
 
Abstract—Maize (Zea mays) is known to have the highest 

yield of grain crops and provides resources for food, fodder, 
chemicals, and biofuel. As a major crop, its genetics is well 
studied and its genome has been sequenced. Moreover, maize has 
been used as a model C4 plant. However, few studies of its 
regulatory network of leaf development have been conducted, 
although the regulation of Kranz anatomy development by 
transcription factors (TFs) is crucial for understanding maize 
leaf development.  

A previous study has obtained 22 time-course transcriptomes 
of leaf development, starting from dry seeds to hour 192 post 
imbibition, including gene expression profiles for 1574 maize 
transcription factors (TFs). This is an excellent dataset for 
investigating the transcriptome dynamics of leaf development. 

In gene regulation, different time frames correspond to sets of 
genes that participate in different biological functions. 
Biclustering is a technique which allows simultaneous clustering 
of gene expression profiles and developmental times; hence, it 
provides a better way for identifying genes with multiple 
functions.  

We made use of the biclustering analysis tool, BiGGEsTS, to 
cluster the gene expression profiles of the 1574 maize TFs, 
revealing the process of maize leaf development features. A web-
based service was set up to provide the results of our analysis. 
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I. INTRODUCTION 
aize (Zea mays) is one of the most important grain crops 
in the world and, together with rice and wheat, provides 

food to more than half of the world population. It is also a key 
ingredient in animal feedstock. The demand for maize has 
increased in recent years because of its increasing use in the 
bio-energy industry. Moreover, maize is an outstanding model 
for research on seed development, and as a model system to 
study diverse biological phenomena, including transposons, 
paramutation, heterosis, imprinting and genetic diversity and 
allelic richness [1]. 

The expression dynamics of maize genes during leaf 
development have been studied. For instance, dramatic 
differences were found in the transcriptomes of the base of 
developing leaves with genes encoding enzymes involved in 
cell-wall biosynthesis, cell division, cellulose synthesis and 
auxin signaling and the tip was enriched in genes involved in 
photosynthesis and sugar metabolism/transport of developing 
leaves [2]. Pick’s study [3] suggested that the Ala and 
Aspamino acids play an important role for metabolites shuttle 
between mesophyll and bundle sheath in maize leaves. Wang 
et al. [4] investigated the transcriptomes from maize foliar 
(with Kranz anatomy) and husk leaves (without Kranz 
anatomy) to identify cohorts of genes associated with 
procambium initiation and vascular patterning. Also, their 
work provides clues for finding possible key regulators of 
Kranz anatomy [4]. A more recent study examined maize 
earlier leaves developmental stages, embryonic leaf primordia 
of different times and displaying different levels of Kranz 
structure (KS) differentiation; the data provides an opportunity 
for hypothesizing the regulatory actions of KS development 
[5]. 

Liu et al. [5] showed that the expressed profiles of 1,238 
maize TF genes can be classified into 16 co-expression 
clusters, which show the functional transition and gene 
expression pattern over a period of 72 hours. 

Traditional clustering algorithms (e.g., K-means, 
hierarchical clustering) perform clustering based on one 
feature; for instance, those methods identify gene clusters 
under a given condition. Many clustering approaches have 
been proposed for the analysis of gene expression data, but the 
results from the application of traditional clustering methods 
are limited. In reality, genes bear different functions under 
different conditions or times. In order to measure the similarity 
between gene expression levels under different conditions, 
biclustering algorithms were employed in the present analysis. 
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Biclustering algorithms that specifically perform 
simultaneous clustering on the row and column dimensions of 
the data matrix have been proposed for biological data analysis 
[6]. Traditional clustering algorithms apply respectively to 
either the rows or the columns of the gene expression profiles, 
but biclustering performs clustering in these two dimensions 
simultaneously. This means that the traditional clustering 
approach derives a global model, while biclustering produces a 
local model to identify subgroups of genes and subgroups of 
conditions, by performing simultaneous clustering of both 
rows and columns of the gene expression profiles (Figure1). 

 
Biclustering on biological applications have been applied 

in many studies. Gu and Liu [7] developed a Bayesian 
biclustering model (BBC) that can correctly evaluate diverse 
clusters of gene expression data and achieved a Gibbs 
sampling procedure for its statistical inference, such as 
enrichments of gene functions and transcription factor binding 
sites (TFBSs) in the relevant promoter sequences. Eren et al. [8] 
provided an excellent review on a collection of biclustering 
methods on analyzing gene expression data matrices. Yu et al. 
[9] combined the TFs’ up and down expression signatures with 
the Gene Ontology (GO) annotations and the TF promoter 
motif contents to predict novel TFBSs and new TF–TFBS 
pairs in the maize genome. 

