

Abstract—An algorithm is presented for real time vision-

based lane detection on a Raspberry Pi computer coupled to a

Raspberry Pi Camera board. The computer-camera unit is

placed inside a car, next to the windshield, and is powered

through a regular 12V-to-5V car charger. The algorithm is

based on the detection of 1D Haar Wavelet spikes in 1D

ordered Haar Wavelet Transforms of image rows. The

algorithm is called GreedyHaarSpiker and is implemented in

Python 2.7.9 with OpenCV 3. The performance of the

algorithm was tested in situ on a Raspberry Pi 3 Model B

ARMv8 1GB RAM computer on two image samples, each of

which consisted of one thousand 360 x 240 PNG images. The

images were captured by a Raspberry Pi Camera Board v2

placed inside a Jeep Wrangler driven on two different days at a

speed of 60 miles per hour on a Northern Utah highway. On the

first sample, the accuracies of detecting both lanes and at least

one lane were 67% and 89.70%, respectively; on the second

sample, the accuracies of detecting both lanes and at least one

lane were 47.30% and 77.40%, respectively. The current

implementation processes 20 frames per second.

Index Terms—computer vision, lane detection, discrete

wavelet transform, haar wavelets, autonomous cars

I. INTRODUCTION

utonomous cars, i.e., cars capable of navigating various

environments without human input, have featured

prominently in many research and commercial projects for

several decades. The CMU Navigation Laboratory (Navlab)

has built a series of robot cars, SUVs, and buses since 1984.

The latest robotic car, Navlab 11, is a robot Jeep Wrangler

equipped with a range of sensors for obstacle avoidance,

path planning and following, and pedestrian detection [1].

The European Technology Platform on Smart Systems

Integration project has reported significant contributions to

collision avoidance, fleet management, autonomous cruise

control, and cooperative driving [2]. Over the past several

years the Google and Tesla corporations have been

aggressively commercializing their self-driving platforms [3,

4].

Proponents of driverless cars argue that the major benefits

of driverless cars include, but are not limited to, less traffic

congestion, enhanced mobility of the elderly and the

disabled, significant increases in roadway capacity, and



 Manuscript received December 5, 2016; revised December 24, 2016.

 Vladimir A. Kulyukin is with the Department of Computer Science of

Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax:

435-791-3265; e-mail: vladimir.kulyukin@usu.edu).

 Vikas Reddy Sudini is with the Department of Computer Science of

Utah State University, Logan, UT 84322 USA (phone: 434-797-2451; fax:

435-791-3265; e-mail: s.vikasreddy2009@gmail.com).

reduction in traffic accidents [5, 6]. Opponents of driverless

cars point out that the widespread adoption of autonomous

vehicles will result not only in major job losses in driving

jobs, but also will likely lead to loss of privacy and increased

risks of hacking attacks and terrorism [7]. Some researchers

argue that lack of stress during driving and more productive

time on the road may create additional incentives to live

even further from cities, which will increase the carbon

footprint of motor transportation systems [8].

 While we believe that completely autonomous cars may

become a reality in the long term, provided that not only

technical failures [9, 10] but also social and legal

implications [11] of autonomous car adoption are properly

addressed, human drivers are, and will remain indispensable

in the short and medium terms. Consequently, it is important

to seek solutions that enhance their safety. Robust vision-

based lane detection is one such enhancement. Specifically,

vision-based lane detection modules will gradually become

an integral part of autopilots in semi-trucks to improve the

drivers’ safety on long, monotonous highway stretches with

low or no traffic. Such autopilots will be similar to the ones

already in existence in aircraft and ships and will keep the

human in the loop in that the decision to engage and

disengage the autopilot will be under the sole control of the

driver.

In this paper, an algorithm, called GreedyHaarSpiker, is

presented for in situ real time vision-based lane detection on

a Raspberry Pi computer coupled to a Raspberry Pi Camera

board. The computer-camera unit is placed inside a car, next

to the windshield, and is powered through a regular 12V-to-

5V car charger. The algorithm is based on the detection of

1D Haar Wavelet spikes in 1D Ordered Haar Wavelet

Transforms of image rows. The algorithm is implemented in

Python 2.7.9 with OpenCV 3.

The remainder of this paper is organized as follows. In

Section II, related work is reviewed. In Section III, the

concept of a 1D Haar Wavelet Spike (1D HWS) is formally

developed. Section IV describes our in situ algorithm and

gives its pseudocode. In Section V, the highway experiments

are described and analyzed. In Section VI, conclusions are

drawn.

