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Abstract—Aim of this paper is reformulation of global image 

thresholding problem as a well-founded statistical technique 

known as change-point detection (CPD) problem. Our 

proposed CPD thresholding algorithm does not assume any 

prior statistical distribution for background and object grey 

levels. Further, this method is little influenced by an outlier 

due to our judicious derivation of a robust criterion function 

depending on Kullback-Leibler (KL) divergence measure. 

Experimental results show efficacy of proposed method 

compared to other popular methods available for global image 

thresholding. We have used SSIM performance criterion to 

compare the results of proposed thresholding algorithm with 

most cited global thresholding algorithms in the literature. 

 

Index Terms— Change-point detection, Global image 

thresholding, Image segmentation, Kullback-Leibler 

divergence, Robust statistical measure  

 

I. INTRODUCTION 

gray-level digital image is a two dimensional signal, 

LI : , where Ω⊂ℤXℤ, and L={liℝ and 

i=1,2,…,M} is the set of M grey-levels. The problem of 

automatic thresholding is to estimate an optimal threshold t0 

which segments the image into two meaningful sets, viz. 

background B={bb(x,y)=1|I(x,y)<t0,(x,y)⊂Ω} and 

foreground F={bf(x,y)=1| I(x,y)≥ t0, (x,y)⊂Ω } or the 

opposite. The function I(x,y) can take any random value 

liL; so, sampling distribution of grey levels becomes an 

important deciding factor for t0. In many image processing 

applications, automating the process of optimal thresholding 

is extremely important for low-level segmentation or even 

final segmentation of object and background. 

In general, automatic thresholding algorithms are divided 

into two groups, viz. global and local methods. Global 

methods estimate a single threshold for the entire image; 

local methods find an adaptive threshold for each pixel 

depending on the characteristics of its neighborhood. Global 

methods are used if the image is considered as a mixture of 

two or more statistical distributions. In this paper, we 

address the global thresholding problem guided by the 

image histogram. In most of the cases, global thresholding 

methods try to estimate the threshold (t0) iteratively by 

optimizing a criterion function [1]. Yet other methods 
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attempt to estimate optimal t0 depending on histogram shape 

[2]-[3], image attribute such as topology [5] or some 

clustering techniques [4], [8] and [20]. Comprehensive 

surveys discussing various aspects of thresholding methods 

can be found in the references [1], [6], and [7]. 

Many of these classical and recent schemes perform 

remarkably well for images with matching underlying 

assumptions but fail to yield desired results otherwise. Some 

of the explicit or implicit reasons for their failure could be: 

(i) assumption of some standard distribution (e.g. Gaussian) 

[19], in reality though, foreground and background classes 

can have arbitrary asymmetric distributions, (ii) use of non-

robust measures for computing criterion functions which get 

influenced by outliers. Further, the effectiveness of these 

algorithms greatly decreases when the areas under the two 

classes are highly unbalanced. Some of the methods depend 

on user specified constant (e.g. Renyi or Tsallis entropy 

based methods) [17], [18], greatly compromising their 

performance without its appropriate value. 

 We propose in this paper a novel algorithm addressing 

these drawbacks. Our algorithm uses a well-known 

statistical technique called change-point detection (CPD). 

For the last few decades researchers in statistics and control 

theory have been attracted by the problem of detecting 

abrupt changes in the statistical behaviour of an observed 

signal or time series [9]. They are collectively called 

statistical change-point detection. 

The general technique of change-point detection 

considers an observed sequence of independent random 

variables {Yk}1…n with a probability density function (pdf) 

pθ(y) depending on a parameter θ. Basically, it is assumed in 

CPD that θ takes values θ0 and θ1 (≠θ0) before and after the 

unknown change time t0.The problem is then to estimate this 

change in the parameter and the change time t0. A very 

important property of the log-likelihood ratio 

, becomes a tool for 

reaching this goal. Let  and  denote the 

expectations of  with respect to two distributions  and 

; then it can be shown that  and . 

In other words, a change in the parameter θ is reflected as a 

change in the sign of the expectation of the log-likelihood 

ratio. This statistical property can be used to detect the 

change in θ [10]. Given the Kullback-Leibler (KL) 

divergence , difference between the 

two mean values is 

)||()||()()(
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From this we infer that the detection of a change can 

also be made with the help of the KL divergence before 

and after the change. This concept is used in this paper 

for deciding the threshold in an image histogram.  

