
 

 

Abstract—Segmentation of color information in RGB space is 

considered as the detection of clouds in rho-theta space. The 

conversion between RGB space and rho-theta space is first 

derived. Then the peak detection in the cloud-like rho-theta 

image is developed for color plane segmentation. The color 

blindness images are used for illustrations and experiments. 

Results confirm the feasibility of the proposed method. In 

addition, the segmentation of pattern and background for a 

color blindness image is also further demonstrated by means of 

the spatial distance computation among segmented color planes 

as well as the traditional K-means algorithm. 

 
Index Terms—Color blindness image, image segmentation, 

RGB space, rho-theta space. 

 

I. INTRODUCTION 

OLOR image segmentation is of great importance in the 

field of image processing and pattern recognition. It is 

known that the color visual perception from human eyes is 

primarily reflected by red (R), green (G), and blue (B) color 

components. Thus the constructed color space for color 

information processing is usually named as RGB space. In 

order to facilitate the specific applications, several color 

space conversion methods have been proposed. For example, 

CMYK (Cyan-Magenta-Yellow-Black) space is frequently 

used in color printer; HSI (Hue-Saturation-Intensity) space is 

often adopted for the investigation of human visual 

phenomena; Lab (L for lightness, a and b for color-opponent 

dimensions) can be regarded as a device-independent color 

space; and YUV space is used in the traditional video display. 

Jin and Li proposed a switching vector median filter based on 

the Lab color space converted from the RGB space [1]. Lee et 

al. investigated a robust color space conversion between 

RGB and HSI for date maturity evaluation [2]. Mukherjee et 

al. used YUV colors space for image demosaicing [3]. 

 Several well-known methods have been developed for 

performing the image segmentation such as thresholding 

based on histogram, clustering, region growing, edge 

detection, blurring, etc, which can also be extended and 

applied for color image segmentation. Underwood and 
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Aggarwal projected the three-dimensional color space into 

two-dimensional plane and analyzed the color characteristics 

of detected tree outlines for reporting the degree of 

infestation present [4]. By means of the competitive learning 

technique, Uchiyama and Arbib presented a color image 

segmentation method which can efficiently divide the color 

space into clusters [5]. By combining region growing and 

region merging processes, Tremeau and Borel proposed a 

color segmentation algorithm [6]. Chen and Hsu adopted 

self-organizing feature map for performing color blindness 

image segmentation [7] and further developed an active-and- 

passive approach for understanding the figure in the color 

blindness image (CBI) [8]. 

Even there has a much progress in the field of color image 

segmentation during the past two decades, it still has a room 

for exploring the color space conversion on this topic. Since 

the CBI is often used for the investigation of human visual 

perception [8-11], in this study the CBI is adopted for 

investigating the characteristics between RGB space and a 

newly defined rho-theta space. Based on this new space, the 

segmentation of color information can be readily 

demonstrated. 

   
(a)                             (b)                            (c) 

 
(d) 

 
Fig. 1.  (a)-(c) Three color blindness images from the Ishihara test plates, and 

(d) the color distribution in RGB space for CBI in (a), where five major color 

groups are easily observed. 
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II. SEGMENTATION OF COLOR PLANES 

A. Observation of a Color Image in RGB Space 

Fig. 1(a)-1(c) show three CBIs, which are from the 

well-known Ishihara test plates and usually adopted for the 

study of color perception as mentioned previously. From our 

visual inspection, it mainly consists of the size-varied color 

dots with orange, brown, purple, green, and cyan colors. 

When it is used for the inspection of human color blindness, 

e.g., dichromats, the major colors will be focused on. In this 

case, the majority of color components are of red, whereas 

the minority is of green. For a normal vision, the figure “5” 

being composed of greenish dots can be perceived 

successfully, in which the majority of reddish dots is usually 

regarded as background. Note here that the white color is not 

used for perception and can be regarded as a reference. 

Let a color pixel p including red, green, and blue 

components be denoted as p[r, g, b]. The color image in Fig. 

