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Abstract—Many physics problems can only be studied by
coupling various numerical codes, each modeling a subaspect
of the physics problem that is addressed. Often, each of these
codes needs to be considered as a black box, either because the
codes were written by different programmers, are proprietary
software or are legacy code that can only be modified with
major effort.
Running these black boxes one after another, until convergence
is reached, is a standard solution technique. It is easy to
implement but comes at the cost of slow or even conditional
convergence.
A recent interpretation of this approach as a root-finding
problem has opened the door to acceleration techniques based
on quasi-Newton methods. These quasi-Newton methods can
easily be “strapped onto” the original iterative loop without
the need to modify the underlying code and with little extra
computational cost.
In this paper we analyze the performance of ten acceleration
techniques that can be applied to accelerate the convergence
of a non-linear Gauss-Seidel iteration, on three different multi-
physics problems. The methods range from the very well known
Broyden method to the arcane Eirola-Nevanlinna method. A
switching strategy that was mooted a number of years ago for
Broyden’s method, and was claimed to give promising results,
but then fell by the wayside, is also considered. For the first
time, this idea has been generalized to a wider class of quasi-
Newton methods.

Index Terms—Partitioned methods, iterative methods, quasi-
Newton.

I. INTRODUCTION

ENGINEERING problems often take the form of the
non-linear system of equations given by

f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fn(x1, x2, . . . , xn) = 0

(1)

where x1, x2, . . . , xn can be scalars or vectors of varying
sizes.

For the problems that we are interested in, we typically
have the following characteristics [8]:
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1) Good solvers exist for each equation of the system (e.g.
in multi-physics where each equation represents one of
the physical components). For this reason each equa-
tion will be solved separately, i.e. we use a partitioned
solution method.

2) The problem has a large dimensionality, often imposing
the use of matrix-free implementations.

3) The analytic form of fi (i = 1, 2, . . . , n) is unknown,
preventing the use of Newton’s method, for instance.

4) Evaluating fi (i = 1, 2, . . . , n) is computationally
costly, preventing line-search techniques and matrix
free Newton-Krylov techniques. This also means that
the required number of evaluations (or “calls”) to reach
convergence is a good proxy of the performance of an
algorithm.

If F ′ (the Jacobian of F = (f1, . . . , fn)) satisfies the
condition

∀i < j < n : [F ′]ij = 0 (2)

then quasi-Newton (QN) acceleration can be applied to the
system (1) as follows [13].

Quasi-Newton acceleration

1. Startup:
1.1. Take initial values x12, x13, . . .x1n.
1.2. Set s = 1.

2. Loop until convergence:
2.1. Solve f1(x1, x

s
2, . . . , x

s
n) = 0 for x1,

resulting in xs+1
1 .

2.2. Solve f2(xs+1
1 , x2, . . . , x

s
n) = 0 for x2,

resulting in xs+1
2 .

. . .
2.n. Solve fn(xs+1

1 , xs+1
2 , . . . , xn) = 0 for xn.

Consider the obtained value to be H(xsn).
2.n+1. Define K by K(x) = H(x)− x

and compute an approximate Jacobian K̂ ′s of K
(see below)

2.n+2. xs+1
n = xsn − (K̂ ′s)

−1K(xsn)
2.n+3. Set s = s+ 1.

II. DIFFERENT CHOICES OF QUASI-NEWTON METHODS

The difference between the various quasi-Newton methods
that we consider here lies in the choice of K̂ ′s.

We define δxs = xs+1
n − xsn, δKs = K(xs+1

n ) −K(xsn)
and {ıj ; j = 1, . . . , n} as the canonical (orthonormal) basis
for Rn×1.
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1) Non-Linear Gauss-Seidel1 (GS). This method is sel-
dom considered to be a quasi-Newton method, but can
take its form if we set (K̂ ′s)

−1 = −I . In essence,
it is the procedure resulting from solving the differ-
ent equations sequentially for a single variable, i.e.
xs+1
n = H(xsn).

