



Abstract—Service Oriented Architecture (SOA) is commonly

used in organizations to design architecture based on

organizational services. To achieve the business goal, the

business designer can use existing web services to compose the

business process by using WS-BPEL. To ensure each web

service works with others correctly, the tester needs to test all

web services within WS-BPEL. The challenge in web service

testing is to trace web service messages consistency and test the

coverage of partner link invocations. This paper presents an

approach for monitoring partner link invocations under WS-

BPEL. The proposed approach focuses on tracing web services

messages using code instrumentation technique, and notifies the

untested web services to testers. The proposed approach also

covers the additional test case generation for the untested web

services as well.

Index Terms—Monitor, Partner Link, WS-BPEL, Web

Services

I. INTRODUCTION

N SOA design and development, the business process has

been integrated with web services to reduce development

time and redundancies. To design a business process, it

should call several web services in order to achieve the

business goals. For depicting the overall business process,

designers have to use a tool such as BPEL engine for

designing, simulating, and testing the process. BPEL engine

uses a WS-BPEL as a language to design the process and

represents the invocation of web services by using partner

link nodes. WS-BPEL is used for the orchestration of web

services with respect to the business process. This makes the

test of web services important for ensuring that the web

services can co-operate correctly.

In integration testing, test cases should cover all web

services used in business process to reduce errors in the

production environment. Moreover, input and output

messages from web services should be traced to ensure that

web services are able to work with others correctly.

This paper proposes an approach for monitoring partner

link invocations under WS-BPEL to trace the input and

output messages from web services as well as examining the

coverage of tested web services. Furthermore, our proposed

approach will generate additional test cases for exercising

untested web services in other feasible paths based on path

conditions.

Manuscript received January 8, 2017; revised January 24, 2017.

N. Uaphoemkiat and T. Suwannasart are with the Department of Computer

Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok,

Thailand e-mail: Nuttaphong.U@student.chula.ac.th,

Taratip.S@chula.ac.th

The rest of the paper is organized as follows. Section 2

discusses the related work. Section 3 introduces background

knowledge of WS-BPEL, BPEL engine, and XSD. Section 4

describes the proposed approach. Section 5 discusses

conclusions and future work.

II. RELATED WORK

To prevent errors in a production environment, integration

testing is important for WS-BPEL to ensure that each web

service can work together and also work correctly. Daniel

Lubke and Leif Singer [1] present test coverage metrics for

BPEL process using code instrumentation. However, their

research does not aim to notify the tester for the untested

web services. The tester might ignore untested web services

and can neglect to generate more test cases for the test

coverage of all web services. From their research, we found

the concept of storing input and output message logs by

using code instrumentation to trace the messages between

web services. Bixin Li et al., [2] and Chang-ai Sun [3]

present methodologies for generating test cases using path

conditions, by finding all untested paths. Although these

researches generate test cases based on all path conditions

but we aim to generate test cases to cover all partner link

nodes. Therefore, we apply their methodologies to generate

test cases according to untested web services.

III. BACKGROUND KNOWLEDGES

A. WS-BPEL (Web Services Business Process Execution

Language)

WS-BPEL is a language developed from OASIS [4] to

describe the interactions between web services following

business processes in XML format. The business process

designer can compose the business process using XML tags.

To call web services, WS-BPEL provides ‘invoke’,

‘receive’, or ‘reply’ tags to represent partner link nodes [2].

Partner link invocations use a WSDL file (Web Services

Description Language) to determine addresses, functions,

and parameters of web services [5]. The business constraints

in the process are manipulated in WS-BPEL by using XML

tags such as “if”, “while”, “repeatUntil”, etc. In addition,

exceptions and faults are handled by WS-BPEL as well [6].

B. BPEL Engine

BPEL Engine is a tool to design, execute, and manage the

WS-BPEL files. The number of current BPEL Engines is

increasing exponentially. Each BPEL Engine may have its

An Approach for Monitoring Partner Link

Invocations under WS-BPEL

Nuttaphong Uaphoemkiat and Taratip Suwannasart

I

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

own specific functions, e.g. Oracle BPEL Process Manager

[7] is a BPEL Engine developed by Oracle Company, which

contains many functions such as designing, deploying,

executing, and testing business processes [8]. This tool also

shows the tested paths executed by the corresponding test

cases, and helps in tracing the input and output messages of

each BPEL node. Tracing can be performed by clicking on

the intended node, and then the tool will display the trace in

XML format (Fig. 1). Therefore, the tester has to consider

which BPEL nodes to be selected and also requires

knowledge of XML to understand the WS-BPEL messages.

