

Abstract—Developing safe and reliable software is not a

luxury but a necessity given our staggering level of dependency
on it. Indeed, we have handed over our ability to function day
to day to an electronic array or zeros and ones and we expect,
demand and rely on these invisible bits to work without error
or fault. However, the process of building such reliable
software is far from simple. This paper will examine the
practical aspects of the problem as well as solutions that are
either used or in the process of being evaluated and/or adopted
by an NYC based financial institution to produce safe and
reliable software.

Index Terms—Safe Software, Secure Software, Reliable
Software

I. INTRODUCTION
Over the last thirty years, as if in conformance with a
software equivalent of Moore’s law, software has surpassed
frontier after frontier of human experience and pervaded
almost every aspect of our lives. High level languages have
made it possible for the masses to harness the power of the
CPU and create innovations that have changed how we
experience the world. Technology and the software that
drives it is so interweaved into daily life that many may
suffer an existential crisis if it were ever not to be there.
Software is used to control everything from our
transportation and shopping to our health and agriculture.
And through all of these, our very lives. Businesses are
using software on an unprecedented scale and any impact to
technological driven business operations would be
devastating.

However, in step with these developments, we must be
absolutely cognizant of the safety nets we erect to protect
against elements that should never go wrong. We routinely
entrust our lives to software, to a string zero’s and one’s. As
the application of software continues to evolve and frontier
technologies such as robotics and artificial intelligence
become standard patterns in the tapestry of daily existence,
there must be a corresponding growth in the evolution and
development of our safety nets. Failing to do so will incur a
terrible price.

Manuscript received December 20, 2016; revised January 16, 2017.
P. A. Patel is a Pace University Alumni. He works as a cyber security

security architect at an NYC based financial company
(papatel108@gmail.com).

S. Skevoulis is a Professor and, Chair of the Software Engineering
Program at the Seidenberg School of Computer Science and Information
System at Pace Univerrch (sskevoulis@pace.edu).

 Yet, producing software that is safe, secure and reliable is
no simple task. We have learnt much from our past mistakes
and one thing is certain; there is no “flick of a switch” that
can create secure and reliable software. Rather, there are
many switches that have to be flicked and in the correct
order and in the right way. Secure and reliable software is
the result of a process driven methodology that has been
faithfully executed with care given to each step of the
process. So, what are these steps, what problem does each of
these steps solve and who is responsible for executing each
step? These questions will be addressed in the remainder of
this paper with a particular focus on the financial domain.

The Need for Solid Software in the Financial Organizations
 In the modern era, the financial services industry would
be unable to function without software technology. Software
is used for everything from trading (i.e. placing buy and sell
trade orders. Certain high frequency trading companies also
use software to engage in algorithmic trading) to record
keeping. Software that works incorrectly can cost a financial
institution much in terms of reputation, trust and money. For
example, imagine a customer placing an order to buy 100
shares of a certain stock and the software erroneously
buying 1000 instead. This is a simple and improbable
example but as we shall see, given the right sequence of
events on untested software, it is a possible scenario. The
practices outlined in this paper describe are not only
applicable to the financial services industry but to every
industry, company or organization that requires bulletproof
software.
 Before we proceed, let us understand the problem that we
are trying to solve; creating secure and reliable software.
There is an overlap in meaning between software that is
secure and software that is reliable. Software that is reliable
is software that functions in a consistent and deterministic
manner. It can consistently be relied upon to perform its
assigned task. Software that is secure builds upon the
bedrock of reliable software but is enhanced with a level of
robustness that is able to deflect attempts to infiltrate and
modify its behavior. Hence, reliable software is an essential
quality of secure software. Conversely, software that is built
to withstand illegitimate penetration efforts but cannot be
relied upon to meet its functional objectives in a consistent
manner, cannot be deemed secure.
Having identified two essential qualities that we want to
achieve, all important question, how is it achieved? There is
a separate approach for each goal and some overlap.