1(a), for illustration, can be easily converted into the 

well-known RGB space and shown in Fig. 1(d). In this space, 

it is obvious that the color dots are mainly grouped into five 

color lines (i.e., purple, brown, orange, green, and cyan color 

lines) and separated from one to another. The concept of 

“color line” can be found in [12]. Therefore it is our goal in 

this study to develop a feasible method for the color 

segmentation method based on this observation. 

 

B. Rho-Theta Space 

Fig. 2 depicts the RGB space, where o[0, 0, 0] represents 

the origin point or black point. However, as mentioned before, 

the white color can be regarded as a reference point, namely 

w[255, 255, 255],  in RGB space. This phenomenon can be 

found in Fig. 1(d), where the distribution of each grouped 

color line diffuses from the reference point to the space. 

Therefore, a rho-theta parameterization like scheme can be 

applied for this study. Consider a pixel p[r, g, b] in RGB 

space, a vector can be constructed from reference point 

w[255, 255, 255] to it. In this study, two parameters  and  

representing the included angle of 𝑤𝑝⃗⃗⃗⃗  ⃗ and B-axis and that of 

𝑤𝑝⃗⃗⃗⃗  ⃗  and R-axis, respectively are used enough for further 

transformation. Ideally, each grouped color line distribution 

should be more gathered up in the new - space. Based on 

this concept, the color segmentation could be readily 

performed in the - space. According to the relationships in 

Fig. 2, the three components r, g, b of the pixel p can be 

represented as follows. 

 

𝑏 = 255 − |𝑤𝑝⃗⃗⃗⃗  ⃗| cos 𝜌                          (1) 

𝑟 = 255 − |𝑤𝑝⃗⃗⃗⃗  ⃗| cos 𝜃                          (2) 

𝑔 = 255 − |𝑤𝑝⃗⃗⃗⃗  ⃗|√1 − (cos 𝜃)2 − (cos 𝜌)2          (3) 

where 

|𝑤𝑝⃗⃗⃗⃗  ⃗| = √(255 − 𝑟)2 + (255 − 𝑔)2 + (255 − 𝑏)2    (4) 

Thus we have 

𝜌 =  cos−1(
255−𝑏

|𝑤𝑝⃗⃗⃗⃗⃗⃗ |
)                              (5) 

and  

𝜃 =  cos−1(
255−𝑟

|𝑤𝑝⃗⃗⃗⃗⃗⃗  |
)                              (6) 

to represent the so-called - space. 

 

 
 
Fig. 2.  Illustration of transforming a color pixel from RGB space into - 

space. 

  

For the sake of performing the color segmentation, the - 

space is designed as a two-dimensional array like the 

generalized Hough transform [13] uses. That is, if one case of 

 and  occurs, it will be increased one in the memory 

location of (, ). The accumulated amount of (, ) indicates 

the number of those color pixels having  and  values, which 

are treated as the same category as one color line in Fig. 1(d) 

displays. In order to make the color information to be more 

apparent for segmentation, all the pixels p having |𝑤𝑝⃗⃗⃗⃗  ⃗| < 30 

(regarded as a white pixel) are ignored and will not be 

accumulated in the (, ) array, where the content at location 

(, ) is denoted as 𝐶𝜌𝜃. The following procedure is next used 

for yielding the - image. The threshold TH1 = 2 is selected 

experimentally in this study. 

 

1) For each memory location (, ), do steps 2-3. 

2) Compute p, and p for all color pixels p (not white). 

3) If |𝜌 − 𝜌𝑝| < 𝑇𝐻1 and |𝜃 − 𝜃𝑝| < 𝑇𝐻1 , then 

𝐶𝜌𝜃 ← 𝐶𝜌𝜃 + 1. 

 

 
 
Fig. 3.  Cloud-like - image transformed from the RGB information in Fig. 
1(d) by the proposed method. 
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Note here that the range of  and  is within [0, 90°] and 

𝐶𝜌𝜃 is normalized with �̂�𝜌𝜃 = 𝐶𝜌𝜃/𝐶̅, where 𝐶̅ is the mean of 

all none-zero (𝐶𝜌𝜃)s. Along this manipulation for Fig. 1(d), a 

cloud-like - image can be obtained as shown in Fig. 3, 

where we can find five major groups (or clouds) containing 

brightness area as the five color lines indicated previously. In 

addition, one small-area group with less brightness is also 

shown. This cue is very helpful for the color image 

segmentation. 