The present work constructed a web site that utilizes a 
visualization interface to help researchers to view sets of time-
course profiles for TF genes involved in the maize leaf 
development. To the best of our knowledge, this database is 
the first comprehensive database on the time-course expression 
profiles for maize TFs. 

 

II. MATERIALS & METHODS 
A. Materials 

This study made use of the expression profiles of the 1574 
TFs involved in maize leaf development, where the data were 
obtained from the Supplementary Dataset S1 file in Ref. [9]. 
To understand the regulation of the TFs in maize Kranz 
anatomy, they obtained 22 time-course transcriptomes of 
maize leaves developing from dry seeds to 192 hours post 
imbibition. Pair-end sequenced data were conducted by using 
the Illumina HiSeq 2000 machine. The RPKM(reads per 
kilobase of transcript per million mapped reads) values of gene 
expression were normalized, and kept RPKM value is ≥1 in at 
least 2 of the 22 time points in our analysis [9]. TFs in this 
category may play a key role in the differentiation of vascular 
cells and the development of Kranz anatomy. 

The workflow of the present is depicted in Figure 2. 

 
Figure 2. Workflow of the present study 

 

B. Methods 
In order to determine whether certain genes showed a 

similar trend between column and column values for the time-
course profile matrix, we applied biclustering algorithms.  

The traditional clustering algorithms assign the same 
weight to genes and into one single function grouping when 
processing expression data. In reality, however, many gene 
products are known to have more than one function, which 
means that a group of genes show similar expression profiles 
across a time interval. 

Biclustering was developed originally by Hartigan in 1972 
[10], which proposed a method for clustering cases and 
variables in the same step. The term biclustering was also used 
by Mirkin in 1996 [11] as a kind of output clustering structure. 
Furthermore, the biclustering algorithm was applied to study 
the gene expression profiles of Saccharomyces cerevisiae cell 
cycle and human B-cellin 2000 [12]. The work of Ref. 12 
modeled the expression matrix with a block and a score called 
the mean-squared residue to measure the coherence of genes 
and conditions in the block [12]. 

Let G’	 and S’ denote the subsets of genes and samples. The 
pair (G’,S’) specifies a sub matrix with the mean-squared 
residue score,  defined by [12],  

 
where 

 

 

 
 
where denotes the mean of the ith row in the bicluster 

; denotes the mean  of the jth column in the 

bicluster ; and represents the mean of all elements 
in the bicluster , and|G'| and |S'|denote the 
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cardinality of G' and S'. 
A sub matrix is called a -bicluster if H(G',S')  for 

some . A low mean-squared residue score together with a 
large variation from the constant suggests a good criterion for 
identifying a block [12]. 

Madeira et al. proposed the CCC-Biclustering algorithm 
[13], a discretization method based on transitions between time 
points, which obtain better results than those using absolute 
values for biclustering time-course gene expression 
data(Figure1). 

 

C. Parameters 
This study used a biclustering tool, named BiGGEsTS [14]. 

BiGGEsTS can annotate the dataset genes in terms of the Gene 
Ontology for certain organisms, such as Saccharomyces 
cerevisiae, Oryza sativa, Arabidopsis thaliana, but maize 
annotation is currently not available. 

RNA-sequses sequencing technologies to measure the level 
of gene expression. The quantity named reads per kilobase per 
million (RPKM) was proposed in 2008 by Mortazaviet et al. 
[15] to measure the level of gene expression. The definition of 
RPKM is given by: 

 

 
 
The TF genes with their corresponding RPKM values 

larger or equal to one were imported into BiGGEsTS, which 
utilized the biclustering algorithm, CCC-Biclustering [13, 16], 
to filter biclusters with at least three consecutive time points 
(window size of 3). 

III. RESULTS 
A. Raw data search 

The bicluster results were recorded in a database, named 
Genome-wide Expression Patterns of Maize Transcription 
Factor (GEMtf), which is accessible at 
http://ppi.bioinfo.asia.edu.tw/MaizeBase/. GEMtf includes the 
complete time-course gene expression profiles, and sort (A 
through Z) each column, search keyword by gene ID, TF 
family, or time-course intervals (Figure 3). 

A total of 6543 biclusters were obtained, including the 
following five categories:  
(i) time-course gene expression profiles of biclustering 
(BiGGEsTS label: Real Valued matrices),  
(ii) discrete gene expression of biclustering (BiGGEsTS label: 
Discrete-Valued matrices),  
(iii) graph contains curves of gene expression of biclustering 
(BiGGEsTS label: Graph by Real Valued matrices),  
(iv) graph contains curves of full time-course gene expression 
of biclustering (BiGGEsTS label: Graph by Whole Real 
Valued matrices), and  
(v) graph contains curves of discrete gene expression of 
biclustering (BiGGEsTS label: Graph by Discrete Valued 
matrices). 