Software Security and Reliability in Financial
Organizations: A Multi-layered Approach to

Delivering Safe, Secure and Reliable Software
Parag Patel, Sotiris Skevoulis, Member IAENG

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

II. PRODUCING RELIABLE SOFTWARE
A 2014 paper published by Usenix [1], identified that most
catastrophic software failures are the result of incorrect error
handling of non-fatal errors. They identified predominantly
three ways in which developers mishandled coding
exception blocks;

1. the exception block is defined but left empty
2. the exception block is too generalized; it catches

multiple types of exceptions but does not
distinguish in how it reacts to them, instead it
performs the same response, which could be
inappropriate depending on the exception

3. the exception block logs the exception but does not
handle it

The analysis performed by the authors of this paper revealed
some very interesting findings. One of the key findings was
that almost three quarters of failures are deterministic,
meaning that given the right inputs and right sequence of
events, they can be recreated at will. Not only that, but the
problem is widespread, affecting some of the most
recognizable web sites in existence today. It states that:

“…in an outage that brought down facebook.com for
approximately 2.5 hours, which at that time was “the worst
outage Facebook have had in over four years”, “the key flaw
that caused the outage to be so severe was an unfortunate
handling of an error condition” [5]. In the outage of Amazon
Web Services in 2011 [6] that brought down Reddit, Quora,
FourSquare, parts of the New York Times website, and
about 70 other sites, the initial cause was a configuration
change…”

Error handling is one of the most critical, and
simultaneously, one of the most difficult areas of software
design. Ironically, it is a subject that garners a low level of
interest in the mind of the general software developer. This
is not surprising; developers typically work within time
restricted windows to design and implement core functional
requirements. Much credit is given to meeting these
requirements. Little is given to the implementation of great
error handling.

According to the paper, failures are generally complex.
They require a specific sequence and combination of no
more than three input events to reproduce. And key, most
times when an actual input is needed to generate failure, the
value does not matter. What matters is the sequence of input
events, rather than the value of the inputs. The paper
identified key areas such as the starting of services, a file or
database write from or to a client and an unreachable
network node where the majority of these errors occur. This
information provides actionable insight to a development
team.

A. Creating Robust Error Handling Routines
In order to develop a robust and comprehensive error
handling routine, a thoughtful analysis of the possible
checked and unchecked exceptions must occur.

Figure 1 shows an (incomplete) example of the type of brain
storming that should happen for each exception block in a

codebase. Many more events and responses could and
should be mapped out, however, the idea is to give an
example of the thought process. Additionally, parsing the
cause of an error may lead to the conclusion that the error is
transient and the instruction can be retried. In this way the
functional resiliency can also be increased. However, the
chief benefit is that the code becomes highly deterministic
upon entering an error state.

Figure 1: An (incomplete) mind map illustrating the
brainstorming process employed to trace every possible
cause of an error. Once an error cause has been determined,
error handling options can be understood and choices can be
made by the software. This leads to a deterministic outcome
which is generally a safe outcome.

Developers should follow each type of error to its logical
conclusion in order to gain an understanding of how their
software will react in a failure scenario. It is a pretty safe bet
to say that this not a common practice and so when software
enters a significant failure state it leads directly to
uncertainty and doubt. Coupled with the fact that developers
tend to be fairly nomadic with no guarantees that the author
of the code will be around, poorly designed error handling
and poor documentation of expected error handling flows,
significantly increases time to recovery, as well as
decreasing customer confidence and the opportunity cost of
developers spending time on root cause analysis. For critical
systems, the upfront investment in taking the time to
develop well thought out error handling scenarios can pay
dividends many times over.

B. Understanding Dependency Hierarchies
 Modern software architectures have been steadily
migrating toward the service orientated architecture (SOA)
model for many years. This architecture has provided many
proven benefits, a few of which include an easy way to
provide functional reuse, scalability and resolution of
interoperability issues. SOA however does have the
potential to create a complex set of interdependencies, with
a service depending on one or more other services in order
to function. This architecture is well established at both the

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

macro-level, with services depending on other services and
at the micro-level, i.e. components within a single service
depending on each other. Given this sometimes complex set
of interdependencies, it is extremely helpful to map out the
dependency hierarchy, in order to understand the real impact
of a specific dependency being unavailable.