2) Aitken’s δ2 method (Aδ2) [1]. While again seldom
seen as a quasi-Newton method, it can take its form if
we define (K̂ ′s+1)−1 = − 1

ωs
I with

ωs+1 =

− ωs
〈K(xs−1n ),K(xsn)−K(xs−1n )〉

〈K(xsn)−K(xs−1n ),K(xsn)−K(xs−1n )〉
. (3)

3) Broyden’s first (or “good”) method (BG) [2], [3], [4],
[5], [9]:

(K̂ ′s+1)−1 =

(K̂ ′s)
−1 +

(δxs − (K̂ ′s)
−1δKs)δx

T
s (K̂ ′s)

−1

〈δxs, (K̂ ′s)−1δKs〉
. (4)

4) Broyden’s second (or “bad”) method (BB) [2], [5], [9]:

(K̂ ′s+1)−1 =

(K̂ ′s)
−1 +

(δxs − (K̂ ′s)
−1δKs)δK

T
s

〈δKs, δKs〉
. (5)

5) Switched Broyden method (BS)[15] . This is a method
where at each iteration a choice is made between BG
and BB as follows. If

|δxTs δxs−1|
|δxTs (K̂ ′s)

−1δKs|
<
|δKT

s δKs−1|
δKT

s δKs
(6)

then (4) is used, otherwise (5) is used.
6) Column-Updating Method (CU) [10], [16], [18], [19]:

(K̂ ′s+1)−1 =

(K̂ ′s)
−1 +

(δxs − (K̂ ′s)
−1δKs)ı

T
jK,s

(K̂ ′s)
−1

〈ıjK,s
, (K̂ ′s)

−1δKs〉
(7)

where ıjK,s
is chosen such that

jK,s = Argmax{|〈ıj , δxs〉|; j = 1, . . . , n}.

7) Inverse Column-Updating Method (ICU) [14], [17]:

(K̂ ′s+1)−1 =

(K̂ ′s)
−1 +

(δxs − (K̂ ′s)
−1δKs)ı

T
jM,s

〈ıjM,s
, δKs〉

, (8)

where ıjM,s
is chosen such that

jM,s = Argmax{|〈ıj , δKs〉|; j = 1, . . . , n}.

8) Switched (Inverse) Column-Updating Method (CUS).
As far as the authors are aware the idea behind BS
has not been applied to CU and ICU, even though it is

1Also called, among others, “Iterative Substructuring Method” or “Picard
iteration”; see [11] and references therein.

straightforward. As for BS, we use the condition (6) at
every iteration. When it is satisfied, then CU (equation
(7)) is used, otherwise ICU (equation (8)).

It is clear from the different update formulas for the
approximate Jacobian of BG, BB, BS, CU, ICU and CUS that
they can only be applied starting with K̂ ′2. In other words,
K̂ ′1 needs to be chosen. Conventionally, this is set to be equal
to −I . Likewise, for Aδ2, ω1 needs to be chosen and is set
to 1. As a result all of the methods given above will have an
identical first iteration, i.e. x2n = H(x1n).
The Eirola-Nevanlinna methods that we present now are
different in this respect as they compute K̂ ′1 based on an
implicit choice of K̂ ′0. Again we will set these to be equal
to −I , which can also be interpreted as setting the initial
approximation of the Jacobian of H as zero.

9) Eirola-Nevanlinna Type I method (EN1) [7] :

(K̂ ′s)
−1 =

(K̂ ′s−1)−1 + (ps − (K̂ ′s−1)−1qs)
pTs (K̂ ′s−1)−1

〈ps, (K̂ ′s−1)−1qs〉
, (9)

where ps = −(K̂ ′s−1)−1K(xsn),
qs = K(xsn + ps)−K(xsn)

10) Eirola-Nevanlinna Type II method (EN2) [8]:

(K̂ ′s)
−1 = (K̂ ′s−1)−1 + (ps − (K̂ ′s−1)−1qs)

qTs
〈qs, qs〉

, (10)

where ps and qs are defined as in the EN1 method.
11) Switched Eirola-Nevanlinna method (ENS). As far as

the authors are aware the idea behind BS has not
been applied to EN1 and EN2, even though it is
straightforward. As for BS, we use the condition (6) at
every iteration. When it is satisfied, then EN1 (equation
(9)) is used, otherwise EN2 (equation (10)).

Note that the EN algorithms require two calls of K (or
H) per iteration.

III. TEST-CASES

A. Simplified model of plasma heating by radio frequency
waves in a tokamak plasma

The model is a simplified version of the set of codes
commonly used to describe the steady state of plasma heating
by radio frequency waves in a tokamak plasma. It consists of
a wave equation as well as a Fokker-Planck velocity space
diffusion and a radial energy diffusion model. While simple,
it still has all the characteristics needed to validate our ideas:

1) The model captures enough of the real physics to be
representative for more elaborate models.

