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The Hamiltonian Connected Property of Some
Shaped Supergrid Graphs

Ruo-Wei Hung-*, Jong-Shin Cheh Jun-Lin Li', and Chin-Han Lih

Abstract—A Hamiltonian path (cycle) of a graph is a simple Li et al. [17] proved the Hamiltonian connectivity of the
path (cycle) which visits each vertex of the graph exactly recursive dual-net. The popular hypercubes are Hamiltonian
once. The Hamiltonian path (cycle) problem is to determine ,+ are not Hamiltonian connected. However, many variants

whether a graph contains a Hamiltonian path (cycle). A graph - - .
is called Hamiltonian connected if there exists a Hamiltonian of hypercubes, including augmented hypercubes [8], twisted

path between any two distinct vertices. Supergrid graphs were cubes [13], crossed cubes [12], and Mobius cubes [3], have
first introduced by us and include grid graphs and triangular been known to be Hamiltonian connected.

grid graphs as their subgraphs. The Hamiltonian path (cycle)  The two-dimensional integer grid:> is an infinite graph
problem for grid graphs and triangular grid graphs was known \yhose vertex set consists of all points of the Euclidean
to be NP-complete. Recently, we have proved that they are S . . . .

also NP-complete for supergrid graphs. These problems on plqne Wlth integer C(_)ordlnates _and in WhICh two vertices are
supergrid graphs can be applied to control the stitching traces adjacent if and only if the (Euclidean) distance between them
of computerized sewing machines. Very recently, we showed that is equal to 1. Théwo-dimensional triangular grid'> is an
rectangular supergrid graphs are Hamiltonian connected except infinite graph obtained froni> by adding all edges on the

two trivial forbidden conditions. In this paper, we will study |ines traced from up-left to down-right. Arid graph is a
the Hamiltonian connectivity of some shaped supergrid graphs, finit tex-ind d sub h 6. F : dev in th
including triangular, parallelogram, and trapezoid. We prove inite, vertex-induced subgrap - FOra nodev in the

that these shaped supergrid graphs are always Hamiltonian Plane with integer coordinates, lef andv, be thexz andy
connected except few trivial forbidden conditions. coordinatef nodev, respectively, denoted hy= (v, vy).
Index Terms—Hamiltonian connectivity, supergrid graphs, If v _is a v_ertex in a grid graph, then its possible neighboring
triangular supergrid graphs, parallelogram supergrid graphs, Vvertices include(v,,v, + 1), (vz — 1,vy), (vz + 1,v),
trapezoid supergrid graphs, computer sewing machines. and (vz,v, — 1). For example, Fig. 1(a) shows a grid
graph. Atriangular grid graphis a finite, vertex-induced
subgraph of7"*. If v is a vertex in a triangular grid graph,

I. INTRODUCTION then it ib| iahbori i el )
o . . ._then its possible neighboring vertices inclu ,
Hamiltonian pathof a graph is a simple path |nCEe P g g de, vy + 1)

) vy — 1,vy), (V2 +1,0y), (Va,vy — 1), (v — 1,0, +1), and
Wh_'Ch _each vert_ex of the graph appears exactly on U, + 1,v, — 1). For example, Fig. 1(b) depicts a triangular
A Hamiltonian cyclein a graph is a simple cycle with

e grid graph. Thus, triangular grid graphs contain grid graphs
the same property. Thefamiltonian path (resp., cyclg as subgraphs. Note that triangular grid graphs defined above

L - N3re isomorphic to the original triangular grid graphs studied
a Ha_mlltc_)nla_n _path (re_sp., cycle)._ A graph is called 1o bﬁ\\ the literature [7] but these graphs are different when
Hamiltonian if it contains a Hamiltonian cycle. A graph

ai id to beHamiltoni todf f h pair of considered as geometric graphs. By the same construction of
distinct verticess ando of G, there is a Hamitonian pat 112n9UIar 91d graphs from grid graphs, we have proposed
v . .
; - - P77 "a new class of graphs, namedypergrid graphsin [9]. The
betweenu andv in G. If (u,v) is an edge of a Hamiltonian grap upergrid graphsin [9]

