



Abstract—With the development of information technology,

the online database is getting popular. The experimental data on

material has problem to transform because of its diverse

structures, redundancy and isolation. This paper aims to

analysis the structure of experimental tables in an automatic

way by designing a prototype algorithm which can discover the

relationships among the headers and to generate a tree structure

with data labels to describe these tables, so they can be imported

into database finally. Experiment results in this paper show that

although the inserting process is slower, the redundancy is

reduced and the speed of query is more than 3 times faster. The

efficiency of the material database, as one type of data

warehouses, is increased overall.

Index Terms—Table understanding, Tree structure, Table

structure, Relational database, material database

I. INTRODUCTION

ITH the development of modern information

technology and modern experimental methods, the

Material databases, especially online material databases,

attract more and more attention in order to access to the latest

developments in materials accurately. The online material

database gets an earlier start in foreign countries. For instance,

MatWeb [9] (http://www.matweb.com) in America is

committed to found an online searchable database of material

properties and has over 115,000 materials. The National

Institute for Material Science in Japan set up a material

database called MatNavi, which is consists of more than 11

material databases and provides cross-database search

services [10]. China is trying to catch up and find out the

research and applications of online material database. The

National Science and Technology infrastructure platform,

also called Materials Scientific Data Sharing Network project,

has been started in 2011 [11]. In order to build the platform,

reliable data sources, especially the existing ones, are useful.

Generally, there are three types of the existing data sources.

1) The papers on material field, where the data is displayed

in the tables. But tables are much like Web-Table [1],

instead of formatted tables in computer field.

2) The experimental data sets which come from colleges

and enterprise laboratories. Their formats are not unified

and the contents are incomplete. The formats could be

plain text or form files such as Excel, Txt, Csv, which

may be artificial or generated by experimental

instruments.

3) Formatted tables, such as databases and data on reference

books in material field available. The format and content

are uniform and complete.

Among these three types of data, which this paper has

come into contact with, the experimental data sets are more

popular. The table format is wildly used in material

experimental data and its structure has the following

characteristics:

1) The structure does not conform to 1NF of database. In

order to express the hierarchy of data and reduce

duplication, there are merged columns or cells, which

destroy the atomicity of the data structure

2) The BoxHeads which stand at the top of the tables

contain more than 2 rows and hierarchical relationships

are described among the rows, which make the table

structure complicated. So it's hard to use them as column

names directly.

3) Duplicated column names and uncertain repeat times.

For example, an experiment has many conditions but the

number of conditions of each experiment is different, so

it needs many more columns to describe conditions while

many of the cells are empty. The circulation discipline

can be easily found among columns. The uncertain and

duplicated number of columns would seriously reduce

the speed and convenience of query and execution.

4) The same experiment data object may contain more than

one row, which is also harmful to database.

5) Hyperlink, external picture and other binary data which

are hard to store in relational database may appear among

files.

To generate a database from experimental data, table

structure analysis and interpretation is necessary [18][19].

Wang et al. have put forward a description of table structure,

which is a well-accepted definition [1][2][4][5][6][7]. So this

paper will follow the terminology of table structure described

by Wang et al. The paper [16][17] etc. discussed table

characters such as HTML tags and table layouts, could be

used to analyze tables. Rastan R. et al. presented a solution to

parsing the stub area of a table [7]. They provided a

classification of layout features in table stubs and an end-to-

end process system called TEXUS with PDF format. Seth S.

et al. focused their system on BoxHead area [6]. With a

context-free grammar, a parse tree for the column-header is

Method of Understanding Structure and

Building Database with Material Experiment

Data

Cao Min, Ma Zhiyuan

W

Manuscript received December 14, 2016; revised January 9, 2017.This
work is supported by the Shanghai Municipal Science and Technology

Commission (Grant No. 15DZ2260300)

Cao Min (Email: mcao@staff.shu.edu.cn) and Ma Zhiyuan (Email:
mazhiyuam@shu.edu.cn) are with the School of Computer Engineering and

Science, Shanghai University, Shanghai 200444, China

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

created to describe the table structure. This paper tries to use

the understanding on table structure and cell to reduce the

difficulty of transforming the material data table into a

relational database.