Rest of the paper is organized as follows: section 2 

provides a short introduction to the problem of statistical 

change-point detection, section 3 formulates and derives 

global thresholding as a change-point detection problem, 

section 4 presents the experimental results and compares 

the results with various often cited global thresholding 

algorithms; and finally section 5 summarizes main ideas 

in this paper. 

II. THE CHANGE-POINT DETECTION (CPD) PROBLEM 

Change-point detection (CPD) problem can be 

classified into two broad categories: real-time or online 

change-point detection, which targets applications where 

instantaneous response is desired such as robot control; 

on the other hand, retrospective or offline change-point 

detection is used when longer reaction periods are 

allowed e.g. image processing problems [10]. Since the 

image and the corresponding histogram are available to 

use, we concentrate on offline change-point detection in 

this paper. We also assume that there is only one change 

point throughout the given observations {yk}1…n. When 

required, this assumption can easily be relaxed and 

extended to multiple change point detection that can be 

applied in multi-level threshold detection problems. 

A. Problem Statement 

When taking an offline point of view about the 

observations y1, y2…, yn with corresponding probability 

distribution functions F1, F2, …, Fn, belong to a common 

parametric family F(φ), where φ∈ Rp, p>0. Then the change 

point problem is to test the null hypothesis (H0) about the 

population parameter φj,  j = 1,2, …, n: 

 versus an alternative hypothesis 

                 (2) 

where θ0 ≠ θ1 and change time k is not known. These 

hypotheses together disclose the characteristics of change 

point inference, determining if any change point exists in 

the process and estimating the time of change t0 = k. The 

likelihood ratio corresponding to the hypotheses H0 and H1 

is given by 
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where pθ and pθ′ are pdfs before and after the change occurs 

and pθ  ̃ is the overall probability density. When the only 

unknown parameter is t0, its maximum likelihood estimate 

(MLE) is given by the following statistic 
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B. Offline estimation of the change time 

Considering equation (4) and (5) and the fact that  

is a constant for given data, the corresponding MLE 

estimate is 
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where  is maximum log-likelihood estimate of t0. 

Rewriting equation (6) as 
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As  remains a constant for given observation, 

estimation of  is simplified as 
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Therefore, the MLE of the change time t0 is the value 

which maximizes the sum of log-likelihood ratio 

corresponding to all k possible value given by equation (7). 

 

III. GLOBAL THRESHOLDING: A CHANGE-POINT 

DETECTION FORMULATION 

A. Assumptions 

If Let (χ, βχ, Pθ)θ∈Θ be the statistical space of discrete 

grey-levels associated with a random variable Y:ℤxℤ→ℤ, 

where βχ is the σ-field of Borel subsets A ⊂ χ and {Pθ}θ∈Θ is 

a family of probability distributions defined on the 

measurable space (χ, βχ) with parameter space Θ, an open 

subset of ℝq, q>0.We consider a finite population of all 

grey-level images with n elements that could be classified 

into M categories or classes L={l1, ..., lM}, i.e. each sample 

point in the sample image can take any random grey-level 

values from the set L.  

B. Change-point detection formulation 

Since we are mainly interested in discrete grey-level data, 

we consider the multinomial distribution model. Let 

={Ei}, i=1,...,M be a partition of χ. The formula Prθ(Ei) = 

pi(θ), i = 1, . . .,M, defines a discrete statistical model with 

probability of the li
th grey-level. Further we assume {Y1,.., 

Yn} to be a random sample from the population described 

by the random variable Y, representing the grey-level of a 

pixel. And let , where IE is the index 

function. Then we can approximate pi(θ)≈Ni/n, i=1,…,M. 

Estimating θ by maximum likelihood method consists of 

maximizing the joint probability distribution for fixed n1, . . 

