

Feasibility Analysis of Achieving Mobile Agents for

Wireless Sensor Network based on LooCI

Yuechun Wang, Ka Lok Man, Steven Guan, Danny Hughes

 Abstract -- Distributed sensing in combination with wireless

communication techniques and self-organising deployment

approaches enable Wireless Sensors Networks (WSN) to play a

crucial role in our daily life. An increasing number of dynamic

sensing applications have been developed, and there is a growing

demand for middleware to bridge the gap between these

applications and a diverse range of underlying operating systems.

In this paper, we present a prototype middleware that combines a

Mobile Agent-based WSN system in conjunction with the

component based LooCI middleware. The system has both merits

of agent-based WSN system as well as the benefits of LooCI, which

include efficient energy use and providing the possibility of

platform independence and component model programming

language independence. The feasibility analysis along with

potential implementation approaches of this system are proposed

in this paper. The direction and value of on-going research based

on the research work proposed in this paper is presented as well.

Index terms -- Mobile Agent, LooCI, WSN, Middleware

I. INTRODUCTION
ITH features of environmental sensing, self-organization,

and flexibility, Wireless Sensor Networks (WSNs) have

independently arisen in various application scenarios such as

space exploration and logistic tracking [1]. Two functionally

different types of nodes are involved in WSN system, i.e.

terminal resources sensor nodes and sink nodes. Terminal

sensor nodes that highly distributed in geographical sensing

area refer heterogeneous types and operation systems. These

nodes have purpose of data collection and could be GPS module,

RFID module and/or sensors for specific monitored parameters.

Sink nodes, which played as connectors between terminal

sensor nodes and higher service centre, transmit both data

packets from terminal sensor nodes to back-end systems and

control instructions from the back-end to sensor nodes.

However, several critical problems such as restricted the

lifespan of sensor nodes and limited energy consumption due to

the resource limits of sensor nodes and the increasing scale and

complexity of the end-to-end WSN system.

While there are many families and types of middleware

discussed in [2], there is no single existing middleware can meet

all of the demands of WSN systems while operating within the

strict limitations of WSNs. One of the most crucial challenges

for middleware design is how to deal with resource trade-offs.

One example is the energy consumption trade-off between data

processing performed on local sensor nodes and data

transmission among sensor nodes. In addition, resource

discovery and code management for dynamic applications

cannot be solved using existing middleware approaches. When

dealing with the trade-off as mentioned above or the conflict

occurred during resource management, a reasonable resource

allocation approach is important. With ability of data

processing, mobile agent is one of the techniques that could

achieve resource allocation ideally.

Mobile Agents (MA) [3] are one of the state-of-the-art

techniques that contributes to extend lifespan of terminal

resources sensor nodes by itinerating among target nodes to

collect information and transmit to interested sink nodes in

certain area. One of the design challenges of MA is the

middleware system design. As MA is defined as an application-

specific software, a well-designed middleware that supports

potential add or update of MA based applications is necessary.

Besides, middleware should be able to bridge the gap between

various applications and different underlying operations in

WSN system.

The Loosely-coupled Component Infrastructure (LooCI) [4]

is an event-driven component-based middleware system, which

is platform-independent and support for large scale distributed

sensing applications.

The remainder of this paper is organized as follows. Section

II introduces Mobile Agent in WSN. Section III presents LooCI

and its relevant work. The feasibility analysis of achieving MA

on LooCI is proposed in Section IV and the conclusions of this

paper are in Section V.

II. MOBILE AGENT IN WSNS

A Mobile Agent (MA), which is described as a special

software that includes executed codes, can migrate among

terminal sensor nodes to collect information and transmit to

interested sink nodes in WSNs [5-7]. This definition indicates

that MA is an application-specific software and has high

mobility. Its ability of data processing decides that WSN system

with MA can significant extend lifespan of

W

Yuechun Wang is with Xi’an Jiaotong-Liverpool University, China (email:

yuechun.wang@xjtlu.edu.cn)

Ka Lok Man is with Xi’an Jiaotong-Liverpool University, China (email:

ka.man@xjtlu.edu.cn)

Steven Guan is with Xi’an Jiaotong-Liverpool University, China (email:

steven.guan@xjtlu.edu.cn)

Danny Hughes is with IBBT-DistriNet, KU Leuven, Leuven, B-3001,

Belgium (email: danny.hughes@cs.kuleuven.be)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

terminal resources sensor nodes by reducing the energy

consumption of data processing on local sensor nodes. Data

fusion, localisation [2], re-allocation as well as update of tasks

of resources sensor nodes are typical applications of MA.

To achieve MA in WSN system, there are three basics that

should be addressed: 1) architecture of overall system, 2) MA

itinerary arrangement which denotes the order of sensors to be

visited by MA, and 3) middleware support. We focus on

middleware system design and implementation in this paper.