The main contributions of this paper is as follows. 1) We

provide a tree structure using rule-based approach, which

structure is used to store material table column-header.

Furthermore, we combine the data sets with the tree. We

solve the duplicated column problem. 2) Aimed at the tree

structure, a solution to building tables in database and

transform data into tables is discussed. Though the insert

execution is slower, the query speed is about 3 times faster

than original storage method.

In the next section, we review the table structure definition

by Wang et al. and the algorithms from other researchers.

Section 3 offers the tree structure as the middleware. Section

4 discusses the algorithm to convert complex material table

header to tree structure. Section 5 describes an experiment

and discusses the performance of our algorithm. Conclusion

is presented in section 6.

II. RELATED WORKS

According to Hust et al. the processing of table

understanding could be divided into following steps [21]:

functional analysis, structural analysis, interpretation

relationships. In consideration of the situation in material

experiments, we focus on table structural analysis and

interpretation relationships.

Wang et al. have put forward a well-known description of

table structure in paper [3]. Xin Xin Wang divided tables into

4 parts. The Body contains the data sets. BoxHead is usually

at the top of a table which is the index of a column. Stub, the

index of a row, lays on the left part of a table. The BoxHead

and stub can be called as headers. The overlap among

BoxHead and stub is called stub head which lays at the top-

left of a table. The division lines are called stub separation

and BoxHead separation. They may not be physical, but if the

separations are recognizable, functional structure could be

analyzed [4]. The structure definition of Wang's table is

shown in Table I.

Wang used a grammar-based and text-based tree to

describe the table structure, each relationship will be

generated into a tree. For example, as shown in Table I, the

result can be following:

(Year, {(1991,∅), (1992, ∅)}),

(Term, {(Winter, ∅), (Spring, ∅), (Fall, ∅)}),

(Mark, {(Assignments, {(Ass1, ∅), (Ass2, ∅), (Ass3, ∅)})

The result is composed of three trees, which describe the

relationships among the labels in stub and boxhead. However,

they didn't pinpoint the relationships among the trees, which

introduced some problems while parsing table and building

database. The papers [2][5][6] tried to understand the table

from the angle of BoxHead. Seth S et al. used a rule-based

context-free grammar to get Wang's tree with the edited table

headers [6]. But it has only 8 grammar rules, which hardly

fits all types of table structures. In addition, it cannot analyze

without transforming the column headers manually because

the system cannot analyze all types of functional table

structures, such as a table who has multiple head roots.

Rastan R et al. combined Wang's table definitions, and

designed an end-to-end table processing system (TEXUS)

with two phases: table extraction and table understanding [7].

They parsed tables by identifying common patterns of layout

features that appear in the stub part. The system can be used

in different situations, such as merged cells, blanked columns

or rows and relationships found in table format etc.

Alexey O. proposed a table model with two levels: physical

and logical [20]. By using regular expression, rules engine

and dictionaries, they designed a solution for unstructured

tabular data integration. The solution divides the result

database into two parts, the one is used to locate or describe

the relationship of a table cell and the other contains the data

of a cell. While it surely achieves the goal to get a structured

information, it suffers the data redundancy problem. The

number of columns which do not store data is changeable due

to the table structure and the integration algorithm. Besides

the information cannot express directly in such database. The

cells are discrete and the database has less readability and is

suitable for query.

The document media is changing in different time. In

earlier time, the media is usually paper, so Optical Character

Recognition (OCR) is the main technique. With the

development of e-document, PDF becomes the main storage

file type. The main application target of paper [7] is PDF files.

The age of internet makes the textual information, used on

web, popular. The target is changed on unstructured

information extraction [15], such as HTML, XML and JSON

etc. Liubo Ouyang et al. used DOM tree with geometry model

of tables in HTML files to locate the Preparative Core Area

and then the Core Area by calculating weighted expectation

value [15]. They recognized the similarity of characters

between neighbor cells to judge and correct the data content.

This paper uses simple rules to parse the header of a table

and create a tree representing the parent-child relationships

among labels, then insert data sets after leaves to generate the

database instance. Meanwhile readability should be kept

mostly.

III. PROPOSED STRUCTURES

A. The class of the table for processing and input format

Since paper [3][6] has already discussed about the

definition of a table, so it won't be covered here. In order to

simplify the model, the following assumptions are made to

describe the table we discuss:

 Only two-dimensional tables are discussed. The cells in

the table could be located by row and column number.

