

Abstract— In this paper, the translation of UML state

machine diagram along with the informative inscriptions into

Promela code is considered. The translating rules are proposed

to systematically map the elements of the state machine into

the corresponding Promela block code. The main state

machine notations which are states and pseudo states and their

transitions, are focused. In addition, several inscriptions

including state's local preconditions and postconditions,

transition labels consisting of events, guards, and actions, on

the state machine are considered to elaborate the minimal

completeness of the resulting Promela code.

Index Terms— UML State Machine Diagrams, PROMELA,
SPIN

I. INTRODUCTION

URING the software design phase, the designers

would intend to have their design models verified in

order to ensure their correctness beforehand. Recently, a

software design model is commonly drawn in terms of

UML diagrams to cover both structural and behavioral

properties of a software system. There are several

researches and development of the formal verification tools

for UML diagrams. [1] proposed a method to translate UML

sequence diagrams using graph transformation rules into

formal model. A tool called AToM was developed. [2]

proposed a translation of a subset of UML statechart

diagram into formal model and [3] proposed an approach

which created a Promela-based model from UML

interactions expressed in sequence diagrams. [4] proposed a

tool for verifying a collaboration and state machine.

In this paper, we are more specific on the state machine

diagram [5], [6] which is one of UML2 diagrams. It has

been used for describing the dynamic property of a software

system. Typically, it is common and convenient to describe

the behavior of a single object or instance of a class, by

specifying the sequence of states that an object goes through

during its valid lifetime in software system. An object

would remain in a certain state until any valid transition

triggers so that the object could be changed to move into its

next state. The mentioned valid transition is typically

inscribed or labelled as events, guard conditions, and

actions respectively. In our concern, these inscriptions were

Panisara Damjan is a M.Sc student at department of Computer

engineering Faculty of Engineering, Chulalongkorn University, Bangkok,

10330 Thailand (e-mail: Wiparat.Do@student.chula.ac.th).

Wiwat Vatanawood is currently an Associate Professor of department of
Computer Engineering, Faculty of Engineering, Chulalongkorn University.

His research interests include Formal Specification, Formal Verification,

Software Architecture (e-mail: wiwat@chula.ac.th).

frequently left out or covered by the previously proposed

researches, however we will mention it later. To verify the

UML state machine diagrams in design phase beforehand,

helps and guides the designer a lot. There are several formal

verification approaches proposed for UML diagrams, the

UML state machine diagram in particular. Among these

approaches, model checking is an alternative to do

exhaustive verification of the software properties -

correctness, liveness, and safetyness, etc. Many related

model checking methodologies, modeling languages along

with the automatic tools [4], [7], [8] were proposed so that

the designer needs no any mathematical background

knowledges. Although almost all formalization of the UML

state machine diagram were proposed as mentioned earlier,

there still are some informative inscriptions in the diagram

ignored which include the preconditions,postconditions,

invariants, and transition elements - events, guards, and

actions, etc. In this paper, we propose an alternative to do

the translation of the UML state machine diagram with its

informative inscriptions into Promela code. The resulting

Promela code would be automatically generated in the well-

formed fashion which is reusable and maintainable.

This paper is organized as follows. Section II is the

background and section III describes our translation

approach. Section IV shows our demonstration and samples.

The conclusion is in section V.

II. BACKGROUND

A. UML State Machine Diagram

A UML state machine diagram [5], [9] depicts the

behavior of a particular object in the software system,

specifying the sequence of events and the responses to the

events of the object during its valid lifetime. A typical state

machine diagram consists of a finite set of states, a finite set

of pseudo states, and a finite set of transitions. However, in

this paper, we focus only on five common elements of the

diagram - initial state, final state, state, choice, and

transition, as shown in Fig. 1 adapted from [5].

(a) (b) (c)

(e) (f)

Fig. 1 Symbol of State machine diagram adapted from [5]

Translating UML State Machine Diagram

 into Promela

Panisara Damjan and Wiwat Vatanawood

D

Event[Guard]/Action

State

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

 Initial state (a):

Initial state represents the only starting point in the

diagram. The outgoing transition from the initial

state may have a behavior, but not a guard or trigger.

 Final state (b):

Final state represents the end of a sequence or

activity in the diagram. The object finally ends its

behaviors and no further responding activities. A

diagram may have multiple final states.

 State (c):

State represents a set of object values, a period of

time during an object performs local activities, a

period of time during an object waits for the

expected events to occur.

