



Abstract—In recent years, Service Oriented Architecture has

gained significant attention, especially for web services. Also,

WS-BPEL programs have become popular, as they can be used

to create complex business processes by combining multiple

web services together. This is one kind of WS-BPEL feature

brings challenge into testing. There are many approaches and

tools for automatic test case generation, such as graph-search

based [5], random [6] or Message-Sequence [7] technique. But

previous researches have not studied test case generation based

on test path conditions. This paper, we propose a design of WS-

BPEL test case generation tool based on path conditions, which

can generate test cases and verify their coverage.

Index Terms— WS-BPEL, WSDL, Test Case, Test Case

Generation Tool

I. INTRODUCTION

OWADAYS, Service Oriented Architecture (SOA) [1]

and web services have gained significant attention due

to their capability to separate software into loosely-coupled

parts called services, each of which does only one purpose.

With this characteristic, SOA has the benefit of reusability

and maintainability, especially for web services that are

independent of language or environments.

The Web Services Business Process Execution Language

(WS-BPEL) [2] has become a standard for web services

orchestration, due to the ability to specify and execute

business processes among web services. WS-BPEL is used

to describe the logic for executing multiple web services in

the business flow. Typically, WS-BPEL is used to describe a

complex business process invoking dozens of web services

are difficult to understand and test.

Currently, many tools exist for testing WS-BPEL to

reduce testing time by automating test case generation [5],

[6], [7], [8], and [9]. In those research works, we found use

of random and manually specific value for a test case, so that

it may take more time to create random values suitable for a

target test path and may be error-prone. However, we can

use benefits from WS-BPEL that have WSDL [3] documents

describing details of WS-BPEL operations and its input

constraints. We can use the WSDL documents to generate

values of test case variables and use test path conditions

from WS-BPEL to specify variables values for each test

path. In this paper, we present a design of WS-BPEL test

case generation tool based on path conditions that provides

branch coverage of WS-BPEL.

P. Nakngern and T. Suwannasart are with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

Thailand. e-mail: Preecha.Na@student.chula.ac.th, Taratip.S@chula.ac.th

The rest of the paper is organized as follows: Section II

presents a background on relevant terms and testing

concepts used in this paper. Section III analyses current

approaches and tools for generating test cases for WS-BPEL

applications. Section IV presents the structure and behavior

of our tool followed by conclusions and future work in

Sections V.

II. BACKGROUND

A. WS-BPEL

WS-BPEL is a language based on XML proposed by

OASIS, used for a standard of web services business process

execution. WS-BPEL is designed for describing business

process in both abstraction and executable processes. For

specifying business process behavior, WS-BPEL provides

many activities, which are classified into 2 classes. First,

basic activities such as invoke, receive, reply, assign, wait,

etc., describe elemental steps of process behavior. Second,

structured activities such as sequence, if, while, flow, pick,

etc., prescribe the order of execution of basic activities to

describe how a business process works. Through the

specification of web service execution, WS-BPEL defines

the relationship between processes with partnerLink and

used WSDL to specify how they communicate.

B. WSDL

WSDL (Web Services Description Language) is a

language based on XML, used for describing web service

information. WSDL describes web service information in

2 types, 1) abstract type: operation and message information,

described by PortType, Operation, Message, and Types,

where PortType is a collection of operations, Operation is an

action of web service, Message describes communication

data structure, and Types is a data type definitions.

2) concrete type: protocol and data format specifications,

described by Service, Port, and Binding, where Service is a

collection of web service endpoints, Port describe endpoint

by combine binding and network address, Binding are

protocol and data specification. In this paper, we focus on

abstract type information for use in analyzing variable

constraints.

C. Software Testing

Software testing [4] is the process of evaluating and

verifying the software to ensure that the software meets

software specification and requirements. Software testing

has 2 main approaches. First, functional testing (Black-Box

Testing) is a test process based on the software specification,

which a software function is defined in terms of inputs and

A Design of WS-BPEL Test Case Generation

Tool Based on Path Conditions

Preecha Nakngern and Taratip Suwannasart

N

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

outputs. Second, structural testing (White-Box Testing) is a

test process based on the software implementation.