Moreover, the tool has some gaps, e.g. it reports only tested

paths without untested web services (Fig. 2). From the

aforementioned gap, it makes the test operation difficult to

determine whether the existing test cases cover all web

services in the business process. Thus, the tester has to know

the BPEL node that interacts with the web services, in order

to trace the input and output messages between web services,

and also require knowledge of XML to read these trace

messages.

Fig. 1. The Input and Output Messages from the Web Services

Fig. 2. The Result of Testing from BPEL Engine

C. XSD (XML Schema Definition)

XSD is a document that contains the definition of data

schema in XML format. XSD is also used in WSDL and

WS-BPEL to describe the data schema definition [9]. XSD

depicts the data types and constraints of each variable.

IV. PROPOSED APPROACH

We present an approach for monitoring partner link

invocation under WS-BPEL, in order to trace the input and

output messages between web services, and also calculate

the test coverage of web services. Our approach also handles

the test case generation based on path conditions when

untested web services are found, which contains six steps:

A. Create the BPEL flow graph

B. Code Instrument

C. Test the BPEL with test cases

D. Explore the untested web services

E. Create the new test cases

F. Generate the test reports

Fig. 3 represents the overview of the proposed approach

and identifies inputs and outputs in each step.

Tester

1.create the BPEL

flow graph

-WS-BPEL file -BPEL flow data

Database

2. code instrument

-WS-BPEL file

3.test the BPEL with test cases

-WS-BPEL file instrumented

-Test case

-WSDL file

4.explore the untested web services

-input,output

-coverage data

-BPEL flow data

-test result

5.create the new test cases

-untested web services

-BPEL flow data
-XSD file

-WSDL file

6.generate the test reports

-new test case data

-new test case history

-Test result data-test report

-Test case data

Fig. 3. The Overall Methodology

A. Create the BPEL flow graph

A BPEL flow graph is stored into the database by reading

a WS-BPEL file that is uploaded by the tester (The example

of the WE-BPEL file is shown in Fig. 4). Then, a BPEL

flow graph is generated as shown in Fig. 5, which follows

the below tasks:

1) Read a WS-BPEL file from the tester.

2) Analyze the WS-BPEL file to generate the BPEL flow

graph by converting each BPEL node from XML format

to a node object, which contains attributes such as node

id, node name, node type, list of previous node, list of

next node, and interaction web service.

3) Store node objects from task 2 into the database.

4) Repeat task 2 to 3 until the end of WS-BPEL file

The BPEL flow graph data stored in the database are

used for comparing with the test web services and

untested web services in step D.

<invoke name="callPatient_Info"

 partnerLink="patientService"
 portType="ns1:IService1"

 operation="getPatient"

 inputVariable="Invoke1_getPatient_InputVariable"

 outputVariable="Invoke1_getPatient_OutputVariable"

 bpelx:invokeAsDetail="no"/>

Fig. 4. The Example of a WS-BPEL File

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

1

2

3S1

Name : patientService

Type : Service

Name : receiveInput

Type : Receive

Name : set_patient

Type : Assign

Name : callPatient_Info

Type : Invoke

Operation : getViatalSigns

4

Name : if_check_vitalsigns

Type : If

5 8
Name : a_vital_input

Type : Assign

Name : a_visit_input

Type : Assign

6

7 10

9

11

Name : getVitalsigns

Type : Invoke

Operation : getViatalSigns

Name : setResult_Vitalsigns

Type : Assign

S2

Name : visitService

Type : Service

Name : setResult_Visit

Type : Assign

Name : getLastVisit

Type : Invoke

Operation : getLastVisit

Name : callbackClient

Type : Invoke

Operation : processResponse
S3

Name : hosprocess_client

Type : Service

[OperationType=Vitalsigns] [OperationType!=Vitalsigns]

Fig. 5. The Example of the BPEL Flow Graph

B. Code instrument

This step uses a code instrumentation technique to collect

the test data. When the BPEL engine executes the

instrumented line, the BPEL engine will send and store the

test data into the database. We have classified the

instrumentation node into two kinds of the partner links:

invocation nodes and predicate nodes.