 Choice (e):

Choice is one of the pseudostates and represents a

dynamic conditional branch by evaluating the

mutually exclusive guard conditions of the triggers

of its outgoing transitions.

 Transition (f):

Transition represents a directed relationship

between a source state and a target state. It tells an

object how and where the next states are. A transition

is commonly inscribed with related event, guard

condition, and action responding to the event.

B. Promela

Promela [10], [11] is a verification modeling language.

Promela defines of processes and data object. Processes are

instantiations of "proctype" which defines a block of

behavior. There must be a least one "proctype" declaration

in a Promela model. A sample of a common "proctype"

delcaration is written as follows.

proctype StateNameA() {byte activeflag; activeflag =1}

A proctype named "StateNameA" is declared with a local

variable named "activeflag" and its value is assigned to 1.

To instantiate a process of "StateNameA" proctype, the

"init" process is written to do so. The "init" process is

considered as the main entry in the model. A sample of a

common "init" declaration is written as follows.

init { run StateNameA(); }

The "init" process instantiate a process to perform the

behaviors defined in "StateNameA". In our approach, we

intend to translate a state notation of the UML state machine

diagram into a corresponding well-formed and encapsulated

"proctype" in Promela and the transition flows of the UML

state machine diagram into a corresponding "init" in

Promela as well.

C. Object constraint language (OCL)

OCL [12] is a formal language which was developed in

order for describing the constraints regarding the data

objects of the UML diagrams. OCL is used to prescribe the

preconditions, postconditions, and invariants, which are

expressed in syntactical terms as follows.

 Preconditions and Postconditions

Precondition is a condition that must always be

evaluated to be true prior to execute any activity or

code section. While postcondition is a condition that

should hold prior to the end up of activity or code

section. The expression structures of precondition and

postcondition are shown as follows.

context<TypeName>::<operation> (<parameters>)

pre[<constraint name>]:<actualpreconditions>

post[<constraint name>]:<actualpostconditions >

 Invariants

Invariants [12] are the conditions which must be true

at all time, no matter what and when activity is

performed by an object. The label "inv:" is used as

shown.

context TypeName inv: <actual invariants>

In our approach, we assume that the OCL is used to

describe the expressions being evaluated within each state.

The written OCL compliant expressions would be parsed

then the relevant predicated and expressions would be

extracted and translated into Promela code as well.

III. METHOLOGY

In this section, the translation scheme of the UML state

machine diagram into Promela code is shown in Fig. 2. The

given UML state machine diagram would be drawn with the

sufficient inscriptions of the preconditions, postconditions,

invariants, and transitions' labels. Also, the translating rules

are given to map between the common elements of the state

machine diagram and the corresponding Promela block

codes. The resulting Promela code is expected and

executable by SPIN model checker. However, the resulting

Promela code would be elaborated later to perform the

additional activities as needed.

Definition 1: UML State machine diagram

A state machine diagram is a 5-tuple SM = (ST, initialst,

FINALST, CONTROLNODE, TX) where ST is a finite set of

states. Each state would be prescribed with preconditions,

postconditions, and invariants. These mapping functions,

PRECOND(ST), POSTCOND(ST), and INV(ST) provide the

corresponding boolean expressions which would be

translated into Promela code.

The initialst is the only initial state, FINALST is a finite

set of the final states, CONTROLNODE is a finite set of

control nodes. CONTROLNODE = {choice, fork,terminate,

shallowHistory, entryPoint, exitPoint, deepHistory, join,

junction}. In this paper, we demonstrate only on choice

control node. TX is a finite set of the ordered pairs (a,b)

where (a,b) ∈ ({initialst} × ST) ∪ (ST × FINALST) ∪

(CONTROLNODE × ST). Each member of TX is inscribed

with the labelling function LB(TX) → EVENT × GUARD ×

ACTION, which denotes its event, guard condition, and

action. Where EVENT is a finite set of possible occurrences

that can trigger a state transition. GUARD is a set of

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

conditions to be evaluated and ACTION is a set of atomic

activities to be performed when the relevant guards hold.

Fig. 2 Our Translation Scheme of The UML State Machine Diagram into

Promela Code

A. Import and verify SM.

This step imports the UML state machine diagram SM

written in XML format. The SM is simply verified its well-

formedness before proceeding the next steps, otherwise the

alert message would be prompted accordingly.

B. Extract elements of SM and use rules to tranlate them

into Promela block codes.

