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Abstract—This paper considers new downside risk-aversion
models for linear optimization (linear programming) with
discrete fuzzy random variables. Through new downside risk
measures for fuzzy stochastic optimization problems, possibilis-
tic low partial moment (PLPM) models are constructed by
incorporating possibility and necessity measures into classical
low partial moment. To provide practical models, the case
of linear membership functions is focused on. It is shown
that the problems involving both fuzziness and randomness
are transformed into deterministic polynomial optimization
problems.

Index Terms—Linear programming, fuzzy random variable,
downside risk measure, possibilistic lower partial moment,
polynomial optimization problem

I. INTRODUCTION

Simultaneous consideration of fuzziness and randomness
is highly important in modeling decision making problems,
because decision making by humans in stochastic environ-
ments is intrinsically based not only on randomness but also
on fuzziness. One of traditional tools for taking into consid-
eration uncertainty of parameters involved in mathematical
optimization problems is stochastic programming [2]. On the
other hand, to deal with human judgments and/or knowledge
in decision making, fuzzy optimization frameworks involving
fuzzy programming [38] and possibilistic programming [8]
have been developed based on fuzzy-set theory [36] and
possibility theory [3], respectively.

In the last decade, mathematical optimization models in
decision making which take into consideration both fuzziness
and randomness have considerably drawn attentions in the
research fields such as linear programming [1], [13], [18],
[20], [35], integer programming [17], transportation [6],
facility layout [32], network optimization [14], [10] and
portfolio selection [16].

Previous studies on fuzzy random linear programming
problems have mainly focused on the case where the co-
efficients of the objective function and the constraints are
expressed by continuous fuzzy random variables. Linear
programming problems with discrete fuzzy random variables
[12], [17] have not fully been discussed so far. This is the
motivation of this article.

In this paper, we provide new downside risk measures
for fuzzy random optimization, which are constructed by
incorporating possibility theory into classical low partial
moment (LPM). We formulate new downside risk-aversion
models, called possibilistic low partial moment models, for
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linear programming (linear optimization) problems with dis-
crete fuzzy random variable. It is shown that the formulated
problems based on the newly proposed risk measures are
transformed into polynomial optimization problem [26].

II. PRELIMINARIES

Fuzzy random programming, which means mathematical
programming in which fuzzy random variables are involved,
has been developed as one of the most well-known and
popular techniques for fuzzy stochastic optimization in de-
cision making. From mathematical viewpoints, there are
mainly two definitions of fuzzy random variables. A fuzzy
random variable was firstly defined by Kwakernaak [24]
in 1978 as random variables whose realized values for
given events are not real but fuzzy numbers. Kruse [23]
provided some expanded concepts of the model similar to
the fuzzy random variable defined by Kwakernaak. Puri and
Ralescu [33] defined fuzzy random variables as random fuzzy
sets and developed a mathematical basis of fuzzy random
variables [22]. Overviews of fuzzy random variables were
also presented in some articles [5], [34].

We introduce a general definition of fuzzy random vari-
ables, which is based on previous works [4], [23], [24]:

Definition 1: (Fuzzy random variable)
Let (Ω,F , P ) be a probability space and F (R) denote the
set of all fuzzy numbers in R, where F (R) denotes a class of
normal convex fuzzy subsets of R having compact α level
set for α ∈ [0, 1]. A fuzzy random variable is a mapping
˜̄A : Ω→ F (R) such that for any α ∈ [0, 1] and all ω ∈ Ω,

the real-valued mapping

inf ˜̄Aα : Ω→ R, satisfying inf Ãα(ω) = inf(Ã(ω))α

and

sup ˜̄Aα : Ω→ R, satisfying sup Ãα(ω) = sup(Ã(ω))α

are real-valued random variables, that is, Borel measurable
real-valued functions. (Ã(ω))α is a nonempty compact in-
terval defined by

(Ã(ω))α =

{ {x ∈ R| µÃ(ω)(x) ≥ α} if α ∈ (0, 1]

cl(supp µÃ(ω)) if α = 0,

where µÃ(ω) is the membership function of a fuzzy set Ã(ω),
and cl(supp µÃ(ω)) denotes the closure of set supp µÃ(ω),
and supp µÃ(ω) denotes a support of function µÃ(ω).