Each location can be mapped to no more than one cell.

Table I The structure definition of Wang's table

Ass1 Ass2 Ass3 Midterm Final

1991

Winter 85 80 75 60 75 75

Spring 80 65 75 60 70 70

Fall 80 85 75 55 80 75

1992

Winter 85 80 70 70 75 75

Spring 80 80 70 70 75 75

Fall 75 70 65 60 80 70

Assignments Examinations Final
Grade

Term

Boxhead

Body

Stub

Stub Head

Stub separation

Boxhead
separation

Row
Label

entry

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

 The neighbor cells can be merged. We assume that

merged cells also have rectangle shape. The location

should pick the minimum value among the cells.

 For convenient operation, cells can only contain textual

data but not pictures or formula etc. unless they are

turned into text.

 The structure information is not considered in this paper.

We ignore the influence of the cell formats.

Meanwhile the relationships among the cells are restricted

by the following rules:

 The cells can at least be divided into two exclusive

classes, entry and label.

 For a convenient parsing, we assume that the label area

is independent. If not, we can move the body area to meet

the condition.

 The headers in the label area should be able to turn into

the tree structure we described. We will continue to

discuss this in the next section.

 The cells in label area should be compact, which means

no blank cells. If there exists a blank cell, it will be

merged with a filled cell nearby.

 The cells in the label can be repeated, but can only repeat

among the whole level of the label. If not, we can make

a new level to meet the rule.

The main object of this paper is the material data in the

table, so the notes like footnotes, marginalia and sources are

not considered in this paper.

Most of our experimental data sets are Excel and textual

data such as CSV while PDF is rare. Excel is not usually used

for data analysis and I/O operation, because Excel has rich

table styles, formula, uncertain table location and binary data

such as pictures. CSV (Comma-Separated Values) files can

display tabular data in a textual way. The data records are

separated by commas or other separator. It's a simple file

format that programs can easily parse. But we should

consider the merged cells situation. We define that the

merged cells should be displayed into one text cell and blank

cells. The hypothesis above show that there should be no

blank cells in table. So we can avoid the ambiguity and make

sure when blank cells appear, there must be a merged cell.

For example, the table in Table I can be converted into the

following CSV format:

Title1, ,Title2

Title3,Title4,

We can find the blank cell caused by merged cells. The

cells of first row, first column and first row, second column

are merged. We can find that the "Title 3" and "Title 4" are

the sub-titles of "Title 1." We can take advantage of the

characteristic in the stage for header analyzing.

B. Tree model

We use tree model to describe the header and its

relationships, as shown in Fig. 2. From the top to bottom of

the header, the system parses and builds a tree structure. To

union the leaves, a virtual root is created. In our designing

phase, the stub and stub head area are not concerned. In other

words, the headers in BoxHead will be parsed into tree leaves.

This plan is feasible. At worst, the stub cells are perceived as

body cells and they will repeat in the data results. One

possible way is to judge the stub area and build another table

with foreign keys [7]. Another method is to make the same

with the stub cells and table columns are used to mark

positions [20]. But the result is hard to read and redundant.

So the first method can be following in future work.

However, not all of tables can be directly transformed,

which would change to forests or graphs. The reason is that

the relationships of table headers are not consistent. In Table

II (a), there is a merged cell under the single cell, which will

break the affiliation from the top to bottom. So we make

suppose in Section 3.1. It's necessary to change structures into

the forms expected by our algorithm, manually or

automatically. But the transformation is non-unique. Both

Table II (b) and Table II (c) are possible results. Thus how to

obtain optimal solutions of transformation is another subject

of our further work.

Table II different expressions of the header

midterm final midterm final

2014 89 87 84 91

midterm final midterm final

2014 89 87 84 91

year sex midterm final

male 89 87

female 84 91

(c) Another transformation header

2014

year
male female

year
male female

(b) One of transformation header

(a) Original header

IV. THE ALGORITHM FOR CREATING TREE AND BUILDING

DATABASE

The algorithm of building tree will be proposed in this

section. The main ideas of the algorithm are as followings:

1) Check whether the table meets the conditions. If not,

transform it manually.