. , nM 
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or equivalently maximizing the log-likelihood function 
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Therefore, referring to equation (5), problem of 

estimating the threshold by MLE can be stated as 
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where unknown parameter θ =θ0 before change and θ= θ1 

after the change. Now, equation (10) can be expanded as 
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The first term within the bracket on the right side equal 

sign of equation (11) is a constant and the last term is 

independent of j, i.e. it cannot influence the MLE. So, 

eliminating these terms and simplifying we get 
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Multiplying and dividing n on right side of equation (12)  
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approximating pi(θ)≈ni/n equation (13) can be written as 
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The expression in (14) under the summation denotes 

Kullback-Leibler (KL) divergence between the density 

 and ; therefore equation (14) can be written as 
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Since total sum    is independent of 

j, i.e. a constant for a given observation (a sample image), 

therefore equation (15) can be rewritten as 
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Hence, equation (16) provides the maximum likelihood 

estimation of the threshold t0. Equation (16) can be restated 

as the follows: In a mixture of distributions, the maximum 

likelihood estimate of change-point is found by minimizing 

the Kullback-Leibler divergence of the probability mass 

across successive thresholds. 

In spite of this striking property, KL divergence is not a 

„metric‟ since it is not symmetric. An alternative symmetric 

formula by “averaging” the two KL divergences is given as 

[11] 
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)p||D(p
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An attractive property of KL divergence is its robustness 

i.e. KL divergence is little influenced even when one 

component of mixture distribution is considerably skewed. 

A proof of robustness can be found for generalised 

divergence measures in references [11] and [12]. 

This method can be easily extended to find multiple 

thresholds for several mixture distributions by identifying 

multiple change-points simultaneously. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

To validate the applicability of proposed Change-Point 

Detection (CPD) thresholding algorithm, we provide 

experimental results and compare the results with existing 

algorithms. First row of Fig.1 shows test images that are  

labelled from left to right as: Dice, Rice, Object respectively 

and the second row shows corresponding ground truth 

images. We have also selected few more test images shown 

in first row of Fig.2 with names Denise, Train, and Lena to 

visually compare the results. These images have deliberately 

been so selected that the difference of areas between 

foreground and background are hugely disproportionate. 

This gives us an opportunity to test the robustness of CPD 

algorithm. To compare the results, we selected five most 

popular thresholding algorithms, namely, Kittler-Illingworth 

[14], Otsu [15], Kurita [16], Sahoo [17] and Entropy [18]. 

For evaluating the proposed algorithm, Structural 

Similarity Index (SSIM) [21] of the thresholded test images 

with respect to the ground truth images has been computed. 

Table-1 shows optimal thresholds of five selected 

algorithms and the CPD algorithm. It is clear that CPD 

performs reasonably well. 

For visual comparison, consider the Denise and Train 

image, Kittler-Illingworth thresholding totally fails to 

distinguish the object from background due to its 

assumption of Gaussian distribution for both foreground and 

background [19], similar consequence occurs with other 

four algorithms. But proposed CPD algorithm segments the 

images fairly well. 

 

TABLE I 

COMPARISON OF RESULTS OF TEST IMAGES USING SSIM FOR THE 

IMAGES (A) DICE, (B) RICE, (C) OBJECT, 

Image Algorithm Threshold SSIM 

Dice 

Entropy 157 0.6705 

Kittler 55 0.9182 

Kurita 106 0.9560 

Otsu 103 0.9469 

Sahoo 134 0.7040 

CPD 96 0.9907 

Rice 

Entropy 118 0.9377 

Kittler 132 0.8172 

Kurita 126 0.8709 

Otsu 124 0.8880 

Sahoo 133 0.8082 

CPD 107 0.9748 

Object 

Entropy 150 0.8523 

Kittler 83 0.5381 

Kurita 107 0.7752 

Otsu 110 0.7638 

Sahoo 154 0.9014 

CPD 190 0.9014 
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V. CONCLUSION 

In this paper we propose a novel global image 

thresholding algorithm based on Statistical Change-Point 

detection (CPD), the derivation uses a symmetric version of 

Kullback-Leibler divergence measure. The experimental 

results clearly show this algorithm is largely unaffected by 

disproportionate dispersal of object and background scene 

and also very little influenced by the skewness of 

distributions of object and background compared to other 

well-known algorithms. 

 

 
Fig 1: Four tested images: Row-1: Original images, Dice, Rice, and 

Object. Row-2: Ground truth images. 

 

 
Fig 2: Experimental results of selected algorithms: Row-1: Original images: Dice, Rice, Object, Denise, Train, and Lena, Row-2: Respective 

histograms, Row-3: Kittler-Illingworth, Row-4: Otsu, Row-5: Kurita, Row-6: Sahoo, Row-7: Entropy, Row-8: Proposed CPD threshold. 
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