In this step, we propose five translating rules to handle

and map the SM's elements into Promela block codes. The

given SM would be parsed and the SM's elements are

extracted - which include initial state initialst, a set of states

ST, a set of final states FINALST, a set of control nodes

CONTROLNODE, a set of transitions TX in term of ordered

pairs along with their labells from LB(TX). We develop a

support parsing tool using ANTLR to extract these SM's

elements and generate the target Promela block code

according to the translating rules shown in Table I.

From Table I, five translating rules are listed. We intend

to use the graphical notations of the SM's elements, instead

of the actual XML tags, shown on the left column and the

right column shows their corresponding Promela block

codes.

Rule1: Translating a State sti in ST

Given a SM, each state sti in ST, with its precondition

PRECOND(sti) and postcondition POSTCOND(sti), found

in the given SM, would be translated into a Promela

proctype named Statesti. Several global variables are

defined as shown in the block code, line 1-3, stateStatussti

specifies the state status {idle, running, done}. Both

preconditions and postconditions are asserted before and

after the performing of the manually inserted operations,

line 10-15, if any.

Rule2: Translating the Initial State initialst

Typically, only one initial state would be found in the

given SM. As mentioned in Promela, the process of type init

always runs as the start process.
In short, we translate the initial state initialst into the

init{...} block code, line 1-4.

Rule3: Translating a Final State finalsti in FINALST

Given a SM, each final state finalsti in FINALST, would

be translated into a Promela proctype named Finalsti. When

it comes to the end of the SM, the variable called Terminate

would be assigned to 1, in order to stop all active processes

if any. This variable Terminate would asserted as a invariant

of the system by using assertion command in the active

process called "checkInvariant()", line 6-9.

Rule4: Translating the Fan-out Transitions Between Two

States in TX

Given a SM, each fan-out transition (sti, stj) from the state

sti to the next state stj would labelled with guard condition

Guardij. We ensure that the guard condition Guardij must be

held before the jumping from state sti into state stj in

Promela code, line 3-5, otherwise the system would stay on

state sti.

Rule5: Translating a Choice Control Node in

CONTROLNODE

Given a SM, a fan-out transition (sti, choicei) between

state sti and choice control node choicei, and transition (stj,

choicei) between state stj and choice control node choicei,

followed by a transition (choicei, stk) between choicei and

state stk, would be translating into the Promela block code

shown in Table I. The guard conditions found on each

transition would be checked to enable the jumping from a

state to the next state. The guard condition Guardi and

Guardk would be checked before the jumping from state sti

to the state stk. While, the guard condition Guardj and

Guardk would be checked alternatively before the jumping

from state stj to the state stk. In this case we show only the

choice with multiple incoming transitions and single

outgoing transition.

C. Fill in the necessary details of operations in Promela

codes

 In this step, the resulting Promela codes from step B

would be filled in manually, if any, with the operations to

perform the built-in activities in a particular state sti,

called stiOperation.

D. Verify the resulting Promela codes using SPIN model

checker checker.

The final resulting Promela codes from step C would

be parsed and validated using SPIN model checker.

IV. DEMONSTRATION

This section demonstrates the translation of the UML

state machine diagram into Promela codes. The simple

1. Import and verify SM

3. Fill in necessary details of operation for

Promela code

4. Verify the resulting Promela code by SPIN

model checker

2. Extract elements of SM and use rules to tranlate

them into Promela block codes

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

mockup UML state machine is drawn in Fig. 3, with five

states and one initial state and one final state.

Systematically, we would generate five Promela proctype

processes for each state, St1, St2, St3, St4 and St5. These

proctype processes, called "stateSt1", "stateSt2", "stateSt3",

"stateSt4" and "stateSt5", are generated respectively using

Rule1. As shown in Fig. 4, the proctype called "stateSt1"

handles its precondition and postcondition, line 7-11 and

line 18-22. The state status of St1 has been observed via

variable named "stateStatusSt1" showing the current status

of idle, running, done. The additional behavior of its local

operation would be manually filled at line 15.

The main process called "init" begins at the initial state,

using Rule2. The rest of the transitions would be considered

using Rule4 - Rule5 to generate the Promela code in this

main process. We ensure that the previous Promela proctype

for five normal states are remain unchanged no matter how

frequently the flows of the transitions in the main process

"init" are altered. The sample of the main process "init" is

shown in Fig. 5.