Consider Figure 2 below. Imagine that Service 1 provides
three functions, function A, function B and function C.
Imagine that each of these functions, depend on a sub-
service with the same letter. So, function A would rely on
sub-service A, function B, on sub-service B and function C
on sub-service C. There are also other interdependencies as
can be seen in the diagram.

Now, if sub-service G is unavailable, then we know that
sub-service C would be directly impacted and that would
have a direct impact to function C on service 1. We also can
see that if sub-service F is unavailable, then, not only would
sub-service C and function C be impacted but sub-service E
would also be impacted which would sub-service B and
ultimately function B on service 1.

Although this may seem obvious, it is because we have a
clear view of the dependencies. Most of the time, these
dependencies can only be ascertained by reading through
source code or configuration files, which, is tedious and
error prone.

Figure 2: The complex state of interdependencies that exist
in modern software architectures.

The value of having a dependency hierarchy can be
understood by a common real word scenario; consider a
change made to sub-service E due to a requirement in sub-
service B. The developer may perform extensive testing on
sub-service B and function B on service 1. However,
unaware that sub-service F also has a dependency on sub-
service E, no testing is performed and therefore sub-service
F breaks, ultimately cause function C in Service 1 to break.
Even worse, if a significant period of time elapses before
function C is called, tracing back the root cause will be
ridden with complexity, especially if no hierarchy map
exists.

The type of operations described above do require an

investment in time with no visible benefit to the end user,
yet, depending on the function that the software serves, it
could save reputation, large sums of money or most
importantly, lives.

C. Order of Operations
 Much like the order of mathematical operations, the order
of logical operations matter. Let us consider a most basic
example. Imagine we have four operations; Create-File
Read-File, Write-File and Delete-File.

These operations will only work in a certain order; we
cannot read from, write to or delete a file that does not exist.
So the first operation must be Create-File. Now we can
perform any of the three remaining operations but, if we
delete, then the read and write operations will fail.
Of course, no one would create a file and delete it straight
away but this may happen through poor implementation of
exception handling processes, especially in the case of
multiple processes working with a single share resource. In
these types of scenarios, using exception blocks to reflect
the state of a system such that other processes can be made
aware of is vital to producing a stable system.

D. Proving Software Reliability
 E. W. Dijkstra, the Dutch computer scientist, famously
noted that “Testing can only show the presence of errors,
not their absence” [7]. While there is no denying the logic of
this statement, it is also true, that the only way to provide
empirical assurance that software is reliable is through
comprehensive testing. Of course there are multiple levels
of testing, yet the key is to start at the grass roots level,
closest to the code. Developers must write comprehensive
unit tests for each functional unit of code that are inclusive
of comprehensive failure tests, that is, tests to validate
behavior of the functional code unit in a failure state. While
it is common practice to for developers to write test cases
that test the specific functionality of code, it is far less
common to write test cases that provide coverage of code
behavior when code reaches error states. However, such
comprehensive unit testing of code in failure state is
difficult to accomplish unless each possible failure is
enumerated and its response is clearly identified (as shown
above). Conversely, if these tests are well documented along
with the expected resolution path then writing
comprehensive tests become much easier.

Once the tests are written, they can be triggered at key
timelines during the day. For example; the automated
running of tests prior to checking code into a repository is
becoming a standard across the development community.
Automated tests are also run at the end of the day and prior
to a daily build process to validate the consistency of the
code base. Although these practices are being adopted, the
point here, is that the success of these types of practices
depend largely on the quality of the tests being run. Unless
tests include comprehensive coverage of failure scenarios
and recovery actions, they have limited value in terms of
proving reliability.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

III.
PRODUCING SECURE SOFTWARE

 Building secure software is a process that starts from the
first day of a project. It demands a mindset that views every
step of the software development life cycle (SDLC) through
security shaded spectacles.
Every software application is trying to solve a problem. The
functional requirements define the functionality required to
solve the problem. Security requirements, which are
classified as non-functional requirements, describe the
security constraints required by the application. So the
question becomes, how to determine the stringency of the
security requirements? The answer is by determining the
financial, reputational, legal and moral cost of compromise
of the application or its data. The greater these costs, the
more stringent the security controls need to be. So the first
step in designing secure software is to define risk (based on
the cost) of application or data compromise and thereby
define the scope and stringency of the security controls.