II. RELATED WORK

Vision-based lane detection has been the focus of many

R&D projects in the past two decades. Wang et al. [12]

propose a B-Snake based lane detection and tracking model

for a range of lane structures. An algorithm, called CHEVP,

is developed for providing initial positions for the B-Snake

model. A minimum error method is proposed to determine

the control points of the B-Snake model by the image forces

Real Time Vision-Based Lane Detection on

Raspberry Pi with 1D Haar Wavelet Spikes

Vladimir A. Kulyukin Vikas Reddy Sudini


A

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

on both sides of a lane. Experimental results presented in the

paper suggest that the algorithm is robust against noise,

shadows, and illumination variations in captured images of

marked and unmarked roads.

Kim [13] presents a lane-detection-and-tracking algorithm

to detect lane curvatures, lane changes, and splitting lanes.

The detected lane markings are grouped into separate left

and right lane-boundary hypotheses to handle merging and

splitting lanes. The hypotheses are evaluated and grouped

with a probabilistic, Markov-style process framework.

Hsiao et al. [14] propose an embedded real-time lane

departure warning system (LDWS) for daytime and

nighttime driving. The LDWS features a lane detection

algorithm based on peak finding for feature extraction to

detect lane boundaries. 1D Gaussian smoothing and global

edge detection are applied to reduce noise in images. The

reported lane detection rates were 99.57% during the day

and 98.88% at night on a sample of highway images.

Erickson and Landberg [15] proposed a lane detection

algorithm that uses Hough lines combined with a parabolic

second degree fitting for curvature detection. On the

Raspberry Pi (RPi) 2 model the algorithm’s performance

was found to be inadequate for high speed driving. However,

when the object detection is removed from the algorithm the

RPi 2 meets the real time performance requirements.

Mandlik and Deshmukh [16] have developed a lane

departure detection system that uses the OpenCV library

[17] to detect vehicle lane departures on the RPi hardware.

The algorithm uses the OpenCV implementations of the

Canny Edge detector [18] and the Hough Transform [19] to

detect straight and curved lanes. The experiments are

conducted on a toy vehicle with a USB camera mounted on

top of it that sends images of white paper lanes on a black

floor surface to an RPi powered by a laptop.

The algorithm presented in this paper shares the position

advocated in [15] and [16] that, to be economically viable

and broadly shareable, vision-based lane detection

algorithms must be implemented and tested in situ on off-

the-shelf hardware platforms such as the RPi. The creation

of replicable hardware and software solutions will enable

citizen science drivers to build, test, and broadly share

driver’s safety enhancements.

III. 1D HAAR WAVELET SPIKES

The GreedyHaarSpiker algorithm described in Section IV

depends on the concept of the 1D Haar Wavelet Spike

developed in this section. In the 1D Haar Wavelet

Transform (1D HWT), a signal is a vector in

.,2, NknR kn  Following the formalization in [20], let

 k

aW be a
kk 22  matrix for computing k scales of the 1D

HWT. This matrix can be effectively computed from the n

canonical base vectors of .nR If  
120 ,...,


 kxxx is a

signal in
nR , then y is the k-scale 1D HWT of x defined

in (1).
  yxW Tk

a  (1)

Then

            1

12

1

0

1

1

1

0

0

0

0

0 1,...,,...,,,, 




 kkT

kcccccay (2)

In (2),
 0

0a =  y and
 j
ic is the coefficient of the

thi

basic Haar wavelet at scale j [21]. For example, (3) defines

the matrix for computing the 1D HWT in .2R

 


























50.050.000.000.0

00.000.050.050.0

25.025.025.025.0

25.025.025.025.0

2

aW

(3)

If the input signal  ,0,1,1,0x then (4) gives the 1D

HWT of x computed as   .2 yxW T

a  The actual values of

the transform are  .5.0,5.0,0,5.0 Ty


































































50.0

50.0

00.0

50.0

0

1

1

0

50.050.000.000.0

00.000.050.050.0

25.025.025.025.0

25.025.025.025.0

(4)

HWTs are used to detect significant changes in signal

values [22]. In this paper, we claim that some changes can

be characterized as signal spikes. Specifically, four types of

spikes are proposed: up-down triangle, up-down trapezoid,

down-up triangle, and down-up trapezoid. The difference

between up-down and down-up spikes is the relative

positions of the climb and decline segments. In trapezoid

spikes, flat segments are always in between the climb and

decline segments, regardless of their relative positions.