At last, all of the final states would be considered. In

order to intervene and stop all of the active processes in the

system, we generate an active Promela process called

"checkInvariant()" to concurrently monitor both invariants

and our defined "Terminate" flag. As shown in the

translaing rules, whenever the irrelevant events occur, the

"Terminate" flag would be set to 1. We consider that the

final state would enable the "Terminate" flag as well. The

Promela code are shown in Fig. 6 to handle the final states

and the invariant conditions.

Fig. 3 The example of State machine diagram

1: mtype = {idle,runing,done};

2: mtype stateStatusSt1 = idle;
3: bool precFailSt1 = false;

4: bool postcFailSt1= false; int X=0;int Y =0;

5: proctype stateSt1() {
6: stateStatusSt1= runing;

7: precon:

8: if
9: ::(X >= 0) -> goto St1Operation;

10: ::(X <=0) -> precFailSt1= true; Terminate =1;

11: fi;
12: St1Operation:

13: atomic {

14: stateStatusSt1 = runing;
15: /* ...Fill in details of operation...*/

16: goto postcon;

17: }
18: postcon:

19: if

20: ::(Y >= 0) -> stateStatusSt1 = done;

21: ::(Y <=0) -> postFailSt1= true; Terminate =1;

22: fi;

23: }
Fig. 4 Sample of Promela code of State St1

1:init{

2: St1 :

3: if
4: ::(stateStatusSt1 == idle)-> run stateSt1();

5: ::(stateStatusSt1 == done && Guardi == true)-> stateStatusSt1 = idle;

6: goto St2;
7: ::(stateStatusSt1 == done && Guardj == true)-> stateStatusSt1 = idle;

8: goto St4;

9: fi;
10: goto St1;

11: St2:

12: if
13: ::(stateStatusSt2 == idle) -> run stateSt2();

14: ::(stateStatusSt2 == done && Guarde)->stateStatusSt2 = idle; goto St3;

15: ::(stateStatusSt2 == done && Guardk == true)-> stateStatusSt2 = idle;
16: goto St1;

17: fi

18: goto St2;
19: St3:

20: if

21: ::(stateStatusSt3 == idle)-> run stateSt3();
22: ::(stateStatusSt3== done&&Guardn == true &&

23: Guardr == true)-> stateStatusSt3 = idle ; goto St5;

24: fi;
25: goto St3;

26: St4:

27: if
28: ::(stateStatusSt4== idle) -> run stateSt4();

29: ::(stateStatusSt4== done && Guardm == true && Guardr == true)->
30: stateStatusSt4 = idle; goto St5;

31: fi

32: goto St4;

33: St5:

34: if

35: ::(stateStatusSt5 == idle)-> run stateSt5();
36: ::(stateStatusSt5 == done)-> stateStatusSt5 = idle; run Finalst();

37: fi;

38: goto St5;
39: }

Fig. 5 Sample of the main process "init"

1: bit Terminate = 0;

2: proctype Finalst()
3: {

4: Terminate = 1;

5: }
6: active proctype checkInvariant()

7:{

8: do
9: ::assert(Terminate==0);

10: od

11:}

Fig. 6 Sample of the Promela code of the final state

 [Guardj] St1

Pre:X >= 0

Post:Y >= 0

St2

St4

 [Guardi] [Guardk]

[Guardm]

St3

Pre: V >= 0

Post: W = true

[Guardn]

St5

Pre: P >= 0

Post: D = true

[Guardr]

 [Guarde]

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

TABLE I

OUR TRANSLATION RULES

Element of state

machine

Promela code skeleton

1

1: mtype = {idle,running,done};

2: mtype stateStatussti= idle;
3: bool precFailsti= false, postFailsti= false;

4: Proctype Statesti (){

5: stateStatussti = running;
6: precon:

7: if PRECOND(sti) == true
8: then goto stiOperation;
9: else precFailsti= true; Terminate =1;
10: stiOperation:
11: atomic {
12: stateStatussti = running;
13: /* ...Fill in details of operation...*/
14: goto poscon;
15: }
16:postcon:
17: if POSTCOND(sti)== true
18: then stateStatussti = done;
19: else postFail = true; Terminate =1;
20: }

2

1: init{

2: ……

3: …...