; - two-dimensional supergrid is an infinite graph obtained
connected graph, then there must exist a Hamiltonian cy?rém 7> by adding all edges on the lines traced from up-
containing(u, v). Thus, a Hamiltonian connected graph h

ght to down-left. A supergrid graphis a finite, vertex-

many Hamiltonian cycles, and, hence, the sufficient con Jduced subgraph a§. The possible adjacent vertices of a
tions of Hamiltonian connectivity are stronger than those Q ; ; ;

. . . . . rtexv = (v, in a supergrid graph includg,, 1),
Hamiltonicity. It is well known that the Hamiltonian path v= (Vs vy) pergna grap de, vy +1)

and cycle problems are NP-complete for general graphs [
[15]. The same holds true for bipartite graphs [16], spl
graphs [6], circle graphs [4], undirected path graphs [1

e — Luy), (vp + 1,0y), (Vg,0y — 1), (vp — 1,0y + 1),
w+ 1u, — 1), (v + 1,0, + 1), and (v, — 1,0, — 1).
hen, supergrid graphs contain grid graphs and triangular

. . . grid graphs as subgraphs. For example, Fig. 1(c) shows a
grid Erap;s I[14][’h tnzlil?gultar g”'?h graphs [7], and tSL:jperg? pergrid graph. Notice that grid and triangular grid graphs
?hrapHs ['Il n the |erat.u_r£e, f(_arte are matpy s utlesk%rre not subclasses of supergrid graphs, and the converse is

€ Hamilfomian conneclivity ot interconnection NetwWorkS, g trye: these classes of graphs have common elements
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Fig. 1. (a) A grid graph, (b) a triangular grid graph, and (clugesgrid graph, where circles represent the vertices and solid lines indicate the edges in
the graphs.