Fuzzy random optimization models were firstly developed
by Luhandjula and his research colleagues [29], [31] as
linear programming problems with fuzzy random variable
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coefficients, and further studied by other researchers [13],
[18], [27], [28], [35]. Major fuzzy stochastic programming
models were discussed in the survey paper [30].

For the purpose of applying fuzzy random variables to
decision making problems, Katagiri et al. [13], [14], [15],
[16], [19], [18] introduced some special types of fuzzy
random variables. To systematically discuss these papers
from the viewpoint of the types of fuzzy random variables,
we define an L-R fuzzy random variable as follows:

Definition 2: (L-R fuzzy random variable)
Let d̄, β̄ and γ̄ be random variables of which realization

for a given event ω ∈ Ω are d(ω), β(ω) and γ(ω), respec-
tively, where Ω is a sample space, and β(ω) and γ(ω) are
positive constants for any ω ∈ Ω. Then, a fuzzy random
variable ˜̄F is said to be an L-R fuzzy random variable,
denoted by (d̄, β̄, γ̄)LR, if its realized values F̃ (ω) =
(d(ω), β(ω), γ(ω))LR for any event ω ∈ Ω are L-R fuzzy
numbers defined as

µF̃ (ω)(τ) =


L

(
d(ω)− τ
β(ω)

)
if τ ≤ d(ω)

R

(
τ − d(ω)

γ(ω)

)
if τ > d(ω).

(1)

L-R fuzzy random variables were introduced to decision
making problems such as a portfolio selection problem [16],
a linear programming problem [15] and a multi-objective
programming problem [13], [18]. As a special type of L-
R fuzzy random variables, an L fuzzy random variable can
be considered when L = R holds, which means that the
left-hand and the right-hand sides of reference functions
are the same. L fuzzy random variables were considered in
network optimization problems such as bottleneck minimum
spanning tree problems [9], [14]. The L fuzzy random
variable is closely related to a so-called “hybrid number”
which was originally introduced by [21]. When L(t) =
R(t) = max{0, 1−|t|} in Definition 2, we call such an L-R
fuzzy random variable a triangular fuzzy random variable.
Triangular fuzzy random variables were introduced in the
previous study on a multi-objective linear programming
problem [19], where spread parameters β̄ and γ̄ are not
random variables but constant values.

III. DISCRETE FUZZY RANDOM VARIABLE

The concept of discrete fuzzy random variable was origi-
nally defined by Kwakernaak [25]. In this paper, we provide
the definition of discrete fuzzy random variable as follows:

Definition 3: (Discrete fuzzy random variable)
Let Ω be a set of events such that the occurrence probability

of each event ωk ∈ Ω is pk and that
∑
k pk = 1. Let F̃k be a

fuzzy set characterized by a membership function µF̃k
, and

let F be a set of Fk, ∀k ∈ K, where K is an index set of
k. Let ˜̄F be a mapping from Ω to F such that ˜̄F (ωk)

4
= F̃k.

Then, a mapping ˜̄F is said to be a discrete fuzzy random
variable.

As a special type of discrete fuzzy random variables, we
call a discrete fuzzy random variable a discrete L-R fuzzy

random variable when each realization F̃k is an L-R number
in Definition 3 as follows:

µF̃k
(τ) =


L

(
dk − τ
βk

)
if τ ≤ dk

R

(
τ − dk
γk

)
if τ > dk.

(2)

In particular, when L(t) = R(t) = max{0, 1− |t|} holds
in Definition 2, we call such a discrete L-R fuzzy random
variable a discrete triangular fuzzy random variable. In other
words, a discrete triangular fuzzy random variable ˜̄F is a
discrete fuzzy random variable whose realization for each
event ωk is a triangular fuzzy number characterized by the
following membership function:

µF̃k
(τ) =


max

{
1− |dk − τ |

βk
, 0

}
if τ ≤ dk

max

{
1− |τ − dk|

γk
, 0

}
if τ > dk.

(3)

Discrete fuzzy random variables were firstly introduced in
the previous study on a linear programming problem [12],
and further discussed in a network optimization problem [11]
and a multi-objective 0-1 programming problem [17]. These
previous studies mainly focused on the decision making
models which maximize probabilistic expectation of the
possibility that the goal is attained.