2) It is a legacy code which has been (partly) developed
by third-party code-writers.

3) The runtime of a fixed-point iteration with this code
is sufficiently high so that the extra runtime of most
of the standard acceleration techniques can safely be
neglected.

As one of the main objectives of using this code is to gain
insights in how legacy codes can be improved by adding
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a quasi-Newton step as a “wrapper”, we will abstain from
altering any part of the code previously used in [12]. This
means that we also keep the input and output variables as
they were defined previously.
In an abstract form the governing equations can be written
as:


f1(y1, y2, y3, y4, y5, y6, y7) = 0

f2(y1, y2, y3, y4, y6, y8, y9, y10) = 0

f3(y1, y2, y3, y5, y6, y7, y8, y9, y10) = 0,

(11)

where
• f1 = simplified 1-component wave equation for the fast

magneto-sonic wave launched from the antenna and
damped inside the plasma,

• f2 = simplified isotropic Fokker-Planck equation study-
ing the impact of the absorbed wave power on the
distribution functions of the minority species,

• f3 = simplified 1D diffusion equation describing the
transport of energy across magnetic surfaces, establish-
ing a temperature profile consistent with the absorbed
power,

and
• y1, resp. y2 and y3 = temperature profile of the majority

ions, resp. minority ions and electrons, specified at a set
of grid points;

• y4 = effective temperature (average energy) of the
minority ions;

• y5, resp. y6 and y7 = direct power density profile of the
fast wave damping onto the majority ions, resp. minority
ions and electrons;

• y8, resp. y9 and y10 = Coulomb collisionally redis-
tributed minority power density fraction profile onto the
majority ions, resp. minority ions and electrons.

As the system in (11) does not satisfy condition (2),
variables need to be grouped, as explained in [13]. The
minimum grouping to respect the condition (and to keep the
sequence of the different solvers, which are hardwired in
the legacy code) is (y1, y2, y3, y4), which will play the role
of xn = x3 in the quasi-Newton algorithm. A convergence
criterium of ‖x

s+1
n −xs

n‖
‖xs

n‖
≤ 10−7 is used.

The results are shown in tables I–III for various values
of launched power and diffusion coefficient κ. The QN
methods clearly outperform G-S and Aitken’s method. Of the
three groups of QN methods (Broyden, Column Updating,
Eirola-Nevanlinna), the Broyden methods most often give the
best results, even though, for some parameter combinations,
Column Updating has a slight edge. While not equivocally
so, the switching strategy often (slightly) improves the con-
vergence speed of the underlying methods.

B. 1D flexible tube

This test-case describes one-dimensional unsteady flow
in a flexible tube of length L.
The fluid is incompressible and inviscid and gravity is
neglected. The governing equations are the conservation of
mass and momentum (in conservative form).

TABLE I: Simplified tokamak model. Number of function
calls (of H) needed to reach convergence for various values
of the diffusion coefficient κ and different iterative methods.
Launched power = 2MW. “div” = divergence or no conver-
gence after 100 iterations. The top performing method for
each setting is highlighted in bold.

κ(·10−2) 3.5 4.0 4.5 5.0 7.5 10 25 50 75 100

G-S div div 95 88 67 55 30 19 14 14

Aδ2 63 52 52 49 48 33 24 17 14 15

BG div 33 30 29 28 23 18 14 13 12

BB 30 30 29 30 28 23 18 14 13 12

BS 31 div 28 25 26 21 18 14 13 12

CU 37 div div 37 32 22 17 12 13 12

ICU 34 36 33 32 30 24 18 14 14 12

CUS 33 38 28 29 30 23 18 14 13 12

EN1 32 34 40 30 30 24 22 16 16 16

EN2 34 36 34 34 32 26 22 16 16 16

ENS div div 34 38 30 24 20 16 16 16

TABLE II: Simplified tokamak model. Number of function
calls (of H) needed to reach convergence for various values
of the diffusion coefficient κ and different iterative methods.
Launched power = 5MW. “div” = divergence or no conver-
gence after 100 iterations. The top performing method for
each setting is highlighted in bold.