supergrid graphs [9]. Thus, an important line of investigatiomn coordinates ofv. We color vertexv to be white if v, +
is to discover the complexities of the Hamiltonian related, = 0 (mod 2); otherwiseyp is colored to beblack Then
problems when the input is restricted to be in specidthere are eight possible adjacent vertices of vertiexcluding
subclasses of supergrid graphs. In [10], we showed tHatr white vertices and four black vertices. Obviously, all
the Hamiltonian cycle problem for linear-convex supergrigrid graphs are bipartite [14] but supergrid graphs are not
graphs is linear solvable. Recently, we proved that rectanipartite. The edgdu,v) in S* is said to behorizontal
gular supergrid graphs are always Hamiltonian connectgesp.,vertical) if v, = v, andu, # v, (resp.,u, = v, and
except two trivial forbidden conditions [11]. In this papery, # v,), and is calledskewedif it is neither a horizontal
we will show that some shaped supergrid graphs, includimgr a vertical edge. In the figures, we assume (fat) are
triangular, parallelogram, and trapezoid, are always Hamdeordinates of the up-left vertex, i.e., the leftmost vertex of
tonian connected except few trivial forbidden conditions. the first row, in a supergrid graph.
Rectangular supergrid graphs first appeared in [9], in
Il. NOTATIONS AND BACKGROUND RESULTS which we have solved the Hamiltonian cycle problem.
In this section, we will introduce some terminologies antlet R(m,n) be the supergrid graph whose vertex set
symbols used in the paper. Some previously observations ¥reR(m,n)) = {v = (vz,vy) | 1 < v, < m and
also presented. For graph-theoretic terminology not definéd< v, < n}. A rectangular supergrid graplis a supergrid
here, the reader is referred to [2]. graph which is isomorphic taR(m,n). Then m and n,
Let G = (V, E) be a graph with vertex séf(G) and edge the dimensionsspecify a rectangular supergrid graph up to
setE(G). Let S be a subset of vertices i, and letu, v be isomorphism. The size of:(m,n) is defined to bemn,
two distinct vertices inG. We write G[S] for the subgraph and R(m,n) is called n-rectangle. Letv = (v,v,) be
of G inducedby S, G — S for the subgraplG[V — S|, i.e., a vertex in R(m,n). The vertexv is called theup-left
the subgraph induced by — S. If (u,v) is an edge inG, (resp.,up-right, down-leff down-righ) corner of R(m,n)
we say thatu is adjacentto v. The notationu ~ v (resp., if w, > v, andw, > v, (resp.,w, < v, andw, > vy,
u ~ v) means that verticeg andv are adjacent (resp., non-w, > v, andw, < vy, w, < v, andw, < v,) for any
adjacent). Two edges; = (uj,v1) andey = (ug,v2) are vertexw = (w.,wy) € R(m,n). There are four boundaries
said to beincidentif u; ~ v; andus ~ v,, denote this by (borders) in a rectangular supergrid grapiim,n) with
e1 ~ es. The degreeof vertexv, denoted bydeg(v), is the m,n > 2. The edge in the boundary dt(m,n) is called
number of vertices adjacent to vertexA path P of length boundary edgeFor example, Fig. 2(a) shows a rectangular
|P| in G, denoted byv; — vy — --- — vpj_1 — vjp, Supergrid graphk(10,10) which is called 10-rectangle and
is a sequencguv;, v, --- ,vp|—1,vp|) Of distinct vertices containsd x 9 = 36 boundary edges. Fig. 2(a) also indicates
such that(v;,v;41) € E for 1 < i < |P|. The first and the types of corners.
last vertices visited byP are denoted bystart(P) and The triangular supergrid graphs are subgraphs of rectan-
end(P), respectively. We will use; € P to denote ‘P visits gular supergrid graphs and are defined as follows.
vertexv;” and use(v;,v;+1) € P to denote P visits edge
(vi, vi+1)". A path fromu; to v, is denoted bywy, vy )-path.
In addition, we useP to refer to the set of vertices visited
by path P if it is understood without ambiguity. A patR is
a cycle if [V(P)| > 3 andend(P) ~ start(P). Two paths
(or cycles)P, and P, of graphG are called vertex-disjoint
if and only if V(P) NV (P) = 0. For example, Fig. 2(b) shows a triangular supergrid graph
Let S*° be the infinite graph whose vertex set consists @ (10, 10). Each triangular supergrid graph contains three
all points of the plane with integer coordinates and in whidhoundaries, namehhorizontal vertical, and skewed and
two vertices are adjacent if and only if the difference of thethese boundaries form a triangle, as illustrated in Fig. 2(b).
x or y coordinates is not larger than 1. gupergrid graph The triangular supergrid graph(n,n) is calledn-triangle,
is a finite, vertex-induced subgraph §f°. For a vertexv and the vertexv in A(n,n) is called triangular corner
in a supergrid graph, let, and v, be respectivelyr and if deg(v) = 2 and it is the intersection of horizontal (or

Definition 1. Let ¢ be a diagonal line ofR(n,n) with

n > 2 from the up-left corner to the down-right corner. Let
A(n,n) be the supergrid graph obtained froR{n,n) by
removing all vertices undet. A triangular supergrid graph
is a supergrid graph which is isomorphic £o(n, n).
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Fig. 2. (a) A rectangular supergrid grapgi(10, 10), (b) a triangular

with m > n + 1 is obtained fromR(m,n) by removing
a triangular supergrid grapt\(n — 1,n — 1) from the
corner of R(m,n). A trapezoid supergrid grapt(m,n)
is constructed fromR(m, n) with m > 2n by removing two
triangular supergrid graph&(n — 1,n — 1) from the up-left
and up-right corners oR(m, n). Fig. 2(d) illustrates these
two types of trapezoid graphs.