Time and experience has distilled a foundational set of
security requirements that must be met by software
applications that are anything more that static HTML. These
requirements can be viewed as architectural building blocks
that will provide a certain level of assurance that software is
secure. Let us examine each one of these blocks.

A. Authentication
 Authentication is the process of establishing the identity a
user. This is usually achieved by user name and password.
Although far from ideal it remains the prevailing standard
across most applications. Some U.S. states are toying with
the idea of introducing legislation that would require the use
of multifactor authentication for internet facing sites that
allow the movement of money. Multifactor authentication
creates a requirement for a user to identify themselves using
at least two identification factors. Multifactor authentication
consists of three possible authentication factors: something
you know, something you have or something you are. A
password fulfils the “something you know” requirement.
The “something you have” requirement is commonly
fulfilled by the use of an RSA token. The RSA token
provides a user with a one-time password that changes every
60 seconds. Since only the user has the token, only the user
knows the one-time password. The “something you are”
requirement can be fulfilled by some sort of a biometric
measurement such as a retina scanner or finger print reader.
Multifactor authentication commonly requires that a user
identify themselves using two of the factors and for this
reason is sometimes called dual factor authentication.
Multifactor authentication does provide authentication that
is exponentially stronger than single factor authentication
but comes at a cost. For example, imagine the governance
and cost implications of providing RSA tokens to tens of
thousands of application users. It is for this reason that wide
spread user of multifactor authentication for public users of
banking applications is limited. However, due to the
emerging ubiquity of the smartphone, it may be possible to
piggy back the distribution of smart tokens (“something you
have”) and so provide one-time passwords to users without
the need to distribute hardware for RSA key tokens.

B. Authorization
 Authorization is the process of identify what functionality
a user is entitled to in a particular application. Standard
methods of doing this involve using role based
authorization. In this technique, specific entitlements are
associated with specific roles. Application users are added
to these roles depending on their required entitlements.

C. Data at Rest Protection
 Protecting data at rest is usually achieved through
symmetric key encryption. It is important that outdated
algorithms are not used. The current standard is AES with a
key size of 128, 192 or 256. The key greater the key size,
the stronger the encryption at the cost of a marginal
overhead in CPU time and actual time. Unless there is a
time based constraint (such as a high frequency trading
application) a 256-bit key should be used.

D. Data in Transit Protection
 Protecting data in transit is usually achieved through TLS
(Transport Layer Security) using Public Key Cryptography.
Public key cryptography involves the use of public
certificates. It is important to verify that industry standard
key strengths are used such as 2048 bit or 3096 bit. Again,
the larger the key size, the greater the processing overhead,
although given the abundance of powerful low cost
hardware today, performance due to stronger keys has
become less of a problem. Also defunct ciphers (such as
RC4) should be disabled and TLS should be configured only
to use non-vulnerable versions (currently anything above
TLS 1.0).

E. Ensure Compliance with Latest Security Standards
 This point has been covered somewhat in the above
sections but its importance cannot be overstated. Many
preventable attacks occur because security components in
software continue to use algorithms or protocols that are
known to be vulnerable. An example of this is the 2014
Poodle attack, which was able to succeed because SSL
version 3 has not been disabled. Other examples are the use
of SHA1 instead of SHA-2. Although SHA1 has been
known to be vulnerable for many years it is still used by
developers not familiar with the security landscape and are
instead focused on meeting functional requirements.

F. Review of Security Architecture Design Constructs
 The design of the security architecture constructs (and
their implementation roadmap) outlined above should be
reviewed and validated by a security team before
construction begins. Since application architects are not
typically security experts, it makes sense to have the
architecture design reviewed by a security focused team to
ensure that relevant versions and constructs are used. If
properly designed and implemented, these blocks will
ensure the foundational security of the application.

G. Code Level Security
 The above principles describe the security focused
foundational building blocks of an application. However, by
themselves, they are not enough. When building a house, it
is essential that the structural components are solid so that
the building can withstand natural elements such as wind
and rain. However strong the foundations, if there are no
locks on the windows or doors, the building remains

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

insecure. In software terms, the above building blocks are
the foundational elements. The “locks” however, are
designed and built at the code level.