2) Analyze and pick up the BoxHead area, at least one row.

3) Analyze the cells and create the tree structure.

4) Get another part of table.

5) Combine the tree structure with the data sets. Prepare the

preliminary data to insert into the database.

6) Build table in database with foreign key constraints and

insert data.

This Section will introduce the algorithm for creating tree

and building tables in database. In this paper, the program

language is Java with map class used to simulation the tree

structure. In order to get a union root, we name the root of

"root"

A Tree

Title1 Title2 null

Title3 null

Fig. 1. Map about tree structure

Title4 null

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

tree as 'root'.

A. The algorithm of the headers

The purpose of this algorithm is to create a tree describing

the relationships among the hear cells. The process is

recursively implemented, which is finding the child tree and

building it then inserting it into the parent tree. Finally insert

the result into the virtual root.

Table III Algorithm: AddTree

Algorithm 1. AddTree (row, col, length)

if (getCSVList(row, col) = NULL) then

 Return NULL;// ERROR or end of header

end if

TempRoot = CreateNode();

rownum = getRowSize(); colnum = getColSize();

for (i=1; i≤ col+ length; i=i+1) do

 title = getCSVList(row, col);

 range=i; i=i+1;

 if (i != (col + length)) then

 while (i != (col + length) and getCSVList(row, i)

= null) do

 i=i+1;

 end while

 end if

 NewLength = i – range;

 i=i-1;

 TempRoot.put (title, AddTree(row+1, range,

NextLength));

end for

Return TempRoot;

Table IV The example of headers of material data (part)

B
an

d
 n

am
e

M
aterial n

am
e

C
h
em

ical co
m

p
o

sitio
n
 N

O
.

M
aterial in

fo
rm

atio
n

 N
O

.

Performance

information
Experimental condition

C
lass o

f p
erfo

rm
an

ce

P
erfo

rm
an

ce n
am

e

V
alu

e

U
n

it

T
estin

g
 eq

u
ip

m
en

t

T
estin

g
 in

stitu
tio

n

C
o
n
d

itio
n
 n

am
e

P
aram

eter n
am

e

V
alu

e

U
n

it

C
o
n
d

itio
n
 n

am
e

P
aram

eter n
am

e

V
alu

e

U
n

it

According to the experiment data we have, the columns

could be repeated and we can find multiple same leaves, as

shown in Table IV. This paper use map class to store the tree

structure, which overcomes the problem of duplication leaves.

To keep order of data, we assign a number in the data leaves.

We also enforce rules as following:

1) ∀𝑙 ∈ 𝑉𝑖𝑟𝑡𝑢𝑎𝑙𝑅𝑜𝑜𝑡, 𝑙 ∈ {𝑙𝑒𝑎𝑣𝑒𝑠} ⇏ 𝑙 repeats

2) If a leave 𝑙 repeats, its loop set is 𝑙𝑠 ,then ∀ 𝑐ℎ𝑖𝑙𝑑 ∈
𝑙 ⇒ 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑙𝑠

3) If 2) doesn't satisfy. Create a leave 𝑛𝑒𝑤𝑙𝑒𝑎𝑣𝑒, who loop

set is 𝑙𝑠, then

𝑛𝑒𝑤𝑙𝑒𝑎𝑣𝑒 ∈ 𝑙, ∀ 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑛𝑒𝑤𝑙𝑒𝑎𝑣𝑒 ⇒ 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑙𝑠

With the algorithm Addtree, we can create the following

Map with Java Language, whose logical graph shown in Fig.

2. The map class can be easily transformed into XML and

Json files.

{ "Virtual root" = {"Band name" = null, "Material name" =

null, "Chemical composition NO." = null, "Material

information NO." = null, "Performance information" =

{"Class of performance" = null, "Performance name" = null,

"value" = null, "unit" = null, "Testing equipment" = null,

"Testing institution" = null}, "Experimental condition" =

{"Condition name" = null, "Parameter name" = null, "Value"

= null, "Unit" = null}}}

B. Data sets combining with structure tree

After building the tree of the BoxHead part, we insert the

data sets as leaves into the structure tree to prepare the

database execution. This paper is trying to get a mix tree with

the data and header one by one. We should pay attention to

the duplicated columns. During the process of copying

instance of map class, the system is doing shallow copy by

default. So an overloaded algorithm of deep copy is necessary.