To the author’s best knowledge, there are few studies
which considers downside risk-aversion models for linear
programming with discrete fuzzy random variables, although
possibilistic value-at-risk (PVaR) models [10] were con-
structed by the author and his colleagues. Some previous
studies discussed variance models [12] and expectation mod-
els [11], [17].

Under these circumstances, we propose a new downside
risk measure in fuzzy stochastic decision making envi-
ronments, called possibilistic low partial moment (PLPM),
which is an extended concept of classical low partial moment
(LPM) through the incorporation of possibility theory into
the LPM.

IV. PROBLEM FORMULATION

Assuming that the coefficients of the objective functions
are given as discrete fuzzy random variables, we consider
the following fuzzy random programming problem:

minimize ˜̄Clx, l = 1, 2, . . . , q
subject to Ax ≤ b, x ≥ 0,

}
(4)

where ˜̄Cl = ( ˜̄Cl1, . . . ,
˜̄Cln), l = 1, 2, . . . , q is an n dimen-

sional coefficient row vector of which elements are discrete
fuzzy random variables, x is an n dimensional decision
variable column vector, A is an m × n coefficient matrix,
and b is an m dimensional column vector. When the number
of objective functions equals to 1 (q = 1), then problem
(4) becomes a single-objective fuzzy random programming
problem; otherwise, when q ≥ 2, (4) is a multi-objective
fuzzy random programming problem.

In problem (4), each element ˜̄Clj of the coefficient vector
˜̄Cl = ( ˜̄Cl1, . . . ,

˜̄Cln), l = 1, 2, . . . , q in (4) is a discrete
triangular fuzzy random variable whose realization is a trian-
gular fuzzy number C̃ljk = (dljk, βljk, γljk)tri for ωlk ∈ Ωl,

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



l = 1, 2, . . . , q, j = 1, 2, . . . , n, k = 1, 2, . . . , rl, where an
event ωlk occurs at probability plk and

∑
k plk = 1. The

membership function of C̃ljk is given as follows:

µC̃ljk
(τ) =


max

{
1− |dljk − τ |

βljk
, 0

}
if τ ≤ dljk

max

{
1− |τ − dljk|

γljk
, 0

}
if τ > dljk.

(5)

Then, by applying the Zadeh’s extension principle [36],
the realized value of each objective function ˜̄Clx for a given
event ωlk which occurs at probability plk is calculated as a
single triangular fuzzy number (dlkx,βlkx,γlkx)tri, l =
1, 2, . . . , q, k = 1, 2, . . . , rl, which is characterized by

µ ˜Clkx
(υ) =


max

{
1− |dlkx− υ|

βlkx
, 0

}
if υ ≤ dlkx

max

{
1− |υ − dlkx|

γlkx
, 0

}
if υ > dlkx.

(6)
Figures 1 and 2 show the membership functions of C̃ljk

and C̃lkx.

Fig. 1. Membership function µC̃ljk
of the realized value C̃ljk for the kth

event of a discrete triangular fuzzy random variable ˜̄Clj

Fig. 2. Membership function µ
C̃lkx

of the realized value C̃lkx for the

kth event of a discrete triangular fuzzy random variable ˜̄Clx

In decision making situations where the objective function
is to be minimized, decision makers (DMs) often have
fuzzy goals such as “the objective function value C̃lkx is
substantially less than or equal to a certain value fl,” which
is expressed by ˜̄Clkx

<∼ fl, where <∼ denotes “substantially
less than or equal to.” Let µG̃l

be a membership function of
fuzzy set G̃l such that the degree of y being substantially
less than or equal to a certain value fl is represented with
µG̃l

(y).
Here, we focus on a case where all the membership

functions of fuzzy numbers and fuzzy goals are represented

by linear membership functions which are the following
piecewise linear membership functions µG̃l

, l = 1, 2, . . . , q:

µG̃l
(y) =


0 if y > f0

l

y − f0
l

f1
l − f0

l

if f1
l ≤ y ≤ f0

l

1 if y < f1
l ,

(7)

where f0
l and f1

l are parameter values determined by a DM.
Figure 3 shows the linear membership functions of fuzzy
goal G̃l.

Fig. 3. Linear membership function µG̃l
of a fuzzy goal G̃l

One of reasonable solving processes is to maximize the
degree of possibility or necessity that the fuzzy goals G̃l are
attained. When formulated problems involve only fuzziness,
possibilistic programming [7], [8] is applicable to solving
them.