Structural testing focuses on test coverage of test cases, for

which more test coverage means more chance of finding

faults in the software. Test coverage of software can be

divided into 3 levels.

1. Statement Coverage is coverage for every line of

code that needs to be executed.

2. Branch Coverage is coverage for both the true and

false conditions that need to be executed.

3. Path Coverage is coverage for every feasible path

from a start node to a terminal node that needs to be

executed.

III. RELATED WORK

In recent years, testing WS-BPEL has become a research

focus in software testing. Yan et al. [5] use a graph-search

based method to generate an extension of the control flow

graph called BPEL flow graph (BFG) to represent a

WS-BPEL program. BFG is used to create test cases by

traversing the BFG. Theerapong and Twittie [6] propose a

test suite for WS-BPEL, which can create test cases and

create web service stubs for providing test cases that cover

basis paths. The test case and web services are created by

randomizing with constraints from a WSDL document and

manual assignment. Moreover, instead of creating test cases

from BPEL behaviors, Yitao et al. [7] propose a message

sequence testing technique from OO programming to create

a message-sequence graph (MSG), which can describe the

order relation among messages in WS-BPEL. Chien-Hung

et al. [8] use a combination of BPMN and WS-BPEL

structures for testing. Samer et al. [9] generate test cases for

testing web services based on a WSDL document.

Our approach covers generating test cases for WS-BPEL

based on path conditions of WS-BPEL, by using input

variable constraints from related WSDL documents,

the approach does not require testers to create inputs

manually. Test cases created by this tool can reach branch

coverage if the condition’s variables are tested by WS-

BPEL.

IV. METHODOLOGY

In this section, we present concept, design, and functions

of our test case generation tool. This tool contains 2 parts

and includes 8 modules as illustrated in Figure 1. First, a test

case generation part contains module A, B, C, D, and E.

This part generates test cases by analyzing WS-BPEL,

WSDL, and XSD files. Second, a test case verification part

contains module F and G. This part verifies the coverage of

test cases with coverage report from code instrumentation.

To illustrate the tool behavior, an “employee information”

process in WS-BPEL specification is used, “employee

information” is a process to save employee information by

receiving the client request, checking initial payload and

response to the client. Figure 2 shows the design of

employee information process.

A. Input receiver module

This module receives initial files from a tester. Initial files

include WS-BPEL, WSDL, and XSD.

B. WS-BPEL input inspection module

This module analyzes the WS-BPEL file to find the initial

node and its input variables, before analyzing relevant

variables and their constraints, such as type, length, or

min-max value from the WSDL and XSD files. The WSDL

and XSD files are selected from the WS-BPEL parent link.

Then a list of variables and its constraints is created to

prepare for mapping to the test path.

Figure. 1. Structure of the tool.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

C. Web service input inspection module

This module analyzes the WS-BPEL file for all specified

web services. Each web service must have a partner link to

its WSDL and XSD files. Both files are then analyzed for

web service input variables and their constraints. These

variables will be merged with the WS-BPEL input variables

from the previous module.

D. Control flow graph creation module

This module creates a control flow graph from analyzing

WS-BPEL file. WS-BPEL has 2 types of activities.

First, basic activities such as receive, invoke and assign are

represented by a node in the control flow graph.

Second, structured activities such as sequence, if, and while

are represented by a predicate node or edge depending on its

types. Table 1 lists the WS-BPEL activities and their control

flow graph representation. Figure 3 shows the control flow

graph of employee information process. After creating a

control flow graph, we create test paths using breadth-first

search. Figure 4 shows test paths of employee information

process.

E. Test case creation module

To create a test case, we select one of test paths from the

control flow graph and map all related variables with

random values from path conditions and their constraints,

then continue looping until completing all feasible test paths.

Test cases created from this module are in XML format.

Examples of test cases are shown in figure 5 - 6.

Figure. 2. Design of employee information process.

Figure. 3. The control flow graph of employee information process.

TABLE 1

A LIST OF WS-BPEL ACTIVITY MAPPED TO

CONTROL FLOW GRAPH ELEMENT.