In a trapezoid supergrid graph, a vertexs calledtrape-
zoid cornerif deg(v) = 2. We can see thdf; (m, n) contains
a trapezoid cornefl;(m,n) contains two trapezoid corners,
Ty (m,n) contains two horizontal, one vertical and one
skewed boundaries, arfh(m,n) contains two horizontal
and two skewed boundaries. By definition, each boundary of
T1(m,n) andT>(m, n) contains at least two vertices. On the
other hand[Ti(m,n) andTx(m,n) are calledn, -trapezoid
andnr, -trapezoid, respectively. For instance, Fig. 2(d) shows
T (6, 4) and Tg(g, 4)

Let G be a rectangular, triangular, parallelogram, or trape-
zoid supergrid graph. A path on one boundarybis called

supergrid graph\ (10, 10), (c) two types of parallelogram supergrid graphflat if it contains all boundary edges in the boundary. For

P(5,4), and (d) two types of trapezoid supergrid graphs(6,4) and
T>(9,4), where solid arrow lines in (a) indicate a flat path &(10, 10)
and dashed line in (c) indicates a vertical cut.

vertical) and skewed boundaries.

example, the solid arrow lines in Fig. 2(a) indicate a flat
path of R(10,10).

In proving our results, we need to partition a shaped
supergrid graph into two disjoint parts. The decompaosition
is defined as follows.

Parallelogram supergrid graphs are defined similar to re&e€finition 4. Let 5(m,n) be a triangular, parallelogram, or

angular supergrid graphs as follows.

Definition 2. Let P(m,n) be the supergrid graph with, >
n whose vertex set’ (P(m,n)) = {v = (vz,vy) | 1 < vy <
nandvy, < vy <vy+m—1}or{v = (vg,vy) |1 < vy <n
and —v, +2 < v, < m — (v, — 1)}. A parallelogram

trapezoid supergrid graph. gut operation onS(m,n) is a
line partition through a sef of edges so that the removal of
Z from S(m,n) results in two disjoint supergrid subgraphs
S1 and S,. A cut is calledvertical (resp.,horizonta) if it is
a vertical (resp., horizontal) line to separdtén, n) into S;
and S, such thatS; is to the left (resp., upper) afs, i.e.,

supergrid graphis a supergrid graph which is isomorphic toz is a set of horizontal (resp., vertical) edges.

P(m,n).

For instance, the bold dashed line in Fig. 2(c) shows

In the above definition, there are two types of paralleler vertical cut onP(5,4) to partition it into two disjoint
gram supergrid graphs. We can see that they are isomorpiigngular supergrid subgrapkis(4, 4).
although they are different when considered as geometricin this paper, we will construct a canonical Hamiltonian
graphs. In this paper, we can only consider the parallelpath of a triangular, parallelogram, or trapezoid supergrid

gram supergrid grapt®(m,n) with V(P(m,n)) = {v =
(vg,vy) | 1 < vy < nmandv, < v, < vy, +m — 1}

graphS(m,n). Let s, t be two distinct vertices of(m,n).
A Hamiltonian (s, t)-path of S(m,n) is calledcanonicalif

Each parallelogram supergrid graph contains four bouni@-contains at least one boundary edge of each boundary in

aries, twohorizontalboundaries and twekewedoundaries,

S(m,n).

and these boundaries form a parallelogram, as illustrated et (G, s,t) denote the supergrid graygh with two given

in Fig. 2(c). The size ofP(m,n) is defined to bemn,
and P(m,n) is called n-parallelogram. The vertexo of

distinct verticess andt¢. Without loss of generality, we will
assume thas, < ¢, i.e., s is to the left oft, in the rest

P(m,n) is calledparallel cornerif deg(w) = 2. We can see of the paper. The notatio(G, s,t) indicates the length
that a parallelogram supergrid graph contains two parallgf longest path betweer and ¢ in G, where the length
corners and it can be decomposed into disjoint triangulef a path is defined to be the number of vertices visited
and rectangular supergrid subgraphs. For instance, Fig. 2§g)the path. We denote a Hamiltonian path betweeand

depicts a parallelogram supergrid grapiis,4) which can
be partitioned into two triangular supergrid graphss, 4).

t in G by HP(G, s,t). We say thatH P(G, s,t) exists if
there is a Hamiltoniar(s, ¢)-path of G. By the definition,

Next, we introduce trapezoid supergrid graphs. L€l(G,s,t) = |V(G)| if HP(G,s,t) does exist. In [11],

R(m,n) be a rectangular supergrid graph with> n > 2.

we have proved thatl P(R(m,n),s,t) always exists for

A trapezoid grapHl’(m,n) or T>(m,n) is obtained from m,n > 3. For (R(m,n), s, t) with m > n > 3, a
R(m,n) by removing one or two triangular supergrid graphslamiltonian (s, t)-path of R(m,n) is called canonicalif it

A(n —1,n — 1). The definitions ofl’ (m,n) andTz(m,n)
are as follows.