κ(·10−2) 7.5 10 25 50 75 100

G-S 67 52 28 19 16 15

Aδ2 39 36 23 19 16 16

BG 26 24 19 17 14 13

BB 25 24 20 17 14 13

BS 24 23 19 17 15 13

CU 36 div 21 17 14 12

ICU 27 30 21 18 15 14

CUS 26 27 21 17 14 14

EN1 28 28 24 20 16 16

EN2 28 28 24 20 16 16

ENS 30 32 24 18 16 16

TABLE III: Simplified tokamak model. Number of function
calls (of H) needed to reach convergence for various values
of the diffusion coefficient κ and different iterative methods.
Launched power = 8MW. The top performing method for
each setting is highlighted in bold.

κ(·10−2) 10 25 50 75 100 125

G-S 54 29 22 17 15 16

Aδ2 35 25 24 17 16 16

BG 25 20 19 15 13 13

BB 24 20 19 15 14 13

BS 24 21 16 15 14 15

CU 26 22 20 15 14 14

ICU 26 22 17 16 14 14

CUS 27 16 20 16 14 13

EN1 28 24 24 18 16 16

EN2 28 24 22 18 16 16

ENS 28 24 22 18 16 16
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The velocity at the inlet of the tube is imposed as

u(t) = uo +
uo
10

sin2 (πt) , (12)

where uo is a reference velocity and t is time.
A non-reflecting boundary condition is prescribed at the
outlet.
The resulting flow equations are discretized on a one-
dimensional equidistant mesh with 1001 cells. The fluid
velocity and pressure are stored in the mesh nodes. Central
discretization of all terms in the continuity and momentum
equations is used, except for the convective term in the
momentum equation which is discretized with a first-order
upwind scheme. The time discretization scheme is backward
Euler.

The elastic wall of the tube has a Hookean constitutive
law where the cross-sectional area is only a function
of the local kinematic pressure and its mass/inertia is
neglected with regards to that of the fluid. The geometrical
discretization of the elastic problem is identical to that of
the flow problem to avoid errors in the data transfer between
the fluid and the structure. More details can be found in [11].

For this test-case solving f1(x1, x2) = 0 for x1 represents
a call of the structural solver and solving f2(x1, x2) = 0
for x2 a call of the flow solver, with x1 being the variable
describing the geometry and x2 the variable describing the
flow variables. Here we only consider pressure, which is
exchanged between the flow and the structural solver; the
velocity is an internal variable to the flow problem.

At each time step a convergence criterion of ‖K(xsn)‖ ≤
10−8 is used. At the beginning of a new time step the initial
approximate Jacobian is set equal to the last approximation
at the previous time step or, alternatively, re-set to −I at
the beginning of each new time step. Whenever the current
approximation of the Jacobian is −I , under-relaxation is
applied with a factor σ. The results are shown in tables IV–V
for various values of the dimensionless structural stiffness κ
and the dimensionless time step τ .

The QN methods clearly outperform G-S and Aitken’s
method. Of the three groups of QN methods (Broyden,
Column Updating, Eirola-Nevanlinna), the Broyden methods
give the best results. Within the Broyden class, Broyden’s
“good” method has the fastest convergence, with little to be
gained from the switching strategy.
This example also clearly shows the benefits of re-using the
Jacobian of the previous time step, which for the harder
parameter combinations can result in a reduction of the
number of iterations that are required for convergence up to
75%. A notable exception is the ENS algorithm, for reasons
that are not yet fully understood.

C. 2D flexible beam

The selected test case is a fluid-structure interaction prob-
lem consisting of flow around a fixed cylinder with an
attached flexible beam. The beam undergoes large deforma-
tions induced by oscillating vortices formed by flow around
the circular bluff body. The problem was first proposed by
Turek et al. [20], and has received substantial numerical

TABLE IV: 1D flexible tube. Number of function calls (of
H) needed to reach convergence (averaged over ten time
steps) for various values of the dimensionless structural
stiffness κ and the dimensionless time step τ when the
Jacobian at the end of the iterations within a time step is
carried over to the beginning of the new time step. “div” =
divergence or no convergence after 100 iterations. The top
performing method for each setting is highlighted in bold.