Fig. 1. Up-down spikes.

Fig. 1 shows up-down triangle and trapezoid spikes; Fig. 2

shows down-up triangle and trapezoid spikes. In both

figures, the lower graphs represent the possible values of the

corresponding Haar wavelets at a chosen scale k. Up-down

spikes describe signals that first increase and then, after an

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

optional flat segment, decrease. Down-up spikes describe

signals that first decrease and then, after an optional flat

segment, increase. Formally, a spike is a nine element tuple

whose elements are real numbers given in (5).

Fig. 2. Down-up spikes.

  ,,,,,,,, eseses ddffuu (5)

The first two elements, su and eu , are the abscissae of the

beginning and end of the spike’s climb segment,

respectively, when the wavelet coefficients of the 1D HWT

increase. If
 k

scu and
 k

ecu are the k-th scale wavelet

coefficient ordinates at su and ,eu respectively, then the

climb segment of the spike is measured by the angle
    .,1tan 1 k

s

k

ese cucuuu  

The decline segment of the spike is characterized by

,sd ,ed and , where sd and ed are the abscissae of the

beginning and end of the spike’s decline segment,

respectively, when the wavelet coefficients decrease. If
 k

scd and  k

ecd are the k-th scale wavelet coefficient

ordinates at sd and ,ed respectively, then the decline

segment of the spike is measured by the

angle     k

s

k

ese cdcddd   ,1tan 1 .

For a trapezoid up-down or down-up spike, the flat

segment is characterized by ,sf ,ef and , where sf and

ef are the abscissae of the beginning and end of the spike’s

flat segment, respectively, over which the wavelet

coefficients either remain at the same ordinate or have minor

ordinate fluctuations. If
 k

scf and
 k

ecf are the k-th scale

wavelet coefficients corresponding to sf and ,ef

respectively, the spike’s flatness angle is
    k

s

k

ese cfcfff   ,tan 1 . The absolute values of

 are close to 0.

Fig. 3. An RPi monitor attached to an RPi (behind it) and mounted

next to the windshield of a Jeep Wrangler.

Fig. 4. An RPi camera board v2 (red arrow) attached to small cardboard

box for balance and taped to windshield; RPi computer (green arrow); RPi

monitor (blue arrow).

Fig. 5. As GreedyHaarSpiker runs, lane detection results are graphically

displayed in bottom right corner of RPi monitor: green arrow points to

detected left lane; red arrow points to detected right lane.

IV. GREEDYHAARSPIKER: A LANE DETECTION ALGORITHM

Figures 3 – 5 show the hardware on which

GreedyHaarSpiker, our lane detection algorithm, currently

runs. In Fig. 3, a seven-inch RPi touchscreen display is

shown. The monitor is attached to a RPi 3 Model B ARMv8

1GB RAM identified with a green arrow in Fig. 4. The RPi

computer is attached to the back of the monitor and coupled

to an RPi Camera Board v2. The camera, identified with a

red arrow in Fig. 4, is attached to a small cardboard box and

taped with a small piece of tape to the windshield for

balance. In the future, more stable structures will be

designed and deployed. In Fig. 5, the RPi monitor displays

the left and right lanes as they are being detected by the

algorithm in real time as the vehicle is driven. The system is

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

powered with a standard 12V-to-5V car charger where the

USB power line for the RPi is plugged in.

Figures 6 and 7 give the pseudocode of the DetectLanes

procedure and the GreedyHaarSpiker procedure called by

DetectLanes. The procedure DetectLanes takes as input a

360 x 240 PNG image. Fig. 8 shows a sample input image.

In line 2 of Fig. 6, a 56 x 200 region of interest (ROI) is

cropped in the bottom center portion of the image in Fig. 8.

The cropped ROI is shown in Fig. 9a.

Fig. 6. Pseudocode of DetectLanes procedure.

Fig. 7. Pseudocode of GreedyHaarSpiker.

Lines 3 – 5 in Fig. 6 specify the image preprocessing steps

applied to the ROI. The ROI is grayscaled (Fig. 9b), blurred

with the Gaussian 7 x 7 kernel (Fig. 9c), and thresholded

with the Otsu thresholding operator (Fig. 9d). In line 6 in

Fig. 6 the GreedyHaarSpiker algorithm, outlined in Fig. 7, is

applied to the thresholded image. In Fig. 7, two empty lists,

LPoints and RPoints, are initialized. LPoints is a list of (x, y)

tuples used to find the left lane in the image by the fitLine

procedure in line 6 of Fig. 6. RPoints is a list of (x, y) tuples

used to find the right lane in the image by the fitLine

procedure in line 7 of Fig. 6. This procedure is described at

the end of this section.