4: }

3

1: bit Terminate = 0;

2: proctype Finalsti()

3: {

4: Terminate = 1;

5: }
6: active proctype checkInvariant()
7:{

8: do

9: ::assert(Terminate==0);
10: od

11:}

4

 :
1: sti :

2: if stateStatussti== idle then run statesti();
3: if stateStatussti== done &&

4: Guardij ==true

5: then stateStatussti = idle; goto stj;
6: goto sti;

7: stj :

 :

5

 :

1: sti :

2: if stateStatussti== idle
3: then run statesti();

4: if stateStatussti== done &&

5: Guardi==true &&Guardk==true;
6: then stateStatussti = idle; goto stk;

7: goto sti;
8: stj :

9: if stateStatusstj ==idle

10: then run statestj ();

11: if stateStatusstj==done&&

12: Guardj==true &&Guardk==true;

13: then stateStatusstj = idle; goto stk;
14: goto stj;

15: stk:

16: if stateStatusstk== idle
17: then run statestk();

 :

V. CONCLUSION

This paper proposes an alternative to automatically

generate the Promela code from the UML state machine

diagram with some informative inscriptions such as

preconditions, postconditions, and the transition elements -

events, guards, and action, etc. A set of translating rules are

proposed to systematically map the elements of the given

state machine diagram into the corresponding Promela

block codes. The resulting Promela code is well structured

so that the Promela code of the states would remain

unchanged when the main flow of the transitions are altered

as shown in our demonstration section. In this paper, we

focus only five main elements of the UML state machine

including the initial state, the final state, the normal state,

the choice notation, and the transition with its labels, shown

in Fig. 1. If needed, the local activities of the states would

manually be filled in. For practical purpose, we developed a

support tool to do the automatic translation of the UML

state machine diagram, written in XML format, into the

resulting Promela code.

REFERENCES

[1] M. Oubelli, N. Younsi, A. Amirat, and A. Menasria. (2011). From

UML 2.0 sequence diagrams to PROMELA code by graph

transformation using AToM3. CIIA. Volume 825 of CEUR
Workshop Proceedings, CEUR-WS.org. [Online]. Available:

http://ceur-ws.org/Vol-825/paper_183.pdf

[2] D. Latella, I. Majzik, and M. Massink, “Automatic verification of a

behavioral subset of UML statechart diagrams using the SPIN model-

checker,” Formal Aspects of Computing, Vol. 11, no. 6, pp. 637-664,

Dec. 1999. [doi:10.1007/s001659970003].
[3] V.Lima, C. Talhi, D. Mouheb, M. Debbabi, and L. Wang, “Formal

verification and validation of UML 2.0 sequence diagrams using

source and destination of messages,” in the 4th International
Workshop on Systems Software Verification (SSV 2009), Vol. 254,

pp. 143-160, Oct. 2009.

[4] T. Schafer, A. Knapp, and S. Merz. (2001). Model checking uml state
machines and collaborations. electronic notes in theoretical computer

science 47. [Online]. Available:

https://members.loria.fr/SMerz/papers/sw-mc01.pdf
[5] Object Management Group (OMG). (2015, March). OMG unified

modeling language TM (OMG UML) version 2.5. [Online].

Available: http://www.omg.org/spec/UML/2.5/PDF/
[6] J. Rumbaugh. (2004, July). The unified modeling language reference

manual (2nd ed.) [Online]. Available:

https://www.utdallas.edu/~chung/Fujitsu/UML_2.0/Rumbaugh--
UML_2.0_Reference_CD.pdf

[7] V. H. Lingegowda, “Building Graphical Promela Models using

UPPAAL GUI,” M.S. Thesis, Department of Computer Science,
Aalborg Univ., Denmark, 2006.

[8] J. Lilius and I. P. Paltor, “vUML: a tool for verifying UML models,”

in Automated Software Engineering, 14th IEEE International Conf.,
12-15 Oct. 1999.

[9] refbook.book. (2004, June). State machin view. [Online]. Available:

http://www.ibm.com/developerworks/rational/library/content/04Augu
st/3153/3153_Rumbaugh_ch07.pdf

[10] G. J. Holzmann, Spin Model Checker: The Primer and Reference

Manual. New York: Addison-Wesley Professional, 2003.
[11] Spin Checked. Verifying multi-threaded software with spin. [Online].

Available: HTTP://SPINROOT.COM.

[12] Object Management Group. (2014, February). Object constraint

language version 2.4. [Online]. Available:

http://www.omg.org/spec/OCL/2.4

Rule1

t
<PRECOND(sti)>

<POSTCOND(sti)>

sti

[Guardij]

stj

stk

choicei

choicei

sti stj

[Guardi] [Guardj]

[Guardk]

Rule3

Rule4

Rule5

Rule2

sti

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