The proliferation of attack vectors, aimed at exploiting
software with no or very weak locks can be overwhelming.
For those whose main goal is functionality and not security
(as is the case with most application developers and
architects) an approach that makes sense is to take advice
from experts in the security community. The Open Web
Application Security Project (OWASP) is a consortium that
amongst other things provides a “Top 10” list of the most
critical web application security risks, examples of
vulnerabilities and guidance on how to avoid [2]. Simply
understanding the most critical attack vectors and
implementing appropriate code level “locks” is enough to
make a huge difference in the security of the application.
OWASP has published and Enterprise Security API (known
as ESAPI) that can be used to thwart a number of the attacks
on its “Top 10” list.
The key points here are that application security controls are
vital and even non security focused developers can make
their applications significantly more secure by
understanding and following the guidance provided by
OWASP.

IV. TESTING FOR SECURITY
 As with reliability testing, the only way to empirically
provide some degree of assurance of application security is
to test for it. There are three types of security testing that are
commonly performed for high risk applications; static and
dynamic testing and penetration testing.

• Static testing analyzes code in a non-runtime
environment. The idea is to search source code to
identify exploitable vulnerabilities. Although static
analysis can be done manually, for anything other
than a small project, a manual analysis would be
infeasible. Typically, enterprises will use tools to
perform static analysis code scans. There are many
vendors offering static analysis tools and one of the
more widely used tools in HP Fortify.

• During dynamic testing is performed whilst the code is

in operation. Wikipedia, defines dynamic testing as
follows, “Dynamic testing (or dynamic analysis) is a
term used in software engineering to describe the
testing of the dynamic behavior of code. That is,
dynamic analysis refers to the examination of the
physical response from the system to variables that
are not constant and change with time. In dynamic
testing the software must actually be compiled and
run. It involves working with the software, giving
input values and checking if the output is as expected
by executing specific test cases which can be done
manually or with the use of an automated process.”

• Penetration Testing
 In penetration testing ethical hackers to try and break
into an application, in much the same way that malicious
hackers would. They attempt this by using a variety of
tools such as network and port scans and also by
launching injection attacks, session attacks etc. They

document any vulnerabilities found and provide to the
application team for remediation measures.

 Static and dynamic testing are essential. Traditionally,
static testing is performed once full development on the
application is completed. However, this is a costly and
dangerous practice. It is costly because it requires
potentially significant rework by developers to fix security
flaws. It is dangerous because management, often in a rush
to get their software product to market, defer security
remediation’s until a later date, and so push flawed code
into a production environment. A better idea would be to
“bake” security into the development lifecycle so that it is
an organic an integral part of the finished product and that is
what the Secure SDLC tries to address.

V.
SECURE SOFTWARE DEVELOPMENT LIFE CYCLE

The concept of the secure software development life cycle
emerged to address concerns surrounding the lack of
security focused requirements and processes during the
software development life cycle (SDLC). The secure SDLC
addresses security concerns and mitigating processes at each
step of the software development life cycle. Figure 3 below
illustrates the security touch points that are addressed as part
of a secure SDLC.

Figure 3: The Secure SDLC (Citigal)

According to Citigal, “In the past, it was common practice
to perform security-related activities only as part of testing.
This after-the-fact technique usually resulted in a high
number of issues discovered too late (or not discovered at
all). It is a far better practice to integrate activities across the
SDLC to help discover and reduce vulnerabilities early,
effectively building security in.”

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

And again “Generally speaking, a Secure SDLC is set up by
adding security related activities to an existing development
process. For example, writing security requirements
alongside the collection of functional requirements, or
performing an architecture risk analysis during the design
phase of the SDLC” (Citigal).