Unfortunately, however, possibilistic programming ap-
proaches cannot directly be applied to solving mathematical
programing problems with discrete fuzzy random variables.
This is because the degrees of possibility or necessity are
not constants but vary dependent on events ωlk.

Now we shall discuss how to construct optimization cri-
teria in order to solve the problems involving both fuzziness
and randomness. Assuming that a certain event ωlk has
occurred, on the basis of possibility theory [3], the degree
of possibility that C̃lkx satisfies fuzzy goal G̃ (namely, the
degree of possibility that the objective function value ˜̄Clkx,
l = 1, 2, . . . , q, k = 1, 2, . . . , rl for any event ωlk ∈ Ωl is
substantially less than or equal to a certain aspiration level
fl) is defined as

Π
(
C̃lkx

<∼ fl
)

4
= sup

y
min

{
µ ˜Clkx

(y), µG̃l
(y)
}
.

(8)
Figure 4 illustrates the degree of possibility defined by (8)

for a fixed event ωlk, which is the ordinate of the crossing
point between the membership functions of fuzzy goal G̃l
and the objective function C̃lkx.

Fig. 4. Degree of possibility Π
(
C̃lkx

<∼ fl

)
.
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The possibility measure is recommended to optimistic
DMs. Since DMs are not always optimistic in general,
we introduce an optimization criterion based on necessity
measures in order to construct an optimization criterion for
pessimistic DMs.

On the basis of possibility theory [3], the degree of neces-
sity that the objective function value ˜̄Clkx, l = 1, 2, . . . , q,
k = 1, 2, . . . , rl for any event ωlk ∈ Ωl satisfies the fuzzy
goal G̃l is defined as

N
(
C̃lkx

<∼ fl
)

4
= inf

y
max

{
1− µ ˜Clkx

(y), µG̃l
(y)
}
.

(9)
Figure 5 illustrates the degrees of necessity defined by

(9), which is the ordinate of the crossing point between the
membership functions of fuzzy goal G̃l and the upside-down
of the membership function of the objective function C̃lkx.

Fig. 5. Degree of necessity N
(
C̃lkx

<∼ fl

)
.

By using plk which is the probability that an event wlk oc-
curs, the optimization criterion, the probabilistic expectations
of possibility and necessity are defined as follows:

E
[
Π
(

˜̄Clx
<∼ fl

)]
4
=

rl∑
k=1

plk ·Π
(
C̃lkx

<∼ fl
)

(10)

E
[
N
(

˜̄Clx
<∼ fl

)]
4
=

rl∑
k=1

plk ·N
(
C̃lkx

<∼ fl
)

(11)

where E[·] denotes a probabilistic expectation.
Optimization criteria defined as (10) and (11) take into

consideration both fuzziness and randomness involved in
the coefficients of the mathematical programming problem.
Some previous papers [11], [17] addressed optimization
problems based on these criteria. A variance minimization
model for linear programming problems with discrete fuzzy
random variables [12] was also proposed, but those with
downside risk measures have not been considered so far.

V. POSSIBILISTIC LPM MODELS FOR DOWNSIDE
RISK-AVERSION

In this section, we propose a new downside risk measure in
fuzzy stochastic decision making environments, called pos-
sibilistic low partial moment (PLPM), which is an extended
concept of classical low partial moment (LPM) through the
incorporation of possibility theory into the LPM. As PLPM,
we propose two measures, namely, possibility low partial
moment and necessity low partial moment.

Firstly, we define the possibility low partial moment as
follows:

LPMγ

[
Π
(

˜̄Clx
<∼ fl

)]
4
=

rl∑
k=1

plk·
∣∣∣Π(C̃lkx

<∼ fl
)
− π̂l

∣∣∣γ
−
,

(12)
where |a|−

4
= max{−a, 0}, and γ is a positive integer which

represents the degrees of moment. When γ = 1, (12) means
the semi-absolute deviation of the possibility Π

(
˜̄Clx

<∼ fl
)

.
On the other hand, when γ = 2, (12) represents the semi-
variance of the possibility.