The algorithm is as following:

Table V Algorithm: Clone

Algorithm 2. Clone (Map root)

res= CreateNode();

for (i=0; i<root.Size(); i=i+1) do

 res_key = root.getKeyByIndex(i);

 root_value = root.getValueByIndex(i);

 res_value= clone(root_value);

 res.put (res_key, res_value);

end for

Return res;

The algorithm that locates the position of the header in the

tree and inserts the data sets, is the same as algorithm

AddTree. So we don't explore it. Fig. 3 shows a simple

example after inserting data sets. The Data1 and Data2 belong

to the header Title2 and the Title2 in the structure tree is a leaf

node who has no children. A number should be recorded to

mark their order.

Virtual root

Band name

Material name

Chemical composition NO.

Material information NO.

Performance information

Experimental condition

Class of performance

Performance name

Value

Unit

Testing equipment

Testing institution

Unit

Condition name

Parameter name

Value

Fig. 2. Structure of the tree from Table IV.

Structure Map

Fig. 3. The structure tree with data

Title2

Data1 1.1 Data2 1.2

Data Map

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Table VI Algorithm: BuildDataTree

Algorithm 3. BuildDataTree (Set data[])

res= clone (VirtualRoot);

for(i =0 ; i< data.Size(); i=i+1) do

 for(j=0; j<data[i].Size(); j=j+1) do

 node = res.LocateLeaf(data[i][j]);

 node.insert (number,data[i][j]);

 end for

end for
Return res

C. Building database

Before inserting data, we should build tables in databases

while we are preserving relationship information as much as

possible. So we think the every child nodes should be a new

table while an ID column in table created by its parent nodes

should be the foreign keys of the table. The foreign keys can

reduce the redundancy and maintain the integrity.

V. EXPERIMENT RESULTS

The experiment configuration is as followings:

Oracle Java(TM) 8

MariaDB 5.5.36, for x86

Before the experiment, we convert all the Excel to the CSV

format files, and change the structure which may cause the

problem in Table II (a). The BoxHead area is ensured to be

compact which has no blank cells.

A. Structure of results

Table VII result of Example in Table IV -- Table Virtual Root

The result of the Table IV is shown in Table VII, Table

VIII and Table X. The headers are divided into three parts of

nodes and their relationships. Tree relational tables are

generated based on the nodes. The main table is named

"Virtual Root". The foreign keys named "fk" from other two

tables point to the "id" in table "Virtual Root ".

Table VIII result of Example in Table IV -- Table Performance Information

id
Class of

performance

Performance

name
Value Unit

Testing

equipment

Testing

institution
f k

1
mechanical
property

granularity 20 μm

temperature

testing
instrument

DATAPAQ

Experimental

Center in

University of
Science and

Technology

Beijing

1

4
chemical

property

Coefficient
of thermal

expansion

3×106 2

5 performance
HV(49N)

hardness
286

Vickers
hardness

tester HV-

10

Northeaster

n
University

3

8 performance Microstructure Microscope
Northeastern
University

3

9 performance

high-

temperature
mechanical

properties

Gleeble-

1500D
Thermal

simulator

Chongqing
University

4

The result shows that the relationships between headers

and cells are stored among the tables. The tables are more

readable than the one by Shigarov et al [20]. The result also

shows blanked fields in a few records because of missing

experiment data.