VI.
BUILDING SECURITY IN MATURITY MODEL (BSIMM)

Recently a study was carried out that used the “Building
Security Maturity Model” (BSIMM) to conduct a survey
that analyzed data from 78 firms. BSIMM is a tool that
allows a firm to directly compare its software security
approach to the BSIMM community through 112 well-
defined activities, organized in 12 practices. More
information on the tool can be found at www.bsimm.com.
Four “indisputable” findings about software security within
corporations emerged from the study.
One of the key findings is that in order to build effect
security into software, a software security group (SSG) must
exist as an independent entity with in the organization. As
the paper states:
“At the highest level of organization, SSGs have five major
roles:

• Provide software security services
• Set Policy
• Mirror Business Unit Organizations
• Use a hybrid policy and services approach
• Manage a distributed network of those doing

software security work” [9]
 The make-up of the SSG (the subject of the second key
finding) must include individuals from disparate
backgrounds. This finding points out that in order for an
SSG to be effective its members must have different
skillsets. Someone well versed in code level vulnerabilities
may draw a blank when reviewing for architectural
vulnerabilities and vice versa.

However, it is the third finding that truly reveals a key
structural difference among firms scoring the highest
BSIMM scores, and that, is the use of satellites. The paper
states that “one of the most commonly held myths of
software security is that developers and development staff
should ‘take care of’ software security”. [9] However, the
BSIMM studies have shown that this is not the case at all
and that an SGG group is necessary. Having said this, the
paper suggests that developers should be directly involved
in security and serve as satellites to the SSG. As the paper
says, “Each of the 10 firms with the highest BSIMM scores
has a satellite (100 percent) with an average size of 131
people” [9]. Again, “In fact, satellites play a major role in
executing software security activates among the most
mature BSIMM community firms” [9].

The paper suggests a hub and spoke type structure with the
SSG serving as the hub and satellites serving as spokes as an
effective security model. This model provides the benefits
and efficiencies of both a centralized and decentralized
model and makes much sense. However, in order to achieve
this, firms need to encourage developers to “get engaged” in
security and to form satellites. There would also be an onus

on the SSG to communicate, co-ordinate and drive
interaction with all satellites in the firm. As can be
ascertained with a little reflection, this is not something that
would take place over night. It would require time and a
certain level of maturity to arrive at but yet, the pay offs
would be worth the effort. Using this model, many of the
standards and best practices reviewed earlier in this paper
could be advertised, promoted and guided by the SSG with
satellites for each of the different units across the firm
taking charge of driving home the implementation for their
specific business units.

VII. CONCLUSION
 As with almost everything worth having, there is a price
to be paid for building secure software. However, more and
more, corporations are starting to view insecure software as
a business problem rather than as a pure technical problem.
This makes sense, because insecure and unreliable software,
has the potential to damage a business, either through an
intangible vector such as reputation or through a tangible
loss such as money stolen from a bank account. Software
security, once viewed as a cost center by businesses is
increasingly being viewed as an investment. This sea change
in opinion and attitude has already resulted in the
implementation of many of the best practices described
above and yet, security, like technology is a continually
evolving field that requires a persistent diligence and
adjustment to be continually effective.

REFERENCES
[1] D Yuan, Y Luo, X Zhuang, G. Rodrigues, X. Zhao, Y. Zhang, P. Jain

and M Stumm. (2014, 10) Simple Testing Can Prevent Most Critical
Failures: An Analysis of Production Failures in Distributes Data-
Intensive Systems. Usenix [Online] Available:
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-
yuan.pdf

[2] OWASP Top Ten Project. OWASP [Online] Available:
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Proje
ct

[3] E. Mougoue (2016, 01) SSDLC 101: What is the Secure Software
Development Life Cycle. Citigal. [Online] Available:
https://www.cigital.com/blog/what-is-the-secure-software-
development-lifecycle

[4] Wikipedia: Dynamic Testing.
https://en.wikipedia.org/wiki/Dynamic_testing

[5] Facebook: More details on today’s outage.
https://www.facebook.com/note.php?note id=
431441338919&id=9445547199&ref=mf.

[6] Summary of the Amazon EC2 and RDS service disruption.
http://aws.amazon.com/message /65648/

[7] Dijkstra (1970) "Notes On Structured Programming" (EWD249),
Section 3 ("On The Reliability of Mechanisms"), corollary at the end.

[8] BSIMM: Software Security Framework Domains.
https://www.bsimm.com/framework

[9] Gary McGraw (2016), “Four Security Findings”. Available:
https://www.computer.org/computer-magazine/

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