In lines 3 and 4 of Fig. 7, two variables, LSpike and

RSpike, are defined where detected spikes are temporarily

saved to guide the selection of the scanline in the next row

by the procedures getLeftScaneLine and getRightScanLine

in lines 7 – 8 of Fig. 7.

The procedure GreedyHaarSpiker takes a preprocessed

ROI and three integer parameters. The parameters sr and er

specify the start and end rows, respectively, in ROI where

the spikes are detected. The third integer parameter, delta,

specifies a step value for generating the exact row numbers

for spike detection.

Fig. 8. A sample input image.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 9. (a) ROI from input image; (b) grayscaled ROI; (c) blurred ROI;

(d) ROI thresholded with OTSU; e) scanlines (white lines) and spikes

(red and blue lines) used to detect left lanes; (f) scanlines and spikes

used to detect both lanes.

As indicated in Line 6 of Fig. 7 where the for-loop starts,

the processing of rows goes from bottom to top. In other

words, the lane detection starts from the rows closest to the

moving vehicle.

In lines 7 and 8 of Fig. 7, two scanlines of 64 pixels are

chosen on the left and right parts of ROI in row r. If the

value of LSpike is NULL, the left scanline starts at column

0; similarly, if the value of RSpike is NULL, the right

scanline starts at column w-1, where w is the width of the

ROI, which is equal to 200 in our case. If the value of

LSpike is NULL, which means that a spike has been

detected in a row below, the left scanline, saved in the LLine

variable, is centered on the middle of the two ordinates of

the detected spike’s climb segment, i.e., the ordinates of

su and eu defined in Section III. The flat and down

segments are currently not taken into account in the

algorithm. The right scanline is detected and saved in the

RLine variable in the same way except that the spike saved

in RSpike is used. In Fig. 9e and Fig. 9f, the scanlines are

shown as white lines.

In lines 9 and 10 of Fig. 7, the ordered 1D HWT is

applied to the left and right scanlines, respectively. In lines

11 and 12, up-down spikes are shown in Figures 9e and 9f as

short red-blue lines on white lines. The red segments show

the climb segments; the blue segments indicate the decline

segments.

The procedure DetectSpike uses the present thresholds for

the angles of climb, flat, and decline spike segments, i.e., α,

γ, β and returns the leftmost spike that clears the thresholds.

In the current implementation, α = β = 60° and γ = 5°. In

other words, in the current implementation of the algorithm,

the up-down spikes whose climb or decline angles are less

than 60° are filtered out, and flat segments are detected so

long as consecutive wave coefficients fluctuate within ±5° of

0°.

The algorithm is greedy in that it always returns exactly

1. LPoints = [];

2. RPoints = [];

3. LSpike = NULL;

4. RSpike = NULL;

5. procedure GreedyHaarSpiker(ROI, sr, er, delta) {

6. FOR(r = er; r <= sr; r += delta)

7. LLine = getLeftScanLine(ROI, r, LSpike);

8. RLine = getRightScanLine(ROI, r, RSpike);

9. LHWT = ordered1DHWT(LLine);

10. RHWT = ordered1DHWT(RLine);

11. LSpike = DetectSpike(LHWT);

12. RSpike = DetectSpike(RHWT);

13. IF LSpike != NULL

14. THEN add mid point of LSpike’s climb to LPoints;

15. IF RSpike != NULL

16. THEN add mid point of RSpike’s climb to RPoints;

17. ENDFOR

1. procedure DetectLanes(Img)

2. ROI = cropROI(Img);

3. convertToGrayscale(ROI);

4. gaussianBlur(ROI);

5. thresholdOTSU(ROI);

6. GreedyHaarSpiker(ROI);

7. fitLine(ROI, LPoints);

8. fitLine(ROI, RPoints);

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

one leftmost spike in each left scanline and exactly one

leftmost spike in each right scanline. All other spikes are

ignored. If no spikes clear the angle thresholds, the value of

NULL is returned.

