component, we call ARIMA (p, d, q)×(P,D,Q)m.
Box-Jenkins procedure that contains three mail stages to
build model, i.e. model identification, model estimation and
model checking for determining the best model for certain
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series data[16]. Hence an ARIMA (p, d, q) can be written as

ŷt = θ0 + ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p

+εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q,

Moreover, the SARIMA (P,D,Q)m can be written as

ŷt = θ0 + φ1yt−m + φ2yt−2m + . . .

+φP yt−Pm + εt − ω1εt−m

−ω2εt−2m − . . .− ωQεt−Qm.

Therefore a more general seasonal ARIMA model orders
(p, d, q)× (P,D,Q)m with period m is

Φ∗(Bs)Φ(B)(1−B)d (1−Bm)
D
ŷt

= δ +Θ∗ (Bm)Θ(B)εt,

ŷt = θ0 + ϕ1yt−1 + ϕ2yt−2 + . . .+ ϕpyt−p

+ εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q

+ φ1yt−m + φ2yt−2m + . . .+ φP yt−Pm

− ω1εt−m − ω2εt−2m − . . .− ωQεt−Qm.

where
yt is the actual value at time period t.
p, d, q are the autoregressive, differencing and moving

average term in the ARIMA model.
P,D,Q are the autoregressive, differencing and moving

average term for the seasonal part of ARIMA model.
ϕi, θj are model parameters for ARIMA term order p

and q respectively i = 1, 2, . . . , p and j = 1, 2, . . . , q.
φi, ωj are model parameters for SARIMA term order P

and Q respectively; i = 1, 2, . . . , P and j = 1, 2, . . . , Q.
εt are random errors which assumed to be independently

and identically distributed with a mean of zero and a constant
variance of σ2 [17].

m are the period of seasonal (for example weekly,
monthly and quarterly).

2.2 Exponential Smoothing Technique [10]:
Exponential smoothing provides a forecasting method

that is most effective when the components (trend and
seasonal factors) of the time series may be changing over
time. Simple exponential smoothing is suitable method
for time series has no trend. While, Holt’s method is
appropriate when both the level (ℓt) and the growth rate
(bt) are changing. Furthermore, Holt-Winter methods are
exponential smoothing procedures for seasonal data.

2.2.1 Holt’s Method:
A point forecast made in time period t for ŷt+τ is ŷt+τ =
ℓt + τbt (τ = 1, 2, . . .). The smoothing equations are as
follow ℓt = αyt+(1− α) [ℓt−1 + bt−1] , bt = γ [ℓt − ℓt−1]+
(1− γ) bt−1.

2.2.2 Holt-Winters Method:
Holt-Winters method is designed for time series that ex-
hibit linear trend at least locally. The additive Holt-Winters
method is used for time series with constant (additive)
seasonal variation, whereas the multiplicative Holt-Winters
method is used for time series with increasing (multiplica-
tive) seasonal variation.

2.2.3 Additive Holt-Winters Method
A point forecast made in time period t for ŷt+τ is

ŷt+τ (t) = lt + τbt + snt+τ−m, (τ = 1, 2, . . .) .

The smoothing equations are given by

ℓt = α (yt − snt−m) + (1− α) [ℓt−1 + bt−1] ,

bt = γ [ℓt − ℓt−1] + (1− γ) bt−1,

snt = δ [yt − ℓt] + (1− δ) snt−m.

2.2.4 Multiplicative Holt-Winters Method
A point forecast made in time period t for ŷt+τ is

ŷt+τ (t) = (lt + τbt) snt+τ−m, (τ = 1, 2, . . .) .

The smoothing equations are given by

ℓt = α (yt/snt−m) + (1− α) [ℓt−1 + bt−1] ,

bt = γ [ℓt − ℓt−1] + (1− γ) bt−1,

snt = δ [yt/ℓt] + (1− δ) snt−m.

where
ℓt is estimated for the level .
bt is estimated for the growth rate.
snt is estimated for the seasonal factor of the time

series in time series period t.
snt+τ−m is the ”most recent” estimate of the seasonal

factor for the reason corresponding to time period t+ τ .
α, γ, δ are the smoothing constants between 0 and 1.
ℓt−1, bt−1 are estimates in time period t− 1 for the level

and growth rate.
snt−m is the estimate in time period t − m for the

seasonal factor.
m is the period of the seasonality.
τ is the τ -step-ahead forecast.