This paper processed 10000 original data sets. 2620 of

them repeat partially and 120024 cells are blanked or

meaningless, accounting for 27.9%. After processing, 27381

of them remain, which reduce by 77.2%. The algorithm saves

the database storage cost and advance the semantic relations

among cells.
Table IX Algorithm: Data_To_SQL

Table X result of Example in Table IV -- Table Experimental Condition

id Condition name Parameter name Value Unit fk

1 Heat medium oil
Calcination
temperature

600 ℃ 1

2 Acetone toluene
Calcination

temperature
650 ℃ 1

5 Solid phase method Test temperature 1100 ℃ 2

6 Solid phase method pressure 1100 Mpa 2

7 Austenitization temperature 1200 ℃ 3

8 Compression deformation deformation 0 % 3

9 Test temperature insulation Time 5 min 4

10
Actual billet continuous

casting strain rate
Strain rate 2×10-2 / 4

B. Expenses on execution and query

This paper compares the time consumption between our

algorithm and the original algorithm to generate one table

with whole data cells directly on executions and queries. The

material database is a kind of data warehouses. Most

operations on data are queries [22]. So we don't test the

deleting and modifying operations. The result is shown in

Table XI.
Table XI the consuming comparison between our and original algorithm

Unit: second Data size

Our

algorithm
takes

Original

algorithm
takes

Ratio

Insert

executions
1000 executions 71.611 6.732 0.094

Query by
keyword full

fields output

1000 queries 6.921 27.899 4.031

Query by
keyword part

fields output

1000 nested

queries
3.778 11.798 3.122

id Band name Material name

Chemical

composition
NO.

Material

information
NO.

1 NO80310009 La0.4Sr0.4TiO3 1 1

2 NO80310010 TiO2 2 2

3 16MnCr5 pinion steel 3 3

4 20CrMo alloy steel 4 4

Algorithm 4. Data_To_SQL (Map data_tree,

foreign_id, table_name, forerign_table)

for (i = 0; i< data_tree.Size(); i=i+1) do

 data_record= data_tree.getIndex(i);

 if (IsExist (data_record, table_name) = False) then

 InsertData (table_name, data_record, foreign_id);

 end if

 child_foreign_id = QueryID

(table_name,data_record);

 if (data_tree.HasChild() = True) then

 while (data_tree.HasNextChild() != False) do

 child_data=data_tree.getNextChild();

 Data_To_SQL (child_data, child_foreign_id,

child_table_name, table_name);

 end while

 end if

end for

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

We find that the speed of inserting executions of our

algorithm is 10 times slower than the original one. The main

reason is that when inserting data into child tables, we need

to know the foreign key "fk" which is the "id" field in their

parent table. So for one inserting execution in our algorithm,

we need two queries and one execution if we don't find the

same record, and one query if we find the same. So the insert

speed is much slower.

Our algorithm is more than 3 times faster than the original

algorithm. It shows that redundancy influences the query

speed. When the data sets are divided into tables with smaller

scale, higher paradigm and lower redundancy, the query

efficiency improves greatly. As one kind of data warehouse,

the material databases are more used in query than in

inserting executions [22]. Therefore this paper argues that our

algorithm can reduce the overall expense.

VI. CONCLUSION AND FUTURE WORK

This paper proposes an end-to-end table processing

algorithm and its prototype system. Our goal is to standardize

the complex table in the material data resources and finally

build a relational database. The experiment shows that it has

a faster query speed, lower redundancy and keep the

relationships among the cells while the table is a little more

readable. Therefor experts can analyze data by using the

material databases.

In addition, the drawbacks of the algorithm are as

following:

 We make too many limits and manual corrections to

make sure the output structure is a tree instead of a forest.

 The multi-to-multi relationship in E-R model can't be

achieved.

 We only consider the Boxhead area but not Stub area.

 The repeat judgment is too easy.

A further research is required as following:

 To support every kinds of tables. Try to transform tables

into the discernible ones.

 Improve the semantic analysis in order to discover the

hidden relationship between the tables.

 Make the tree structure on the Stub area to lower

redundancy.

 Try to discover and show the multi-to-multi relationships.

 Support more file formats such as PDF, Excel and

HTML etc.

REFERENCES

[1] e Silva, Ana Costa, Alípio M. Jorge, and Luís Torgo. "Design of an end-
to-end method to extract information from tables." International

Journal of Document Analysis and Recognition (IJDAR) 8.2-3 (2006):

144-171.
[2] Nagy, George. "Learning the characteristics of critical cells from web

tables." Pattern Recognition (ICPR), 2012 21st International

Conference on. IEEE, 2012.
[3] Wang, Xinxin, and Derick Wood. Tabular abstraction, editing, and

formatting. Canada: University of Waterloo, 1996.

[4] Jha, P., and G. Nagy. "Wang Notation Tool: Layout independent
representation of tables." Pattern Recognition, 2008. ICPR 2008. 19th

International Conference on IEEE, 2008:1 - 4.