When the GreedyHaarSpiker procedure finishes running,

the lists LPoints and RPoints contain (x, y) tuples

representing the mid points of the climb segments of spikes

detected in the left and right scanlines in each of the selected

rows. The procedure fitLine called in lines 7 and 8 takes

these points and fits lines through them. Currently, no

standard polynomial fitting procedure, like linear regression,

is used. Instead, to make the line fitting faster, the procedure

connects two points, a lower point and an upper point, by

considering them the end points of a triangle’s hypotenuse

and connecting them so long as the absolute value of the

inclination angle of the hypotenuse is within 15° of 35°. Fig.

10a shows the two lines fit through the points in LLanes and

RLanes detected in the original image in Fig. 8. In Fig. 10b,

the ROI, the scanlines, and the detected spikes are explicitly

shown.

(a)

(b)

Fig. 10. (a) Two lanes drawn in the original image in Fig. 8; (b) the

white rectangular ROI, scanlines, spikes, and lanes drawn on the

original image.

V. EXPERIMENTS

The images for the experiments were captured by the

hardware shown in Figures 3 – 5 installed inside a Jeep

Wrangler. The car was driven on two different days in

September and November 2016 at a speed of 60 miles per

hour on a two-lane Northern Utah highway. Each drive was

approximately 35 miles long. A sample of one thousand 360

x 240 PNG images was selected from the captured video.

The evaluation of the algorithm was done manually by the

authors. The authors visually compared the lane lines drawn

in the image by the algorithm and the actual lines. The

images were placed into one of three accuracy categories:

both lanes detected, at least one lane detected, and no lanes

detected. An actual lane was considered detected if the lane

line drawn by the algorithm was exactly aligned with it.

Table I

Lane detection accuracy.

Sample Num. Images Both Lanes (%) At least 1 Lane (%)

1 1,000 67.00% 89.70%

2 1,000 47.30% 77.40%

Table I shows the accuracy results for both samples of

images. As the results in Table I indicate, in sample 1, both

lanes were accurately detected in 67% of the frames and at

least one lane was detected in 89.70% of the images. The

detection results on the second sample of 1,000 images were

lower. Both lanes were detected in 47.30% of the images

and at least one lane was detected in 77.40% of the images,

which indicates bad weather had a negative impact on the

algorithm’s accuracy.

Fig. 11. Two false positives.

Fig. 11 illustrates two common problems that had a

negative impact on the algorithm’s accuracy. Both the left

and the right lanes are detected inaccurately. The left lane, a

small bright green line in Fig. 11, is accurately aligned with

a real road lane. The problem is that it is a wrong lane. This

misalignment shows a problem with the greedy approach in

that the algorithm always chooses the leftmost spike in each

scanline. The red line, drawn above and almost

perpendicular to the bright green line, is a false positive.

We are currently implementing improvements to

overcome both problems. The first improvement is to use

not just the climb segment of each detected spike but also

the flat and decline segments when computing the 2D points

of a potential line either on the left or on the right. The

second improvement is to use a standard polynomial curve

fitting algorithm, such as linear regression, to find the best

line that fits a set of points. A potential drop in the number

of frames processed per second may be compensated by

more accurate line detection. The third improvement is to

use simple geometrical constraints to filter out invalid

matches like the right lane false positive in Fig. 11. For

example, one possible constraint can be that the left and

right lane lines may not intersect within the region of

interest.

While algorithms’ accuracy is important, it should be

pointed out that the algorithm was implemented in Python

2.7.9 with OpenCV 3.0 on a RPi 3 Model B with an ARMv8

processor and 1GB of RAM. The current implementation of

the algorithm processes 20 frames per second. Thus, there is

sufficient potential to add more sophisticated algorithms,

e.g., polynomial curve fitting, without sacrificing the real

time performance of the algorithm.

VI. CONCLUSION

An algorithm, called GreedyHaarSpiker, was presented for

in situ real time vision-based lane detection on a RPi

computer coupled to a Raspberry Pi Camera board. The

system’s hardware can be placed inside a car, next to the

windshield, and be powered through a regular 12V-to-5V

car charger. Since the algorithm can operate on low voltage

devices with smaller RAMs, it is more suitable for

ecologically sustainable computing. The hardware and

software components of the presented algorithm can be

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

replicated with off-the-shelf hardware components and open

source software.