2.3 Decomposition Method [10]:
The basic idea behind these models is to decompose the

time series into several factors: trend, seasonal, cyclical and
irregular (error). Multiplicative decomposition appropriate
for a time series that exhibits increasing or decreasing
seasonal variation. When the parameters describing the
series are not changing over time. Whereas, Additive
decomposition found useful when a time series that
exhibits constant seasonal variation. The multiplicative
decomposition model is

Yt = TRt × SNt × CLt × IRt

The additive decomposition model is

Yt = TRt × SNt + CLt + IRt

where
Yt are the observed value of the time series in time

period t.
TRt are trend component (or factor) in time period t.
SNt are seasonal component (or factor) in time period t.
CLt are cyclical component (or factor) in time period t.
IRt are irregular component (or factor) in time period t.

The estimates trt, snt, clt and irt are generally used to
describe the time series. We can also use these estimates to
compute predictions. If there are no pattern in the irregular
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and cycle component, we assume TRt and CLt to equal
zero. The point forecast for the multiplicative decomposition
model is

ŷt = trt × snt.

The point forecast for the additive decomposition model is

ŷt = trt + snt.

2.4 Regression Analysis [18]:
Regression analysis is a statistical technique for modeling

and investigating the relationships between an outcome or
response variable and one or more predictor or regression
variables. The end result of a regression analysis study is
often to generate a model that can be used to forecast or
predict future values of the response variable given specified
values of the predictor variable.The simple linear regression
model involves a single predictor variable,which can be
written as

y = β0 + β1x+ ε,

where
y is the response.
x is the predictor variable.

β0, β1 are unknown parameters.
ε is an error term.

The model parameters or regression coefficients β0 and
β1 have a physical interpretation as the intercept and the
slope of a straight line, respectively. The slope β1 measures
the change in the mean of the response variable yt for a
unit change in the predictor variable x. These parameters
are typically unknown and must be estimated from a sample
of data. The error term ε accounts for deviations of the actual
data from the straight line specified by the model equation.
We usually think of ε as a statistical error, so we define
it as a random variable and will make some assumptions
about its distribution. For example, we typically assume that
ε is normally distributed with mean zero and variance σ2,
abbreviated as N

(
0, σ2

)
.

Note that the variance is assumed to be constant; that is,
it does not depend on the value of the predictor variable (or
any other variable).

Additionally, [10] one useful from of the linear regression
model is what we call the quadratic regression model. The
quadratic regression model relating yto x is

y = β0 + β1x1 + β2x
2 + ε.

Then, we apply regression analysis to time series analysis.
The simple linear regression is as follow

ŷt = b0 + b1t.

The quadratic regression model is

ŷt = b0 + b1t+ b2t
2.

where b0, b1 are estimated using the method of least squares
of the unknown parameter β0 and β1 respectively.

2.5 Time Series with Feedback Control Theory/

The Feedback Control Methodology
Striking developments have taken place since 1990 in

feedback control theory [19]. The subject has become both
more rigorous and more applicable. The rigorous is not
for its own sake, but rather that even in an engineering
discipline rigorous can lead to clarity and to methodical
solutions to problems. The applicability is a consequence
both of new problem formulations and new mathematical
solutions to these problems [20-22]. Moreover, computers
and software have changed the way engineering design
is done. These developments suggest a fresh presentation
of the subject, one that exploits these new developments
while emphasizing their connection with classical control.
Control systems are designed so that certain designated
signals, such as tracking errors and actuator inputs, do not
exceed pre-specified levels. Hindering the achievement of
this goal are uncertainty about the plant to be controlled
(the mathematical models that we use in representing real
physical systems are idealizations) and errors in measuring
signals (sensors can measure signals only to a certain
accuracy). Despite the seemingly obvious requirement of
bringing plant uncertainty explicitly into control problems,
it was only in the early 1990s that control researchers
re-established the link to the classical work of Bode and
others by formulating a tractable mathematical notion of
uncertainty in an input-output framework and developing
rigorous mathematical techniques to cope with it.This
formulates a precise problem, called the robust performance
problem, with the goal of achieving specified signal levels
in the face of plant uncertainty.

Without control systems there could be no manufactur-
ing, no vehicles, no computers, no regulated environment-
in short, no technology. Control systems are what make
machines, in the broadest sense of the term, function as
intended. Control systems are most often based on the
principle of feedback, whereby the signal to be controlled is
compared to a desired reference signal and the discrepancy
used to compute corrective control action. Consider the Time
series with Feedback Control Theory/The Feedback control
methodology:

ŷt = g(yt) + u(t),

where
ŷt is predicted value.
u(t) is feedback control input.It is defined by u(t) =

median error.