 

C. Find the Peaks in - Image 

According to the property of - image, the segmentation 

of the groups can be transformed into finding the respective 

peaks. There are two steps, namely local maxima detection 

and small-peak removal, in this process, where a (2𝑠 + 1) ×
(2𝑠 + 1) sliding window is used. We adopted s = 3 for our 

experiments. In the step of local maximal detection, a peak is 

labeled if its value is the local maximum within the 

corresponding local area. Furthermore, there exist many 

unwanted small peaks which shall be ignored. In this study, 

only the peak having �̂�𝜌𝜃 > (2𝑇 )2/𝐶̅  will be remained. 

After performing such a process on the - image given in 

Fig. 3, eleven peaks are detected as shown in Fig. 4. 

 

 
 

Fig. 4.  Eleven peaks are found for the - image given in Fig. 3. 

 

By observing the images in Fig. 3 and Fig. 4, one cloud 

may include several peaks and one peak should have a local 

maximum within its cloud. In addition, the trend of pixel 

value changing is decreased gradually from the peak to the 

outer. Based on this property, we can use the relationship 

between any two peaks P and Q in the peak-image of Fig. 4 to 

represent whether they belong to the same group or not. Let 

vP and vQ be the value of peak P and Q respectively, PQ 

denote the line segment, and SPQ be the set of all pixel values 

within the segment in the - image of Fig. 3. In addition, 

note here that the value of “dark area” in Fig. 3 may not be 

exactly zero. Therefore a threshold TH2 = min(𝑣𝑃 , 𝑣𝑄) /2.4 

is used in this study. Within any line segment PQ (P  Q) we 

say peak P is not related to peak Q if there exists one pixel 

value belonging to SPQ less than TH2. Otherwise, P and Q are 

related. After performing such an equivalent relationship 

process for Fig. 3 and Fig. 4, an equivalent relationship table 

can be obtained as given in Table I. Here peaks 1, 2 and 3 are 

regarded as the same cloud; peaks 4 and 5 the same cloud; 

and peaks 6, 8 and 9 the same cloud. Others (peaks 7, 10, and 

11) are independent clouds. If several peaks are related, their 

maximal peak value can be used to represent the newly 

grouped peak. Fig. 5 shows the six peaks finally obtained 

from the current illustration. 

 
TABLE I 

EQUIVALENT RELATIONSHIP TABLE FOR THE PEAKS IN FIG. 4. HERE ‘1’ AND 

‘0’ DENOTE WITH RELATIONSHIP OR NOT FOR TWO PEAKS. 

Peak 1 2 3 4 5 6 7 8 9 10 11 

1 - 1 1 0 0 0 0 0 0 0 0 

2 1 - 1 0 0 0 0 0 0 0 0 

3 1 1 - 0 0 0 0 0 0 0 0 

4 0 0 0 - 1 0 0 0 0 0 0 

5 0 0 0 1 - 0 0 0 0 0 0 

6 0 0 0 0 0 - 0 1 1 0 0 

7 0 0 0 0 0 0 - 0 0 0 0 

8 0 0 0 0 0 1 0 - 1 0 0 

9 0 0 0 0 0 1 0 1 - 0 0 

10 0 0 0 0 0 0 0 0 0 - 0 

11 0 0 0 0 0 0 0 0 0 0 - 

 

 
 

Fig. 5.  Six peaks are obtained finally for the - image given in Fig. 3. 

 

D. Color Planes 

According to the final six peaks shown in Fig. 5, we have 

six coordinates, (𝜌𝑖 , 𝜃𝑖), 𝑖 = 1, 2, … , 6, in the - image.  