The information was recorded in GEMtf. 
 

 
Figure 3. GEMtf web page for raw data search 

B. Search bicluster by length of time points 
The main function is the length of time points can be 

selected by user, and then choose time frame that the user was 
interest. To show the bicluster details on the web page, user 
can visualize the time expression profiles. User can click the 
“Graph (All)” box to view the expression profiles for all the 22 
time points (Figure 4). 

 

 
Figure 4. GEMtf  web page for results that meet the search criteria 
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The length of time points is 3 to 22. After selecting the 
length, it will automatically display the corresponding 
expression profiles corresponding to the input time frame. 
Figure 5 illustrates the results of a bicluster (id=752) using 
eight time points, i.e. a time frame from T054 to T120. 

 

 
Figure 5. GEMtf– gene expression profiles of all the 22 time points of a 

bicluster (id = 4634) 
 

C. Search bicluster by Transcription Factor Family 
When biologists interested in some of the TFs, this feature 

helps them to identify those TFs [17] belong to a specific 
group of biclusters. Users can also filter out specific 
information by selecting the TF family, Gene ID of TF family 
and length of time interval. The genes found in the biclusters 
may help to dissect the roles of the TFs in maize leaf 
development. 

Figure 6 depicts the results from ‘Graph of bicluster’ that 
show the oscillatory gene expression behavior for a TF family 
(Arabidopsis best hit: transcription factor B3 family protein) 
i.e. down-regulated at time T132, and then up-regulated at time 
T144. A more detailed understanding of this pattern remains to 
be examined by the biologists. 

 

 
Figure 6. GEMtf  web page for the oscillatory gene expression behavior for a 
TF family, i.e. transcription factor B3 family protein. 

 

D. Search for similarTFexpression patterns 
Biologists can upload their own experimental data to the 

server and compare the time-course biclusters in the server. 
GEMtf had already computed and saved the average time-
course gene expression profile for each bicluster, and each 
bicluster that has an average time-course profile is used to 
compare with the up loaded time-course data by computing the 
Pearson Correlation Coefficient (PCC).  

GEMtf will report the PCC scores for the upload data and 
biclusters with the same number of time points, ranging 
between T000 and T192. This service could possibly help 
biologists to quickly identify novel TFs with similar time-
course profiles for their own experimental measurements. 

 

IV. DISCUSSION 
The tool, GEMtf, is set up by using time-course NGS gene 

expression profiles for maize leaf development and 6543 
biclusters were identified. By integrating those pieces of 
information, GEMtf provides a tool to show the results of 
biclustering analysis and provides data query. User can input a 
fixed length of time-course expression vector, and GEMtf 
provides an online service, which computes the PCC values 
between the input vector and the average expression profile of 
biclusters with the same length of time interval. A large PCC 
value suggests that the query gene exhibits similar behavior to 
certain TF families; hence hidden biological function is 
detected. 

To examine the roles of TFs in maize, we compare the 
biclusters’ TFs with the maize pathways collected from the 
KEGG GENOME T01088database. Among the 134 pathways 
in the database, four pathways are associated with at least five 
TFs. These four pathways are: MAPK signaling pathway 
(zma04016), plant hormone signal transduction (zma04075), 
plant-pathogen interaction(zma04626) and circadian rhythm 
(zma04712). Table 1 summarized the number of biclusters 
compose of two to 16 TFs found in the KEGG T01088 
database. 

It is known that growth hormones are important 
biomolecules that regulate plant development. Shin et al., [18] 
has reported that once the MYB77 gene knockout, the 
expression level of auxin response factors (ARFs) gene is 
dramatically suppressed. Both of light  and TFs influence 
every major developmental transition process like the plant 
hormone [19], this suggested that the ‘Plant Hormone Signal 
Transduction Pathway’(zma04075) consists of a larger number 
of TFs found in the biclusters. 

 
In summary, our GEMtf results showed that the bicluster 

method is capable of identifying co-expressed TFs for time-
course RNA-seq data. The database provides an easy means of 
investigating the regulatory role of TFs for maize leaf 
development.
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Figure 1. Gene setsidentified in different subsets of gene expression profiles 

 

Table 1. Number of biclusters compose of two to 16 TFs in four pathways: zma04016, zma04075, zma04626 and zma04712. 
Pathway\TFs 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

zma04016 155 67 66 27 11 30 27 3 1 0 0 0 0 0 0 
zma04075 361 126 30 55 44 14 23 22 15 20 12 15 5 6 3 
zma04626 73 39 19 10 0 0 0 0 0 0 0 0 0 0 0 
zma04712 160 94 52 16 20 8 0 0 0 0 0 0 0 0 0 
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