1) Invocation node

For the invocation node, we collect test data using code

instrumentation technique. To find the invocation node,

every node that contains ‘invoke’, ‘receive’, and ‘reply’

tags, are identified. Then, the code instrumentation is

performed by adding a trace node for collecting test

data in the WS-BPEL file. This step has the following

tasks:

1.1) Find invocation nodes.

1.2) Find input variables of web services.

1.3) Convert web service input variables into XML

format.

1.4) Perform code instrumentation by adding a trace

node before the invocation node to call the web

service initially by sending input values in XML

format.

1.5) Convert the web service output variables into

XML format.

1.6) Perform code instrumentation by adding a trace

node after the invocation node to call the web

service again by sending output values in XML

format.

1.7) Repeat task 1.1 - 1.6 until the end of WS-BPEL

file.

2) Predicate node

For the invocation node, we collect test data using code

instrumentation technique. To find the invocation node,

every node that contains ‘invoke’, ‘receive’, and ‘reply’

tags, are identified. Then, the code instrumentation is

performed by adding a trace node for collecting test

data in the WS-BPEL file. This step has the following

tasks:

2.1) Find predicate nodes.

2.2) Read conditions in each predicate node.

2.3) Perform code instrumentation by adding a trace

node after the predicate node to call the web

service by sending conditional variables and

execution status in object format.

2.4) Repeat task 2.1 - 2.3 until the end of WS-BPEL

file.

After instrumenting all nodes in WS-BPEL file, testers

may use this instrumented WS-BPEL file to deploy. Testers

may test the deployed WS-BPEL with their existing test

cases through the BPEL engine. From the example in Fig. 5,

node 1, 3, 6, 9, and 11 are instrumented as invocation nodes

type to trace inputs and outputs of web services and node 5,

and 8 are instrumented as predicate nodes.

C. Test the BPEL with existing test case

In this step, testers can use the instrumented WS-BPEL

file from step B to deploy and execute through the BPEL

Engine. The execution of the instrumented WS-BPEL file

allows tester to collect the test data. Then, testers can test

the WS-BPEL using existing test cases. Consequently, the

test data are stored into the database when the instrumented

lines are executed following the corresponding node type,

e.g. the BPEL Engine will send the input and output into the

database in XML format when the invocation node type is

executed, and the BPEL Engine will send execution status in

object format when the predicate node type is executed. The

example in Fig. 5 is illustrated as a test case input of

‘operationType’ tag “Vitalsigns” in Fig. 6, and the BPEL

Engine sends test data from node 1, 3, 5, 6, and 11.

<inputVariable>

<part xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"name="payload">

<ns1:process xmlns:ns1="http://xmlns.oracle.com/sample_HOS

/sampleHos/HosProcess">

<ns1:hn>5900001</ns1:hn>

<ns1:operationType>Vitalsigns</ns1:operationType>

</ns1:process>

</part>

</inputVariable>

Fig. 6. The Example of a Test Case

D. Explore the untested web services

The tested nodes (from step C) are compared with the

BPEL flow graph (from step A) by finding all web services

contained in the BPEL flow graph and comparing it with the

tested web service nodes from the test results. From the

example in Fig. 5, the web service nodes are 1, 3, 6, 9 and

11. The tested web service nodes are 1, 3, 6 and 11. The

example shows the untested web service “getLastVisit”

called by node 9 to the tester.

E. Create the new test cases

From the previous step, untested web services are notified

to testers. Then, the testers can generate additional test cases

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

to test the untested web services. To generate additional test

cases, we use a path condition technique, by checking the

untested condition nodes and trying to change the condition

variables of the existing test cases. This step contains the

following tasks:

1) Receive the untested web services and existing test

cases from the previous step.

2) Find all feasible paths to each untested web service.

3) Find untested predicate nodes contained in the feasible

paths: Untested predicates contained in the feasible

paths are checked for identifying the variables in the

conditions, to generate new test cases that variable value

are received from initial test case and the value is

remained the same in WS-BPEL.

4) Change variables from existing test cases based on

conditions from the previous task by requesting XSD

and WSDL file from the tester.

5) Insert new test cases into database.

6) Repeat task 2-5 until the end of untested web services

list.

 From the previous example (Step D): The untested web

service “getLastVisit” and existing test cases are received.