The algorithm is based on the detection of 1D Haar

Wavelet spikes in 1D Ordered Haar Wavelet Transforms of

image rows. The algorithm is currently implemented in

Python 2.7.9 with OpenCV 3. The performance of the

algorithm was tested in situ on a Raspberry Pi 3 Model B

ARMv8 1GB RAM computer on two image samples, each

of which consisted of one thousand 360 x 240 PNG images.

The images were captured by a Raspberry Pi Camera Board

v2 placed inside a Jeep Wrangler driven by the first author

on two different days at a speed of 60 miles per hour on a

Northern Utah highway. On the first sample, the accuracies

of detecting both lanes and at least one lane were 67% and

89.70%, respectively; on the second sample, the accuracies

of detecting both lanes and at least one lane were 47.30%

and 77.40%, respectively. The current implementation

processes 20 frames per second.

REFERENCES

[1] S. Thrun. “Toward robotic cars.” Communications of the ACM, vol.

53, no. 4, pp. 99–106, 2010, doi:10.1145/1721654.1721679.

[2] J. Dokic, B. Müller, G. Meyer. European roadmap smart systems for

automated driving. Berlin, Germany: European Technology Platform

on Smart Systems Integration, 2015.

[3] T. Simonite. “Data shows Google's robot cars are smoother, safer

drivers than you or I.” MIT Technology Review, Oct. 2013.

[4] G. Nelson. “Tesla beams down 'autopilot' mode to Model S.”

Automotive News. Oct. 14, 2015.

[5] C. Mui. “Will the google car force a choice between lives and jobs?”

Forbes, Dec. 2013.

[6] T. Lassa. “The beginning of the end of driving.” Motor Trend, Jan.

2013.

[7] O. Miller. “Robotic cars and their new crime paradigms.” LinkedIn

Pulse, Sept. 3, 2014.

[8] M. Ufberg. “Whoops: The self-driving tesla may make us love urban

sprawl again.” Wired, Oct. 10, 2015.

[9] D. Yadron, D. Tynan. (2016-07-01). “Tesla driver dies in first fatal

crash while using autopilot mode.” The Guardian, Jul. 1, 2016.

[10] V. Mathur. “Google autonomous car experiences another crash.”

Government Technology. 17 Jul. 2015.

[11] J. Boeglin. “The costs of self-driving cars: reconciling freedom and

privacy with tort liability in autonomous vehicle regulation.” Yale

Journal of Law and Technology, vol. 17, iss. 1, article 4, 2015.

[12] Y. Wang, E. Teoha, D. Shen. “Lane detection and tracking using B-

Snake.” Image and Vision Computing, vol. 22, pp. 269–280, 2008.

[13] Z. Kim. “Robust lane detection and tracking in challenging

scenarios.” IEEE Trans. on Intelligent Transportation Systems, vol.

9, no. 1, pp. 16 – 26, Mar. 2008.

[14] P. Hsiao, C. Yeh, S. Huang, L. Fu. “A portable vision-based real-time

lane departure warning system: day and night.” IEEE Trans. on

Vehicular Technology, vol. 58, no. 4, pp. 2089 – 2094, May 2009.

[15] J. Eriksson, J. Landberg. Lane departure warning and object

detection through sensor fusion of cellphone data. Master's thesis in

Applied Physics and Complex Adaptive Systems. Department of

Applied Mechanics, Chalmers University of Technology. Göteborg,

Sweden 2015.

[16] P. Mandlik, A. Deshmukh. “Raspberry-pi based real time lane

departure warning system using image processing.” International

Journal of Engineering Research and Technology, vol. 5, issue 06,

June-2016, pp. 755 – 762.

[17] R. Laganiere. OpenCV 2 Computer Vision Application Programming

Cookbook. Packt Publishing LTD, 2011.

[18] J.F. Canny. “A Computational approach to edge detection.” IEEE

Trans. on Pat. Anal. And Mach. Intel., vol. 8, pp. 679-698, 1986.

[19] R. O. Duda, P. E. Hart. “Use of the Hough transformation to detect

lines and curves in pictures.” Comm. ACM, vol. 15, pp. 11–15, Jan.

1972.

[20] A. Jensen, A. Cour-Harbo. Ripples in mathematics: the discrete

wavelet transform. New York: Springer, 2001.

[21] Y. Nievergelt. Wavelets made easy. Boston: Birkhäser, 2001.

[22] S. Mallat, W. Hwang. “Singularity detection and processing with

wavelets.” IEEE Trans. on Information Theory, vol. 38, no. 2, Mar.

1992, pp. 617-643.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol I,
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-3-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017