WS-BPEL activity control flow graph element

basic type activity

invoke node

receive node

reply node

assign node

throw node

wait node

empty node

rethrow node

exit node (terminal node)

structured type activity

scope edge

sequence edge

flow edge

if predicate node

while predicate node

repeatUntil predicate node

pick predicate node

forEach predicate node

Path A. 1 – 2 – 3 – 4 – 6

Path B. 1 – 2 – 3 – 5 – 6

Figure. 4. Test paths of employee information process.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

F. WS-BPEL injection module

To verify coverage of test cases, we provide a report about

nodes reached by each test case. To make the report, we use

code instrumentation to inject a logging function into

WS-BPEL. The logging function tracks which nodes are

reached by each test case.

G. WS-BPEL execution module

This module uses an instrumented WS-BPEL to execute

test cases from the previous module, to show the coverage of

a test case with logging messages as a report. Figure 7 shows

an example of report generated by this module.

V. CONCLUSION

We propose a design of test case generation tool for

WS-BPEL based on path conditions. This tool can generate

test cases with branch coverage and verify their coverage, by

analyzing the WS-BPEL structure and use it to create a

control flow graph, then analyze WSDL and XSD for

specific variable constraints used in WS-BPEL. Finally,

variables are mapped to a path in the control flow graph for

each test path to create a test case. Moreover, the tool can

generate test case only if variables used in the path

conditions are WS-BPEL inputs. The benefit of this tool is

acquiring test cases for WS-BPEL with branch coverage

without using higher testing skills, as well as time and cost

saving.

 For future work, we will apply this design to develop a

prototype of the tool and test it with industry business

processes.

REFERENCES

[1] “Reference Architecture Foundation for Service Oriented

Architecture Version 1.0”, 2012. [Online]. Available:

http://docs.oasis-open.org/soa-rm/soa-ra/v1.0/cs01/soa-ra-v1.0-

cs01.html. Last Accessed: 4 JAN 2017.

[2] “Web Services Business Process Execution Language Version 2.0”,

2007. [Online]. Available: http://docs.oasis-open.org/wsbpel/2.0/OS/

wsbpel-v2.0-OS.pdf. Last Accessed: 4 JAN 2017.

[3] “Web Services Description Language (WSDL) 1.1”, 2001. [Online].

Available: https://www.w3.org/TR/wsdl. Last Accessed: 4 JAN 2017.

[4] Paul C. Jorgensen, Software Testing: A Craftsman’s Approach.

Second Edition. CRC Press, 2002.

[5] Y. Yuan, Z. Li and W. Sun, “A Graph-Search Based Approach to

BPEL4WS Test Generation”, Software Engineering Advances,

International Conference on, Tahiti, 2006, pp. 14-14.

[6] Theerapong Lertphumpanya and Twittie Senivongse, “Basis path test

suite and testing process for WS-BPEL”, WSEAS Transactions on

Computers, Vol. 7 Issue 5, May 2008, pp. 483-496.

[7] Y. Ni et al., "Effective Message-Sequence Generation for Testing

BPEL Programs," in IEEE Transactions on Services Computing, vol.

6, no. 1, First Quarter 2013, pp. 7-19.

[8] C. H. Liu, S. L. Chen, and X. Y. Li, "A WS-BPEL Based Structural

Testing Approach for Web Service Compositions," 2008 IEEE

International Symposium on Service-Oriented System Engineering,

Jhongli, 2008, pp. 135-141.

[9] S. Hanna and M. Munro, "An Approach for Specification-based Test

Case Generation for Web Services," 2007 IEEE/ACS International

Conference on Computer Systems and Applications, Amman, 2007,

pp. 16-23.

 <EmployeeRequest>

 <payload> 1 </payload>

 <employee>

 <FirstName> String </ FirstName>

 <LastName > String </ LastName>

 <Departement > String </ Departement>

 <Age> 50 </ Age>

 </employee>

 </EmployeeRequest >

Figure. 5. Example of test case path A.

Test case No. 1

Execution Log

======= Start Execution =======

Node No. 1 => Activity: receive.

Node No. 2 => Activity: assign.

Node No. 3 => Activity: if.

Node No. 5 => Activity: invoke.

Node No. 6 => Activity: reply.

======= End Execution =======

Figure. 7. Example of test cases coverage report.

<EmployeeRequest>

 <payload> 0 </payload>

 </EmployeeRequest>

Figure 6. Example of test case path B.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