Since each RGB pixel has its (𝜌, 𝜃) based on (5) and (6), the 

pixel classification can be performed based on the distance 

between (𝜌, 𝜃) and (𝜌𝑖 , 𝜃𝑖), i.e., 𝑑(𝜌, 𝜃; 𝜌𝑖 , 𝜃𝑖). 

If 𝑑(𝜌, 𝜃; 𝜌𝑘, 𝜃𝑘) =  min∀𝑖 𝑑(𝜌, 𝜃;  𝜌𝑖 , 𝜃𝑖), then the pixel 

with (𝜌, 𝜃) is assigned to the class k. In the current 

illustration, there are six classes, and thus six color planes are 
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obtained as shown in Fig. 6. By observing these color planes 

in detail, there possibly exist some tiny noisy pixels (see Fig. 

6(e) for example) which can be easily removed by means of 

the median filtering. Accordingly the final segmentation of 

color planes (namely 1, 2, …, 6 respectively) from the given 

CBI can be displayed in Fig. 7. 
 

 
(a)                                             (b)  

 
(c)                                             (d)  

 
(e)                                             (f)  

 
Fig. 6.  Six color planes with color pixel assignment. 

 

III. SEGMENTATION OF PATTERN AND BACKGROUND 

In the case study of CBI, the CBI is usually divided into 

two classes, i.e., pattern and background, for further 

computer vision application [8, 11]. Even the main goal of 

this study has been achieved with rho-theta parameterization 

for color image segmentation, in this section a useful process 

of classifying pattern and background based on the found 

color planes will also be demonstrated for the further 

application. It mainly includes two steps: spatial distance 

computation between color planes [7] and classification 

using K-means [14]. By performing the spatial distance 

computation for the six color planes shown in Fig. 7, a 

symmetrical distance matrix can be obtained as given in 

Table II. It means that six 6-element distance vectors have 

been obtained. With the found distance vectors, it can be fed 

into the K-means algorithm to perform the clustering. Since 

only pattern and background will be classified in the current 

consideration, K is set to be 2. After the K-means 

computation, the color planes 1, 2, 3 and 4 are assigned to be 

the same class; whereas the color planes 5 and 6 the same 

class. Moreover since the number of pattern pixels is usually 

less than that of background pixels, the pattern and 

background are readily obtained as shown in Fig. 8(a) and 

8(b), respectively. 

 

 

 
(a)                                             (b)  

 
(c)                                             (d)  

 
(e)                                             (f)  

 

Fig. 7.  Six color planes (namely 1~6 respectively) after median filtering. 

 

 
TABLE II 

SYMMETRICAL DISTANCE MATRIX OBTAINED BY THE SPATIAL DISTANCE 

COMPUTATION FOR THE SIX COLOR PLANES SHOWN IN FIG. 7. 

Color 

Plane 1 2 3 4 5 6 

1 0.00 10.21 7.50 10.22 21.11 18.88 

2 10.21 0.00 8.29 14.81 25.18 23.38 

3 7.50 8.29 0.00 8.40 19.96 17.69 

4 10.22 14.81 8.40 0.00 19.53 16.47 

5 21.11 25.18 19.96 19.53 0.00 4.20 

6 18.88 23.38 17.69 16.47 4.20 0.00 

 

 

 
(a)                                           (b)  

 
Fig. 8.  Final segmentation of (a) pattern and (b) background for the CBI 

given in Fig. 1(a). 

 

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



 

 
(a) 

 
(b) 

 
Fig. 9.  (a) and (b) show the pattern/background segmentation results for the 

CBIs given in Fig. 1(b) and 1(c), respectively. 

 

IV. RESULT AND CONCLUSION 

Each CBI used in this study is of 196196 pixels. The 

algorithm is implemented with MATLAB R2013a. Fig. 9 

shows another two segmented results for the CBIs given in 

Fig. 1(b) and 1(c), respectively. The results confirm the 

feasibility of the proposed method. As a future work, in 

accordance with the concepts from color distribution to the 

cloud in rho-theta space, some manipulation schemes on the 

rho-theta space could possibly be developed for solving the 

wanted topics (like the detection of colored object and 

finding the relationship among colored objects in a color 

image) on the traditional RGB color space. 
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