Definition 3. Let R(m,n) be a rectangular supergrid graph

with m > n > 2. A trapezoid supergrid grapf;(m,n)
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contains at least one boundary edge of each side (boundary)
in R(m,n). We then proved the following lemma to show the
Hamiltonian connectivity of rectangular supergrid graphs.

Lemma 1. (See [11]) For(R(m,n), s, t) withm > n > 3,
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(a) (b) (©

Fig. 3. A schematic diagram for (a) Proposition 2, (b) Projmsi3, and
(c) Proposition 4, where bold dashed lines indicate the cycles (paths) and
® represents the destruction of an edge while constructing a cycle or patiy. 4. Triangular supergrid graph in which there exists nanktanian
(s, t)-path for (a) condition (F1), and (b) condition (F2), where dotted lines
indicate the forbidden edgés, t).

R(m,n) contains a canonical Hamiltoniafs, t)-path, and,

hence,H P(R(m, n), 5,t) does exist. (F1) A(n,n) is a 3-triangle, ands,t) is a nonboundary

For the 1-rectangleHl P(R(m, 1), s,t) does not exist its edge ofA(n,n) (see Fig. 4(a)).
or t is not a corner. On the other hanH,P(R(m, 2), s,t)
does not exist if(s, ) is a vertical and nonboundary edgdF2) A(n,n) satisfiesn > 3, and (s,?) is an edge of
of R(m,2). Forn =1 or 2, HP(R(m,n),s,t) does exist A(n,n) such that boths and¢ are adjacent to a triangular
except the above two trivial forbidden conditions [11].  cornerw of A(n,n) (see Fig. 4(b)).

Next, we review some observations on the relations among
cycle, path, and vertex. These propositions are presented i he conditions of (F1) and (F2) are calléatbiddenfor
[11] and will be used in proving our results. L&t andCy,  HP(A(n,n), s,t). Note that|V (A(n,n))| = il The
be two vertex-disjoint cycles of a gragh If there exist two following lemma computes the longest ¢)-path with length
edgese; € C; andes € Cs such thate; = e», thenC; and  L(A(n,n), s,t) when(A(n, n), s, t) satisfies condition (F1)
C, can be combined into a cycle @. Thus we have the Of (F2). Due to the space limitation, the proof of the lemma
following proposition. is omitted.

Proposition 2. (See [11]) LetC; and C; be two vertex- Leémma 5. Let A(n,n) be a triangular supergrid graph
disjoint cycles of a grapid. If there exist two edges € C; with n > 3, and let s,t be two distinct vertices of
and e; € O, such thate; ~ ey, thenC, and C, can be A(n,n). If (A(n,n),s,t) satisfies condition (F1) or (F2),
combined into a cycle ofi. (see Fig.3(a) then L(A(n, n), s, t) = 205 — 1.

Let C; be a cycle and leP; be a path in a grapty such ~ We have computed the longést ¢)-path of A(n, n) when
that V(Cy) N V(Py) = 0. If there exist two edges; € C; (A(n,n),s,t) satisfies forbidden .condltlon_ .(Fl) or (F2).
ande, € P, such thate; ~ e,, thenC, and P, can be When (A(@,n),s,t) does not _satlsfy c_ondlltlons (F1) and
combined into a pati® of G with start(P) = start(P;) and (F2), we will constructa canonical Hamiltonigs t)—pat.h qf
end(P) = end(P,). Fig. 3(b) depicts such a construction,A(nv”)_ in the following Iemma._Due to the space limitation,
and, hence, the following proposition holds true. we omit the proof of the following lemma.