Then, we consider the following optimization problem
which minimizes the possibility lower partial moment under
the constraint of probabilistic possibility expectation:

minimize LPMγ

[
Π
(

˜̄Clx
<∼ fl

)]
, l = 1, 2, . . . , q

subject to E
[
Π
(

˜̄Clx
<∼ fl

)]
≥ π̂El , l = 1, 2, . . . , q

Ax ≤ b, x ≥ 0.


(13)

Here, we focus on the following minimax problem:

minimize max
l=1,2,...,q

LPMγ

[
Π
(

˜̄Clx
<∼ fl

)]
subject to E

[
Π
(

˜̄Clx
<∼ fl

)]
≥ π̂El , l = 1, 2, . . . , q

Ax ≤ b, x ≥ 0.


(14)

or equivalently

minimize max
l=1,2,...,q

{
rl∑
k=1

plk ·
∣∣∣Π(C̃lkx

<∼ fl
)
− π̂Gl

∣∣∣γ
−

}

subject to
rl∑
k=1

plk ·Π
(
C̃lkx

<∼ fl
)
≥ π̂El ,

l = 1, 2, . . . , q
Ax ≤ b, x ≥ 0,


(15)

where π̂Gl is a target value of the possibility, and π̂El is a
satisficing value of probabilistic expectation of possibility.
All the values of π̂Gl and π̂El are given by decision makers
as positive constants greater than or equal to 0 and less than
or equal to 1.

Now we consider the case where f1
l and f0

l are determined
by the following calculation:

f1
l = min

k
min
x∈X

n∑
j=1

rl∑
k=1

plkdljkxj

f0
l = max

k
max
x∈X

n∑
j=1

rl∑
k=1

plkdljkxj .

 (16)

Assuming that βijk is not dependent on k and that βijk
is replaced by βij , Π

(
C̃lkx

<∼ fl
)

is calculated as follows
[12]:

Π
(
C̃lkx

<∼ fl
)

4
= sup

y
min

{
µ ˜Clkx

(y), µG̃l
(y)
}

=

n∑
j=1

(βlj − dljk)xj + f0
l

n∑
j=1

βljxj − f1
l + f0

l

.

(17)
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By introducing zΠ
lk, l = 1, 2, . . . , q, k = 1, 2, . . . , rl,∣∣∣Π(C̃lkx

<∼ fl
)
− π̂Gl

∣∣∣
−

is represented as follows:∣∣∣Π(C̃lkx
<∼ fl

)
− π̂Gl

∣∣∣
−

= min
{
zΠ
lk

∣∣∣Π(C̃lkx
<∼ fl

)
+ zΠ

lk ≥ π̂Gl
}
.

Consequently, problem (15) is equivalently transformed
into the following problem:

minimize max
l=1,2,...,q

{
rl∑
k=1

plk ·
(
zΠ
lk

)γ}
subject to Π

(
C̃lkx

<∼ fl
)

+ zΠ
lk ≥ π̂Gl , zΠ

lk ≥ 0,

l = 1, 2, . . . , q, k = 1, . . . , rl
rl∑
k=1

plk ·Π
(
C̃lkx

<∼ fl
)
≥ π̂El ,

l = 1, 2, . . . , q
Ax ≤ b, x ≥ 0.


(18)

By using (17), problem (18) is transformed into the
following problem:

minimize max
l=1,2,...,q

{
rl∑
k=1

plk ·
(
zΠ
lk

)γ}
subject to

n∑
j=1

βljz
Π
lkxj +

n∑
j=1

(
βlj − dljk − π̂Gl

)
xj

+(f0
l − f1

l )zΠ
lk ≥ (f0

l − f1
l )π̂Gl − f0

l ,

zΠ
lk ≥ 0, l = 1, 2, . . . , q, k = 1, . . . , rl

n∑
j=1

(
βlj − π̂El −

rl∑
k=1

plk · dljk

)
xj

≥ (f0
l − f1

l )π̂El − f0
l ,

l = 1, 2, . . . , q

Ax ≤ b, x ≥ 0


(19)

or equivalently

minimize θ

subject to
rl∑
k=1

plk ·
(
zΠ
lk

)γ ≤ θ, l = 1, 2, . . . , q

n∑
j=1

βljz
Π
lkxj +

n∑
j=1

(
βlj − dljk − π̂Gl

)
xj

+(f0
l − f1

l )zΠ
lk ≥ (f0

l − f1
l )π̂Gl − f0

l ,

zΠ
lk ≥ 0, l = 1, 2, . . . , q, k = 1, . . . , rl

n∑
j=1

(
βlj − π̂El −

rl∑
k=1

plk · dljk

)
xj

≥ (f0
l − f1

l )π̂El − f0
l ,

l = 1, 2, . . . , q

Ax ≤ b, x ≥ 0.