Fig. 1 shows the comparison of the WSN system that with

and without MA. In a monitoring area with randomly

distributed sensor nodes and one sink node, the sink node in

Fig.1 (a) needs to collect data from each terminal sensor node

separately. Therefore, the bandwidth requirement of channels

connected with the sink node is unduly high. When adding a

MA into the same system as shown in Fig.1 (b), data exchange

between each sensor node and sink node has been dramatically

reduced. Instead, MA that transmitted by sink node travels

around all the terminal sensor nodes to collect, pre-process, and

deliver useful data. Therefore, the bandwidth requirement for

the channels that connect with sink node is reduced. Through

this approach, MA can reduce the energy consumption of data

exchange between terminal sensor nodes and sink node as well

as bandwidth requirements.

III. LOOCI

The Loosely-coupled Component infrastructure (LooCI) as

presented in [4] is a state-of-the-art middleware system that

bridges the gap between distributed WSN applications and

diverse platforms. As described in its name, LooCI is composed

of a reconfigurable component model, a hierarchical system,

and a distributed event bus. The architecture of LooCI is shown

in Fig. 2 taken from [4]. These features denote that LooCI can

support a separation of distributed applications from component

implementation. Operating system that could support LooCI

currently includes OSGi, Contiki, Squawk, and Android.

IV. MA ON LOOCI – FEASIBILITY ANALYSIS

A. Functional Needs

To clearly specify the functional needs of a mobile agent

based middleware, two core components should be analysed

and defined – MA and relative supporting platform.

Mobile Agent

Composed modules for each agent are shown in Fig. 3.

Condition of an agent shows its current status so that agent

manager can do further treatment on it. Self-control logistic

contributes to self-organization of an agent, which decide the

application requirement of the agent. Perceptron and effector

present the ‘communication’ between agents and environment

– environmental changing can be detected by agents and also

agents can give out feedbacks. As introduced in section II, an

agent is a special software that includes executed codes, and can

migrate among terminal sensor nodes to collect information and

transmit to interested sink nodes in WSNs. To achieve this

feature, four elements are essential for an agent – Agent ID for

unique defining the agent on sensor nodes, Agent condition

which includes operation condition and migration condition,

(a)

(b)

Fig. 1 Compare of the WSN system with and without MA. (a)The system

without MA, and (b) the system with MA

Fig. 3 Composed modules for the agent

Fig. 2 LooCI hierarchical architecture

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Agent code that includes main functional codes of the agent, as

well as the Storage space for keeping data gathered from sensor

nodes.

Supporting platform

The functionality of the operating platform includes

providing reusable framework interface and providing a set of

reusable components for application system developers.

As the overall structure of the system shows in Fig. 4, in the

middleware layer includes four core modules (labelled as

platform support in Fig. 4): the manager, interface, controller

and storage space. The manager is composed of four sub-

managers which are Agent manager, Routing manager, Space

manager, and Topology manager. These interoperable

managers have the following responsibilities: The Agent

manager is in charge of agent operation and management. The

routing manager is in charge of the establishment and

maintenance of neighbour lists on sensor nodes. The Space

manager is in charge of management and allocation of storage

space for agents. Finally, the Topology manager is in charge of

the sensor nodes status and serves that optimises the topology

of the whole network.

In this paper, for the sake of simplicity, only the Agent

manager and the Topology manager are presented in detail.

 Fig. 5 illustrates the block diagram of operation for the Agent

manager on supporting platform. The Agent manager achieves

three fundamental functions: i) recognising agents and control

messages; ii) allocating resources (e.g. storage space in Queues);

and iii) processing agents. Hence components that constitute the

Agent manager should be addressed as: i) a receiving monitor

to recognise and receive agents around sensor nodes or control

messages from controller; ii) an agent status detector to detect

the updated status of agents; iii) three fix-length queues to store

agents – Received Queue to collect received agents, Operation

Queue to organise agents under ‘Ready_to_work’ status, and

Delivery Queue to collect agents that ready to migrate to other

nodes. Pseudo code for the Agent manager will be introduced

in the next section.

Being different from the traditional WSN topology

management which controls the sensor nodes through the

backbone node, the topology manager of an agent-based

network controls sensor nodes according to the status of agents

on the node. As topology management is closely relative to

routing management of the network, some functionality of

topology manager is incorporated with the routing manager

such as to update list of the neighbour nodes. The block diagram

of the Topology manager is illustrated in Fig. 6. With the initial

status of all nodes in the network set to idle, agent detection is

followed on. If there are agents inside the monitoring area of a

sensor node or any agent under operation on the node, the node

Fig. 5 Block diagram of Agent Manager

Fig. 4 Overall structure of the MA system

Fig. 6 Block diagram of Topology manager

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

will maintain awake status rather than to sleep; and the topology

message will be updated by the next-level nodes in the

meantime. On the contrary, those sensor nodes which cannot

detect any agent within monitoring area and do not have any

agent operating on it will change to sleeping status with a timer;

and send the topology message to next-level nodes. When the

agent operation has finished or the time is up on the nodes that

fell asleep, the status of sensor nodes will change to idle again.