Proposition 3. (See [11]) LetC; and P, be a cycle and a Lemma 6. Let A(n,n) be atri_an_gular su-pergrid graph with
path, respectively, of a grapi such thatV (C;)NV(P) = " > 3, and lets,t be two dlstlnct_\_/ertlces ofA(n,n). If
0. If there exist two edges, € C; and e, € P, such that (A(n,n), s, t) does not satisfy conditions (F1) and (F2), then

e1 ~ es, thenC; and P, can be combined into a path 6F. A(n,n) contains a canonical Ha_lmiltonia(s, t)-path, and,
(see Fig.3(b) hence,HP(A(n,n),s,t) does exist.

The above observation can be extended to a vertex NeXt we will verify the Hamiltonian connectivity
where P, = z, as shown in Fig. 3(c), and we then hav@f parallelogram supergrid graphs. In a parallelogram
the following proposition. supergrid graph P(m,n), we can only consider that

V(P(m,n)) = {v = (vgvy) | 1 < vy, < n and
Proposition 4. (See [10]) LetC; be a cycle (path) of a v, < v, <wv, +m — 1}. Note that there are two horizontal
graphG and letz be a vertex inG — V(Ch). If there exists and two skewed boundaries iR(m,n). We first observe
an edge(u1,v1) in Cy such thatu; ~ x andv, ~ x, then three forbidden conditions fak P(P(m,n), s,t). Then, we
Cy and z can be combined into a cycle (path) 6f (see prove thattl P(P(m,n), s,t) does exist except the forbidden
Fig. 3(c)) conditions. We first consider 1-parallelogré®(m, 1), s, t).

The following condition impliesH P(P(m,1),s,t) does

1. THE HAMILTONIAN CONNECTIVITY OF TRIANGULAR Ot &XISt

AND PARALLELOGRAM SUPERGRID GRAPHS , .
(F3) P(m,n) is a 1-parallelogram, andor ¢ is not a corner

In this section, we will verify the Hamiltonian connectivityvertex (see Fig. 5(a)).
(except few trivial conditions) of triangular and parallelogram
supergrid graphs. For a triangular supergrid grdg, n), Since the possible path betweenandt¢ in P(m,1) is
we first observe two conditions faf P(A(n,n), s,t) does unique, the longests, t)-path in (P(m,1),s,t) is unique
not exist. These two forbidden conditions are described asd its length equals, — s, + 1. Note thats, < t,, i.e.,
follows: s is to the left oft. Then, HP(P(m,1),s,t) does exist if
(P(m,1),s,t) does not satisfy condition (F3).
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Fig. 5. Parallelogram supergrid graph in which there existslamiltonian
(s, t)-path for (a) condition (F3), (b) condition (F4), and (c) condition (F5), °
where solid lines indicate the longest, t)-path. B m "

(a) (b)

) ) Fig. 6. The Hamiltoniar(s, t)-path for (a) a parallelogram supergrid graph
Next, we consider(P(m,2),s,t) with m > 2. By P(7,5) and (b) a trapezoid supergrid grah(9, 4), where the solid lines

inspection the foIIowing condition impIiesP(m 2) indicate the Hamiltoniar{s, t)-path and® represents the destruction of an
. ' . . ’ edge while constructing such a Hamiltonian path.
contains no Hamiltoniais, t)-path.

F4) P(m,n) is a 2-parallelogram withn > 2, and (s, t) is .
;V()artiéalvec:ge 0P(7pn,n) (sege Fig. 5(b)). (s,) path, and, henceld P(P(m, 3), s,t) does exist.

We next verify the Hamiltonian connectivity of parallelo-
Consider that(R(m,2),s,t) satisfies condition (F4). In gram supergrid grap(m,n) with m > n > 4 as follows.
this case,s, = t,. Note that the left parallel corner isDue to the space limitation, we omit the proof of the lemma.
coordinated ag(1,1). Without loss of generality, assume

that s, < t,. We can easily see that the longé¢stt)-path

L(P(m,2),s,t) is either2s, — 1 or 2(m — s, + 1) + 1.