κ 103 103 103 103 102 102

τ 10−1 10−2 10−3 10−4 10−1 10−2

σ 10−2 10−2 10−2 10−3 10−2 10−2

G-S 5.0 7.0 div div 8.0 div

Aδ2 5.8 6.0 8.2 23.9 6.8 9.0

BG 2.8 3.0 3.5 4.4 3.3 3.7

BB 2.8 3.0 3.6 5.6 3.3 3.9

BS 2.8 3.0 3.6 5.3 3.3 3.7

CUS 3.0 3.1 4.3 6.5 3.4 4.3

ICU 3.0 3.1 5.1 10.4 3.4 5.1

CUS 3.0 3.1 4.3 6.5 3.4 4.4

EN1 4.0 4.0 6.0 5.0 4.8 5.8

EN2 4.0 4.0 6.0 5.0 4.8 5.8

ENS 4.0 4.0 6.0 9.2 4.8 5.8

κ 102 102 10 10 10 10

τ 10−3 10−4 10−1 10−2 10−3 10−4

σ 10−2 10−3 10−2 10−4 10−5 10−6

G-S div div div div div div

Aδ2 18.6 div 56.5 81.0 div div

BG 4.6 9.2 4.8 5.1 9.5 div

BB 5.9 div 5.2 7.3 div div

BS 5.3 12.0 4.6 6.4 12.9 div

CUS 6.7 16.4 5.2 7.2 17.2 div

ICU 12.4 div 5.4 14.1 10.3 div

CUS 6.5 21.3 4.9 7.3 17.5 div

EN1 5.4 9.4 6.2 6.6 13.2 div

EN2 5.4 9.4 6.2 6.6 13.2 div

ENS 9.0 9.4 6.2 11.8 div div

verification. The problem layout and material properties are
provided in Figure 1(a). The problem is solved here by cou-
pling OpenFOAM [21], an open-source, finite-volume based
fluid flow solver, and Caculix [6], an open-source finite-
element based solver for the structural domain deformations.

The FSI problem consists of a 0.02m thick, 0.35m long
flexible beam, attached to a fixed cylinder with diameter of
0.1m. The cylinder center is by design constructed to be
non-symmetric to remove dependence on numerical errors to
induce the onset of deformations. A parabolic inlet boundary
condition, with mean flow velocity of Ū = 1m/s is slowly
ramped up for t < 0.5s via (1− cos (πt/2)) /2. The top,
bottom and fixed cylinder walls are defined as non-slip
boundaries. The problem is solved here using 3800 finite-
volume fluid cells, and 72 full integration, bi-quadratic finite
elements, resulting in an interface Jacobian matrix size of
n = 1119.

For this test-case f1 represents the flow solver and f2
the structural solver. At the beginning of a new time step
the initial approximate Jacobian is set equal to the last
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TABLE V: 1D flexible tube. Number of function calls (of H)
needed to reach convergence (averaged over ten time steps)
for various values of the dimensionless structural stiffness κ
and the dimensionless time step τ when the Jacobian at the
beginning of each new time step is re-set. “div” = divergence
or no convergence after 100 iterations. The top performing
method for each setting is highlighted in bold.

κ 103 103 103 103 102 102

τ 10−1 10−2 10−3 10−4 10−1 10−2

σ 10−2 10−2 10−2 10−3 10−2 10−2

G-S 5.0 7.0 div div 8.0 div

Aδ2 5.8 6.0 8.2 23.9 6.8 9.0

BG 3.0 3.0 4.9 8.7 4.0 5.0

BB 3.0 3.0 4.9 8.7 4.0 5.0

BS 3.0 3.0 4.9 8.7 4.0 5.0

CUS 3.0 4.0 5.9 10.5 4.2 6.0

ICU 3.0 4.0 5.9 12.1 4.2 6.0

CUS 3.0 4.0 5.9 10.4 4.2 6.0

EN1 4.0 4.0 6.0 9.8 6.0 6.0

EN2 4.0 4.0 6.0 9.8 6.0 6.0

ENS 4.0 4.0 6.0 9.8 6.0 6.0

κ 102 102 10 10 10 10

τ 10−3 10−4 10−1 10−2 10−3 10−4

σ 10−2 10−3 10−2 10−4 10−5 10−6

G-S div div div div div div

Aδ2 18.6 div 56.5 81.0 div div

BG 9.0 35.5 5.5 9.7 37.3 div

BB 9.0 div 5.5 11.1 div div

BS 9.0 35.0 5.5 9.7 37.1 div

CUS 11.0 39.2 6.3 11.5 51.3 div

ICU 13.2 div 6.2 14.7 div div

CUS 11.1 39.9 6.3 11.5 57.5 div

EN1 10.2 39.0 7.4 10.6 div div

EN2 10.2 39.0 7.4 10.6 div div

ENS 10.4 39.0 7.4 11.0 div div

approximation at the previous time step or, alternatively, re-
set to −I at the beginning of each new time step.