Based on the methodology introduced above, core modules for

the Topology manager include an Agent detector, a timer, and

a logger for recording node status. Besides, there should be a

logger to record and update the topology message from

neighbour nodes.

B. Analysis of importing MA in LooCI

As a component infrastructure and event driven middleware

system, LooCI is a good option to achieve MA. The analysis of

LooCI operating principle connected with functional

requirements presented in section IV.A is as follows.

Three core sections of LooCI are codebase and component,

event, and wires. Codebase is an executable code file with a

node unique ID that can be deployed to a node while component

is a runtime unit which executes the functionality of codebase.

In the other words, codebases provide executable code and

components are the instantiation of codebases, which means all

the manager modules referred in section IV can be achieved by

declaring new codebases and components in LooCI.

Components communicate by exchanging events through two

interfaces – provided interface which is for publishing, and

required interface which is for subscribing. These two

interfaces can achieve the message exchange among four

modules on supporting platform layer: control messages, status

of agent, neighbour list, etc. An event is the basic unit for

network communication. Events are delivered between sensor

nodes which are similar to the role of mobile agents. Every

event contains an event ID and payload which indicates the

agent ID as well as storage space for both data and code on

agents could be achieved. Wires are the medium for component

communication. Events that have been delivered among diverse

components on local or remote sensor nodes transmit through

wires.

As a conclusion, core modules of LooCI can satisfy the

functional needs of the MA middleware. The challenge is how

to declare the manager modules and set suitable properties for

the component.

C. Potential Implementation approach

 The implementation approach of Agent manager is

presented in Pseudo-code 1. The AgentManager() function

starts from detecting matching agents or control messages from

controller. In case any control message from controller detected

by the agent manager, all the processes stop immediately.

When an agent with status Ready-to-receive has been

detected, manager will push this agent into Receive Queue. If

the code size of an agent is not overflowed from the size of

Received Queue, which denotes the storage resources are

adequate for current agent, then agent manager will process the

agent by checking the status that is modified based on the

duty of current agent. In case that the code size of received

agent is larger than rest of the space in Received Queue,

manager will send overflow message to the Controller; once the

controller acquires the overflow message from manager, it will

send a control message as a feedback. Inside each queue, a

pointer is used to mark the agent that manager currently dealing

with.

Pseudo-code 1 Agent manager

1: function AgentManager ()

2: active monitor

3: read packageHead

4: for (i = 0, I< MaxReceive) do

5: if head (I) = = controlMessageHead then

6: stop function

7: elseif head (I) = = agentHead AND

8: Agent_status (I) = =Ready_to_receive) then

9: push Agent (I) → Received Queue

10: change Agent_status (I)

11: if agentSize (I) > maxQueue then

12: return 1 /* overflow */

13: else return 0 /* not overflow */

14: end if

15: if Agent_status (I) = = Ready_to_work then

16: push Agent (I) → Qperation_Queue

17: elseif Agent_status = Ready_to_migrate then

18: push Agent (I) → Delivery_Queue

19: end if

20: Agent_status → Ready_to_receive

21: end if

22: I + +

23: end for

24: end function

Pseudo-code 2 Topology manager

1: function TopologyManager ()

2: initial Node_status → idle

3: while (Node_status = idle)

4: active monitor

5: update boolean flag1

6: if flagP = = 1 then /* package been detected */

7: read packageHead

8: if head = = controlMessageHead then

9: stop function

10: elseif head = = agentHead then

11: topology_message → node_activate

12: Node_status → in_operation

13: end if

14: check Agent_engine

15: if Agent_engine → finished

16: boolean flagA = 1

17: Node_status → idle

18: else boolean flagA = 0

19 end if

20: elseif flagP = =0 then /* nothing been detected */

21: while(flagA)

22: Node_status → sleeping

23: topology_message → node_sleeping

24: set timer

25: flagA = 0

26: check timer

27: if timer = = 0 then

28: Node_status = idle

29: end if

30: end if

31: end function

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

Traversal of the agents in Received Queue is achieved

through the while loop. In case that Received Queue is not

empty, agent ID will be recorded as reference for agent engine

which deals with executable codes of agents. Agent status

therefore changed on the basis of next-step operation. If an

agent is expected to operate its functional codes on the node,

the Agent manager will push it into Operation Queue in which

the agents will be handled by agent engine one by one. Another

status of an agent is Ready-to-Migrate which denotes the agent

has certain target node and prepares for delivery from current

node. The Agent manager will push the agents with Ready-to-

Migrate status into Delivery Queue in which the agents will be

processed by agent transmitter. Status of the agents hanging in

Delivery Queue then changes to Ready-to-Receive that gives a

sign to next-level sensor nodes.