Lemma 10. Let P(m,n) be a parallelogram supergrid
graph withm > n > 4, and lets,t be two distinct
Then, L(P(m,2), 5,t) — max{2s, — 1,2m — 2s, + 3}, VEMCes ofP(m,n) With s, < ty. If (P(m,n),s,1) does
When(P(m,2), s, t) does not satisfy condition (F4), it is not"°t sgtlsfy condition (F5), theR(m, n) contains a canonical
difficult to verify that H P(P(m, 2), s, t) does exist. Thus, we H§m|ltonlan(s, t)-path, and, hencell P(P(m. n), s,t) does
have the following lemma. exist.

For instance, Fig. 6(a) depicts the Hamiltonian ¢)-
path for a parallelogram supergrid gragh(7,5), where
P(7,5) is decomposed into two triangular supergrid sub-
graphsA(5,5), A(4,4) and one rectangular supergrid sub-
graphR(2,5).

It immediately follows from Lemmas 9 and 10 that we

Lemma 7. Let P(m,2) be a2-parallelogram withm > 2
and lets,t be its two distinct vertices witk, < ¢, and
sy < ty. Then,L(P(m,2),s,t) = max{2s, — 1,2m —
2s; + 3} if (P(m,2),s,t) satisfies condition (F4); and
L(P(m,2),s,t) = 2m, i.e., HP(P(m,?2),s,t) does exist,

otherwise. conclude the following theorem.
as-l;‘g(lalowg'd forbidden condition fo P(P(m, n),s,t) is Theorem 1. Let P(m,n) be a parallelogram supergrid

graph withm > n > 1, and lets, t be two distinct vertices of
P(m,n). If (P(m,n),s,t) does not satisfy conditions (F3)—
(F5), thenP(m,n) contains a canonical Hamiltoniafs, t)-
path, and, hencell P(P(m,n), s,t) does exist.

(F5) P(m,n) satisfiesm > n > 2, and(s,t) is an edge of
P(m,n) such thats ~ w andt ~ w for any parallel corner
w of P(m,n), wheres # w, t # w, anddeg(w) = 2 (see

Fig. 5(c)). IV. THE HAMILTONIAN CONNECTIVITY OF TRAPEZOID
SUPERGRID GRAPHS

When(P(m, n), s,t) satisfies condition (5), we can com- In this section, we will verify the Hamiltonian connectivit
pute the longests, t)-path by removing the vertew from (except two tl‘iViéJ conditions)yof trapezoid supergrid gra| ?1/3
the Hamiltonian cycle of(m, n). Note that the Hamiltonian h P ¢ i P i bergrid graphs.
cycle of P(m,n) can be constructed in [9]. Thus, we havér ere are two types of trapezol supergri grajﬂ(sm,n)
the following lemma. andTs(m,n). Let T(m,n) be a trapezoid supergrld graph,
whereT'(m,n) = Ti(m,n) or To(m,n). We first observe
Lemma 8. Let P(m,n) be a parallelogram supergrid the conditions so thakl P(T'(m,n), s,t) does not exist. For
graph withm > n > 2, and lets,t be its two dis- a 27,-trapezoid or2r,-trapezoid, the following condition
tinct vertices. If(P(m,n), s, t) satisfies condition (F5), then implies thatH P(T(m, 2), s,t) does not exist.
L(P(m,n),s,t) = mn — 1, and the longest(s, ¢)-path
contains at least one boundary edge of each boundary (R6) T'(m,n) is a2z, -trapezoid or2r,-trapezoid, ands, t)
P(m,n) whenn > 3. is a vertical and nonboundary edge Bfm,n) (see Fig.

In the following, we consider thatP(m,n),s,t) does 7(2).
not satisfy conditions (F3)—(F5). Then, we will construct
a canonical Hamiltoniar(s,t)-path of P(m,n). We first
consider 3-parallelogran®(m,3) as follows. Due to the
space limitation, we omit its proof.

For a trapezoid cornew of T'(m,n), we can easily
see thatH P(T'(m,n),s,t) does not exist when,t # w,
s ~w, andt ~ w.