Model Selection
Marina Theodosiou [15] conducted an expert remark

about assessment error measures to select forecasting
techniques. Scale-independent measures; mean absolute
error (MAE), median absolute error (MdAE), mean square
error (MSE) and root mean square error (RMSE) are
proper for comparing the forecast performance between
different data sets. These have been introduced by Tashman
[23]. However, scale-dependent measures are based on the
variability of the forecasting relative to the real observations,
and there are appropriate when comparing various methods
for the same data set. Therefore, in this paper, we focus
only scale-dependent measures as we compared different
methods for the same data series and only mean absolute
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error results are reported here. The expressions is depicted
below

MAE =
n∑

t=1

|yt − ŷt| /n,

where
yt is the actual value at time t.
ŷt is the forecast value at time t.
n is the number of observations.

III. EMPIRICAL RESULTS

Five real data sets-the expert value of apple juice, the
average gold prices (US dollar /oz), the number of tourist
arrivals to Thailand by nationality (America), the foreign
workers in Thailand, and the influenza patient numbers
in Thailand-are considered in this paper to illustrate the
effectiveness of the control theory. Each data set is divided
into two samples of training and testing. The actual data
sets are as follows

Example 1. The Expert Value of Apple Juice Cases
We considered all monthly series between January 1998

- September 2014, total 201 observations.We divided the
data into two groups, the first group used a 16-year data set
from January 1998 to December 2013, giving a total of 192
observations as the training data. The second group used
9 observations between January to September in 2014 to
finding suitable methods. The time series plot are shown in
Fig.1

Fig. 1. The expert value of apple juice series from January 1998 to
September 2014.

It is noted that the expert value of apple juice series from
Office of Agricultural Economics Ministry remained stable
obviously being 1,005,632 baht. After that, the plot grew
dramatically being from 9,544,905 to 59,666,747 baht.

Example 2. The Average Gold Prices (US
Dollar/Oz)Cases

The last 10 observations is not be used to compute the
forecast but to evaluate their accuracy. The plot is shown in
Fig.2

Fig. 2. The average gold prices (US dollar/oz) between January 2007 and
October 2015.

It is noted that the time plot of the average gold
prices from gold traders association reached to the peak
obviously 1,780 (US dollar/oz), then the graph declined
slightly.

Example 3. The Number of Tourist Arrivals to
Thailand by Nationality (America).

The last 9 observations is not be used to calculate the
forecast but to evaluate their accuracy. The plot is shown in
Fig.3

Fig. 3. American tourist visitor in Thailand via Suvarnabhumi airport from
January 2007 until September 2015.

The time series plot of the number of oversea visitor’s
arrivals to Thailand by nationality (America) from
department of tourism reveals a periodicity of approximately
9 years.

Example 4. The Foreign Workers in Thailand
The in-sample and out-of-sample the data are the same as

the paper [5, 24]. The time series plot isprovided in Fig.4
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Fig. 4. The foreign workers in Thailand from January 2007 until September
2015.

The plot of the foreign workers in Thailand from
office of Foreign Workers Administration shows various
changing turning points in the series.

Example 5. The Number of Influenza Patients in
Thailand

Time plot of the number of influenza patients in Thailand
are presented in Fig.5

Fig. 5. Quarterly total influenza patients in Thailand, 2003-2015.

The number of influenza patients in Thailand from social
and quality of life data base system reveals remained stable
for 6 years and then the plot provided a periodicity of
approximately 7 years.

Table I. The results of mean absolute error (MAE)
obtained using well known time series models with
application to feedback control theory

TABLE I
COMPARISONS MAE VALUES OF VARIOUS METHODS WITH

APPLICATION TO FEEDBACK CONTROL THEORY OBTAINED FROM
DIFFERENT DATA SETS.

IV. CONCLUSION

Time series analysis is one of the very demanding sub-
jects over the last few decades, since can be applied for
financial, economic, engineering and scientific modeling. The
five other standard statistical techniques from the literature,
namely the ARIMA,Holt’s method, Holt-Winters method,
Decomposition method and Regression analysis are well
known for many researchers. The aim of this research is
prefer a new method for forecasting via feedback control
theory with application to several non-stationary real data
sets. The performance evaluation results indicated that this
method can perform well. As it is clear that the errors
measures are decline all of cases. Future work can include
stationary data and apply adaptive control theory to time
series analysis.
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