We investigate three different settings, namely for a com-
paratively large time step size of ∆t = 0.01s for two different
convergence criteria of ε =

‖K(xs
n)‖√
n

= 10−5 and ε = 10−8

in order to gain some insight into the convergence behavior
of the various QN methods as well as for a small time step
size of ∆t = 0.001s for ε = 10−8.

The beam tip displacement for both time step sizes over
the full simulation window is shown in Figure 1(b) with
a snapshot of the beam displacement at 8.7s shown in
Figure 1(c). The convergence behavior for the various QN
methods is summarized in Table VI and VII. Overall, when
the Jacobian is carried over to the new time-step, switched
Broyden outperforms all the QN methods across all three
settings, with the switched strategies providing improved
performance for both the conventional EN and CU methods.
When the Jacobian is re-set at each time-step, the appeal
of the switched strategies diminishes for each class of
QN methods. Nevertheless, the group of Broyden methods
remains the best performing.

(a)

(b)

(c)

Fig. 1: (a) Flexible beam problem description, (b) beam tip
displacement over the 10s simulation window, and (c) beam
displacement and pressure contours at 8.7 seconds.

TABLE VI: 2D flexible beam. Number of iterations to reach
convergence, averaged over the number of time steps, for the
flexible tail benchmark problem for the various QN methods.
The Jacobian at the end of the iterations within a time step
is carried over to the beginning of the new time step. Failure
to converge is indicated by “div” where the time step at
which failure occurred is indicated in brackets, and the top
performing method for each setting is highlighted in bold.

∆t = 0.01, ∆t = 0.01, ∆t = 0.001,
ε = 10−5 ε = 10−8 ε = 10−8

GS div(1) div(1) div(1)
Aδ2 6.263 14.995 -(10)
BG 2.938 4.017 4.407
BB 3.039 4.250 4.480
BS 2.906 3.983 4.024
CU 3.342 5.264 -(1581)
ICU 3.108 5.391 8.388
CUS 2.975 4.836 6.025
EN1 3.192 4.614 5.443
EN2 3.147 4.543 5.854
ENS 3.137 4.535 4.920

IV. CONCLUSION

We have tested a wide variety of acceleration techniques
on three different multi-physics problems that are written as
a fixed-point problem. While the choice of the best method
remains problem dependent, it is clear that the best choice
is the class of quasi-Newton methods, of which, more often
than not, the tried and trusted Broyden method comes out
on top.
Re-using the Jacobian of all the QN methods at the beginning
of the iterations of the next time step results in important
reductions in the required number of iterations. With a few
exceptions, a switching strategy, that hasn’t drawn much
attention in the past, is shown to offer a slight boost of perfor-
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TABLE VII: 2D flexible beam. Number of iterations to reach
convergence, averaged over the number of time steps, for the
flexible tail benchmark problem for the various QN methods.
The Jacobian at the beginning of each new time step is re-set
to −I . Failure to converge is indicated by “div” where the
time step at which failure occurred is indicated in brackets,
and the top performing method for each setting is highlighted
in bold.

∆t = 0.01, ∆t = 0.01, ∆t = 0.001,
ε = 10−5 ε = 10−8 ε = 10−8

GS div(8) div(1) div(1)
Aδ2 4.504 11.459 -(5)
BG 4.170 6.617 6.872
BB 3.879 6.518 7.369
BS 4.196 6.611 6.920
CU 4.499 7.165 8.295
ICU 4.323 7.042 9.158
CUS 4.500 7.168 8.275
EN1 4.879 7.605 8.793
EN2 7.632 7.583 8.448
ENS 4.879 7.605 8.795

mance in exchange for a negligeable penalty in complexity.
The class of Eirola-Nevanlinna methods, which are among
the lesser known QN methods, have not shown their worth,
and in the authors’ opinion do not seem to warrant the
complexity that they entail.
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M. Schäfer, Michael, Series “Modelling, Simulation, Optimisation” Vol.
53, Springer Berlin Heidelberg, ISSN 1439-7358, pp. 371–385 (2006)

[21] H. Weller, OpenFOAM: The Open Source CFD Toolbox User Guide,
Version 2.1.0, (2010), http://openfoam.com/

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017