(20)

It should be noted here that problem (20) is a polynomial
optimization problem [26], which can be solved by using
semidefinite programming relaxation under some conditions.

A. Necessity lower partial moment model

In a manner similar to the possibility low partial moment,
we propose a necessity low partial moment as follows:

LPMλ

[
N
(

˜̄Clx
<∼ fl

)]
4
=

rl∑
k=1

plk·
∣∣∣N (C̃lkx

<∼ fl
)
− ν̂l

∣∣∣λ
−
.

(21)
In order to consider the case where a decision maker

is pessimistic, we propose the following minimax problem
which minimizes the maximum necessity low partial moment
under the constraint of the probabilistic necessity expecta-
tion:

minimize max
l=1,2,...,q

LPMγ

[
N
(

˜̄Clx
<∼ fl

)]
subject to E

[
N
(

˜̄Clx
<∼ fl

)]
≥ ν̂El , l = 1, 2, . . . , q

Ax ≤ b, x ≥ 0


(22)

or equivalently

minimize max
l=1,2,...,q

{
rl∑
k=1

plk ·
∣∣∣N ( ˜̄Clx

<∼ fl
)
− ν̂Gl

∣∣∣λ}

subject to
rl∑
k=1

plk ·N
(

˜̄Clx
<∼ fl

)
≥ ν̂El ,

l = 1, 2, . . . , q
Ax ≤ b, x ≥ 0.


(23)

Assume that f0
l and f0

l are determined by (16), and that
γijk is replaced by γij which does not depend on k.
Then, N

(
C̃lkx

<∼ fl
)

is calculated as the following linear
fractional function of decision variables xj [12]:

N
(
C̃lkx

<∼ fl
)

4
= inf

y
max

{
1− µ ˜Clkx

(y), µG̃l
(y)
}

=

−

n∑
j=1

dljkxj + f0
l

n∑
j=1

γljxj − f1
l + f0

l

.

(24)
By introducing zNlk , l = 1, 2, . . . , q, k = 1, 2, . . . , rl,∣∣∣N (C̃lkx

<∼ fl
)
− ν̂Gl

∣∣∣
−

is represented as follows:∣∣∣N (C̃lkx
<∼ fl

)
− ν̂Gl

∣∣∣
−

= min
{
zNlk

∣∣∣N (C̃lkx
<∼ fl

)
+ zNlk ≥ ν̂Gl

}
.

Consequently, problem (23) is equivalently transformed
into the following problem:

minimize max
l=1,2,...,q

{
rl∑
k=1

plk ·
(
zNlk
)λ}

subject to N
(

˜̄Clx
<∼ fl

)
+ zNlk ≥ ν̂Gl , zNlk ≥ 0,

l = 1, 2, . . . , q, k = 1, . . . , rl
rl∑
k=1

plk ·N
(

˜̄Clx
<∼ fl

)
≥ ν̂El ,

l = 1, 2, . . . , q
Ax ≤ b, x ≥ 0.


(25)
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In a manner similar to the transformation of problem (18)
into (20), it is easily shown that problem (25) is transformed
into a polynomial optimization problem, which can be solved
by using semidefinite programming relaxation under some
conditions.

VI. CONCLUSION

In this paper, we have considered linear optimization
(linear programming) problems with discrete fuzzy random
variables. To take into consideration downside risk in fuzzy
stochastic environments, we have proposed new models
based on low partial moment using possibility and necessity
measures, which is a generalized version of semi-variance
and semi-absolute deviation of possibility and necessity. It
has been shown that the problem can be transformed into
polynomial optimization problems, which can be solved by
semidefinite programming relaxation under some conditions.
The framework proposed in this paper can be applied to solv-
ing a wide variety of real-world decision making problems
which can be modeled as linear programming problems.

Now we are constructing other downside risk measures
based on (conditional) value-at-risk using possibility and
necessity measures. We will present the results somewhere
in the near future.
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