[5] Alrayes, Norah, and Wo-Shun Luk. "Automatic transformation of
multi-dimensional web tables into data cubes." International

Conference on Data Warehousing and Knowledge Discovery. Springer

Berlin Heidelberg, 2012.
[6] Sharad Seth, Ramana Jandhyala, Mukkai Krishnamoorthy, and George

Nagy. "Analysis and taxonomy of column header categories for web

tables." Proceedings of the 9th IAPR International Workshop on
Document Analysis Systems. ACM, 2010.

[7] Roya Rastan, Hye-young Paik, John Shepherd, Armin Haller.

"Automated Table Understanding Using Stub Patterns." International
Conference on Database Systems for Advanced Applications. Springer

International Publishing, 2016.

[8] Gao, Zhiyu, and G. Liu. "Recent Progress of Web-enable Material
Database and a Case Study of NIMS and MatWeb." Cailiao

Gongcheng/journal of Materials Engineering volume 3.11(2013):89-96.

[9] Ramalhete, P. S., A. M. R. Senos, and C. Aguiar. "Digital tools for
material selection in product design." Materials & Design 31.5 (2010):

2275-2287.

[10] Yamazaki, Masayoshi. "Development and challenge of materials
database-a case study of NIMS materials database." Proceedings of the

2nd Asian Materials Database Symposium. Shanya: University of

Science and Technology Beijing (USTB), 2010.
[11] Ministry of Science and Technology of the People's Republic of China.

"2011 China science and technology development report." Scientific

and Technical Documentation Press, 2011.
[12] Jianhua Zhao, Rudolf Plagge, Nuno MM Ramos, M Lurdes Simões,

John Grunewald. "Application of clustering technique for definition of

generic objects in a material database." Journal of Building Physics
39(2015).

[13] Jianhua Zhao , Rudolf Plagge, Nuno M.M. Ramos, M. Lurdes Simões

and John Grunewald. "Concept for development of stochastic databases
for building performance simulation-A material database pilot project."

Building and Environment 84 (2015): 189-203.
[14] Antoine Doucet, Gabriella Kazai, Bodin Dresevic, Aleksandar Uzelac,

Bogdan Radakovic, Nikola Todic. "Setting up a competition framework

for the evaluation of structure extraction from ocr-ed books."
International Journal on Document Analysis and Recognition (IJDAR)

14.1 (2011): 45-52.

[15] Ouyang, Liubo, Rui Dong, and Beiji Zou. "Information Extraction
Based on Table Area Locating for E-Commerce Websites." 2009 WRI

Global Congress on Intelligent Systems. Vol. 4. IEEE, 2009.

[16] Nagy, George, Sharad Seth, and David W. Embley. "End-to-end
conversion of HTML tables for populating a relational database."

Document Analysis Systems (DAS), 2014 11th IAPR International

Workshop on. IEEE, 2014.

[17] Nagy, George, and Mangesh Tamhankar. "Vericlick: an efficient tool

for table format verification." IS&T/SPIE Electronic Imaging.

International Society for Optics and Photonics, 2012.
[18] Shigarov, Alexey. "Rule-Based Table Analysis and Interpretation."

International Conference on Information and Software Technologies.

Springer International Publishing, 2015.
[19] Lee, Dongchan, Jaemin Choi, and Sangjin Lee. "Database forensic

investigation based on table relationship analysis techniques." 2009

2nd International Conference on Computer Science and Its
Applications, CSA 2009. 2009.

[20] Shigarov, Alexey O. "Table understanding using a rule engine." Expert

Systems with Applications 42.2 (2015): 929-937.
[21] Hurst, Matthew. "Layout and language: Challenges for table

understanding on the web." Proceedings of the International Workshop

on Web Document Analysis. 2001.
[22] Inmon, William H. Building the Data Warehouse. John Wiley & Sons,

Inc. 1996.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

	I. INTRODUCTION
	II. Related works
	III. Proposed Structures
	A. The class of the table for processing and input format
	B. Tree model

	IV. The algorithm for creating tree and building database
	A. The algorithm of the headers
	B. Data sets combining with structure tree
	C. Building database

	V. Experiment results
	A. Structure of results
	B. Expenses on execution and query

	VI. Conclusion and future work
	References