 The implementation approach of the Topology manager

shown in Fig. 6 is presented in Pseudo-code 2.

TopologyManager() function is used to decide and manage the

status of sensor nodes in the network so that optimises the

allocation of limited energy on sensor nodes as well as limited

bandwidth resources of whole network. The function starts

from initialising all the nodes status as idle. When a node is

under idle status, which denotes that the node is awake without

any operation, it detects the active agents in its monitoring area

as well as control messages from controller.

 We set a FlagP as a package receive sign. If Boolean FlagP

returns 1, it indicates that the control messages or agents are

detected; header of the package will be checked. When the

package is identified as a control message, all the processes on

manager will shut down. Otherwise an agent will be received.

We set a FlagA as a sign of agents active on the node. If

Boolean FlagA returns 1, it indicates that active agents are

operating on node; vice versa. With active agents around/on, a

node sends topology message ‘active’ to next-level nodes. Then

the status of the node changes to in-operation while agent

engine dealing with received agent; and status returns to idle

until all the operation on agent engine finished. If both Boolean

FlagP and FlagA return 0, this indicates that no package is

detected within monitoring area and no agent is under operation

on the node. Therefore, topology manager closes the

communication module on nodes and set a timer in the

meantime. The Topology message ‘sleep’ is sent to next-level

nodes at the same time. The sensor node will not exchange

messages with other nodes until the time is up. The status of

node returns to idle when the node is awake. To clarify the

functionality of FlagP and FlagA, feedback of both flags and

their relative indication are presented in Table 1.

V. CONCLUSIONS

This paper contributed a feasibility analysis of achieving

Mobile Agents for WSN system based on LooCI is presented.

We analysed the current development situation of dynamic

sensing applications and the value of implementing the MA for

dynamic sensing applications. We proposed the functional

needs of the MA middleware as well as the connection between

LooCI and MA system. Potential implementation approaches

of Agent manager and Topology manager are presented by

several pseudo-codes that based on analysis and functional

needs. Further research directions based on this paper are to

implement the approaches on LooCI and validating the

approaches on an embedded sensor platform.

ACKNOWLEDGEMENT

This project is supported by the Research Development Fund

(#RDF14-03-12) of the Xi’an Jiaotong-Liverpool University,

Suzhou, China.

REFERENCES
[1]. K. L. Man, D. Hughes, S. U. Guan, and P. W. H. Wong. "Middleware

Support for Dynamic Sensing Applications." in International Conference

on Platform Technology and Service (PlatCon), 2016, pp. 1-4.

[2]. H. Fukuda and P. Leger. "An Efficient Agent Location Management for

Wireless Sensor Network." in 2015 IEEE 17th International Conference

on High Performance Computing and Communications (HPCC), 2015

IEEE 7th International Symposium on Cyberspace Safety and Security

(CSS), 2015 IEEE 12th International Conferen on Embedded Software

and Systems (ICESS), 2015, pp. 1014-1019.

[3]. C. L. Fok, G. C. Roman, and C. Lu. "Rapid Development and Flexible

Deployment of Adaptive Wireless Sensor Network Applications." in 25th

IEEE International Conference on Distributed Computing Systems

(ICDCS'05), 2005, pp. 653-662.

[4]. D. Hughes, K. Thoelen, J. Maerien, N. Matthys, W. Horre, J. Del Cid, C.

Huygens, S. Michiels, and W. Joosen. "LooCI: The Loosely-coupled

Component Infrastructure." in 11th IEEE International Symposium on

Network Computing and Applications (NCA), 2012, pp. 236-243.

[5]. M. Chen, S. Gonzalez, and C. M. Leung Victor, "Applications and design

issues for mobile agents in wireless sensor networks," IEEE Wireless

Communications. Vol. 14, No. 6, pp. 20-26, 2007.

[6]. M. Usman, V. Muthukkumarasamy, X. W. Wu, and S. Khanum.

"Securing mobile agent based Wireless Sensor Network applications on

middleware." in International Symposium on Communications and

Information Technologies (ISCIT), 2012, pp. 707-712.

[7]. R. Amine, K. Amine, B. Khalid, Z. Elhoussaine, and O. Mohammed.

"Knowledge discovery in WSN using mobile agents." in Intelligent

Systems and Computer Vision (ISCV), 2015, pp. 1-6.

TABLE I

 FEEDBACK AND INDICATION OF FLAGS IN TOPOLOGY

MANAGER

Flag No. feedback Indication

FlagP

0
Nothing has been detected in monitoring

area

1
There are packages existed in monitoring

area

FlagA

0 No agent is under operation on node

1
There are agents under operation on node

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