Lemma 9. Let P(m,n) be a3-parallelogram withn = 3 (F7) T'(m,n) is a trapezoid supergrid graph for> 2, w is
andm > 3, and lets,t be two distinct vertices aP(m,n) a trapezoid corner of (m,n), s,t # w, s ~ w, andt ~ w
with s, < t,. If (P(m,n),s,t) does not satisfy condition (see Fig. 7(b)).

(F5), thenP(m,n) contains a canonical Hamiltoniafs, t)-
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parallelogram, and trapezoid, are Hamiltonian connected
except few trivial conditions. These constructive proofs give
linear time algorithms to construct the longest paths or
Hamiltonian paths between two distinct vertices of shaped
supergrid graphs. A supergrid graph is called alphabet if
its boundaries form an alphabet. There are 26 types of
alphabet supergrid graphs. We can see from the structures of
alphabet supergrid graphs that they can be decomposed into
triangular, parallelogram, or trapezoid supergrid subgraphs.

Fig. 7. Trapezoid supergrid graph in which there exists no itianian
(s, t)-path for (a) condition (F6), and (b) condition (F7), where solid line
indicate the longests, t)-path.

In the future, we would like to apply our results to study the
Hamiltonian connectivity of alphabet supergrid graphs.
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Lemma 11. Let T'(m,n) be a trapezoid supergrid graph
with n > 2, and lets, ¢ be two distinct vertices df'(m, n).
Then, the following statemsts hold true:

(1) if (T(m,n),s,t) satisfies condition (F6), then [l
L(T1(m,n), s, t) max{2(m — s, + 1) — 1,2s,}
and L(T5(m,n), s,t) = max{2(m — s, + 1) — 1,25, + 1}.
(2) if (T(m,n),s,t) satisfies condition (F7), then
L(T(m,n),s,t) = [V(T(m,n))| - 1. [

In the following, we will assume thatT'(m,n),s.t) g
does not satisfy conditions (F6) and (F7). Then, we will
construct a Hamiltonian(s, t)-path of T'(m,n). We first [5]
prove T; (m,n) to be canonical Hamiltonian connected as
follows. Due to the space limitation, its proof is omitted. [6]

Lemma 12. Let T1(m,n) be a trapezoid supergrid graph [7]
with m — 1 > n > 2, and lets,t be two distinct vertices

of Ty (m,n). If (T1(m,n),s,t) does not satisfy conditions 8
(F6)—(F7), thenT} (m,n) contains a canonical Hamiltonian
(s,t)-path, and, hencel P(T1(m,n), s, t) does exist.

(2]

[9]
Next, we consider the other type of trapezoid supergrid
graphT3(m,n) as follows. Due to the space limitation, W]

omit the proof of the lemma.

Lemma 13. Let Tx(m,n) be a trapezoid supergrid graph H
with = > n > 2, and lets,t be two distinct vertices of
Ta(m,n). If (Tz(m,n), s, t) does not satisfy conditions (F6)—[12]
(F7), thenT,(m, n) contains a canonical Hamiltoniafs, t)-

path, and, henceld P(Tx(m,n), s,t) does exist.

For instance, Fig. 6(b) depicts the Hamiltoniagnt)-path  [13]
for a trapezoid supergrid gragh;(9,4), whereT(9,4) is
decomposed into two triangular supergrid subgraplis, 3)
and one rectangular supergrid subgrdp(s, 4). It immedi-
ately follows from Lemmas 12-13 that the following theorerft”

holds true. [16]

[14]

Theorem 2. Let T'(m,n) be a trapezoid supergrid graphi7]
with n > 2, and let s,t be two distinct vertices of
T(m,n), where T(m,n) = Ti(m,n) or Te(m,n). If
(T'(m,n),s,t) does not satisfy conditions (F6)—(F7), then
T'(m,n) contains a canonical Hamiltoniafs, t)-path, and,
hence,HP (T (m,n),s,t) does exist.

V. CONCLUDING REMARKS

In this paper, we provide constructive proofs to show
that some shaped supergrid graphs, including triangular,
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