The example test case contains a test of ‘operationType’ tag

“Vitalsigns” for testing predicate node “5”. In this case, we

found that there is only a feasible path: “1-2-3-4-8-9-10-

11”. Then, we can identify that the untested condition of

node “8” is ‘operationType != “Vitalsigns” ’. Therefore, the

‘operationType’ is the variable received from an existing test

case that its value in WS-BPEL is remained the same. The

additional test case is generated by requesting XSD (Fig. 7)

and WSDL (Fig. 8) files from the tester. In the example test

case, ‘operationType’ data type is string. An additional test

case is generated by replacing the “test” value into the

“Vitalsigns” value (Fig. 9). Finally, an additional test case is

inserted into the database.

<element name="process">

 <complexType>

 <sequence>

 <element name="hn" type="string"/>

 <element name="operationType" type="string"/>

 </sequence>

 </complexType>

 </element>
Fig. 7. The Example of XSD File Describing the Process Schema

<wsdl:portType name="HosProcess">

 <wsdl:operation name="process">

 <wsdl:input message="client:HosProcessRequestMessage"/>

 </wsdl:operation>

 </wsdl:portType>

 <wsdl:portType name="HosProcessCallback">

 <wsdl:operation name="processResponse">

 <wsdl:input message="client:HosProcessResponseMessage"/>

 </wsdl:operation>

 </wsdl:portType>

Fig. 8. The Example of WSDL File Describing Data Type of the Input

Messages.

<inputVariable>

<part xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"name="payload">

<ns1:process xmlns:ns1="http://xmlns.oracle.com/sample_HOS

/sampleHos/HosProcess">

<ns1:hn>5900001</ns1:hn>

<ns1:operationType>Test</ns1:operationType>

</ns1:process>

</part>

</inputVariable>

Fig. 9. The Example of a New Test Case.

F. Generate the test reports

Two summary reports are generated using the test data

from all of the previous steps, which are:

1) Untested web services report

This report shows the untested web services and notifies

the results to testers. This report makes the testers aware

of the untested web services and enforce to generate

additional test cases for the coverage of integration

testing.

2) Test result report

This report shows the input and output messages

received from each web service. This report helps tester

to trace the data sent between web services explicitly.

V. CONCLUSION AND FUTURE WORK

This paper presents an approach for monitoring partner

link invocation under WS-BPEL, to enable testers to trace

the input and output messages sent between web services,

and also help testers by providing awareness of the untested

web services, by notifying the results, and allow testers in

generating additional test cases based on path conditions.

For future work, we will develop a monitoring tool that

applies the proposed approach in order to evaluate the

correctness and applicability in the production environment.

REFERENCES

[1] D. Lübke, L. Singer, and A. Salnikow, “Calculating BPEL test

coverage through instrumentation,” Proc. 2009 ICSE Work.

Autom. Softw. Test, AST 2009, pp. 115–122, 2009.

[2] B. Li, D. Qiu, S. Ji, and D. Wang, “Automatic test case selection

and generation for regression testing of composite service based

on extensible BPEL flow graph,” IEEE Int. Conf. Softw.

Maintenance, ICSM, no. 3, 2010.

[3] C.-A. Sun, Y. Zhao, L. Pan, H. Liu, and T. Chen, “Automated

Testing of WS-BPEL Service Compositions: A Scenario-

Oriented Approach,” IEEE Trans. Serv. Comput., vol. XXX, no.

XXX, pp. 1–1, 2015.

[4] “OASIS Web Services Business Process Execution Language

(WSBPEL) TC | OASIS.” [Online]. Available: https://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel.

[Accessed: 26-Nov-2016].

[5] “OASIS WS-BPEL Extension for People (BPEL4People).”

[Online]. Available: http://docs.oasis-

open.org/bpel4people/bpel4people-1.1-spec-cs-01.html.

[6] OASIS Web Services Business Process Execution Language

(WSBPEL), D. Jordan, and A. Alves, “Web Services Business

Process Execution Language Version 2 . 0,” Language (Baltim).,

vol. 11, no. April, pp. 1–264, 2007.

[7] M. B. Juric and D. Weerasiri, WS-BPEL 2.0 Beginner’s Guide. .

[8] D. Ings et al., “WS-BPEL Extension for People Committee

Specification,” no. August, pp. 1–57, 2010.

[9] “XML Schema Tutorial.” [Online]. Available:

http://www.w3schools.com/Xml/schema_intro.asp. [Accessed:

19-Dec-2016].

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

