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Abstract—In this paper, we introduce and an-
alyze a hybrid steepest-descent extragradient algo-
rithm for solving triple hierarchical pseudomonotone
variational inequalities in a real Hilbert space. The
proposed algorithm is based on Korpelevich’s ex-
tragradient method, Mann’s iteration method, hy-
brid steepest-descent method and Halpern’s iteration
method. Under mild conditions, the strong conver-
gence of the iteration sequences generated by the al-
gorithm is derived. Our results improve and extend
the corresponding results in the earlier and recent lit-
erature.
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1 Introduction

Throughout this paper, we let H be a real Hilbert space
with inner product ⟨·, ·⟩ and norm ∥ · ∥, C be a nonempty
closed convex subset of H and PC be the metric projec-
tion of H onto C. Let S : C → H be a nonlinear mapping
on C. We denote by Fix(S) the set of fixed points of S
and by R the set of all real numbers. Recall that a map-
ping S : C → H is called

(i) monotone if ⟨Ax−Ay, x− y⟩ ≥ 0, ∀ x, y ∈ C;

(ii) pseudomonotone if ⟨Ay, x− y⟩ ≥ 0 implies ⟨Ax, x−
y⟩ ≥ 0, ∀ x, y ∈ C;

(iii) η-strongly monotone if there exists a constant η > 0
such that ⟨Ax−Ay, x− y⟩ ≥ η∥x− y∥2, ∀ x, y ∈ C;
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(vi) α-inverse strongly monotone if there exists a con-
stant α > 0 such that ⟨Ax − Ay, x − y⟩ ≥ α∥Ax −
Ay∥2,∀ x, y ∈ C;

(v) L-Lipschitz continuous (or L-Lipschitzian ) if there
exists a constant L ≥ 0 such that ∥Sx−Sy∥ ≤ L∥x−
y∥,∀ x, y ∈ C. In particular, if L = 1 then S is called
a nonexpansive mapping; if L ∈ [0, 1) then S is called
a contraction.

Let A : C → H be a nonlinear mapping on C. The
classical variational inequality problem (in short, VIP) is
to find x ∈ C such that

⟨Ax, y − x⟩ ≥ 0, ∀y ∈ C. (1)

The solution set of VIP (1) is denoted by VI(C,A).

The VIP (1) was first discussed by Lions [29]. There are
many applications of VIP (1) in various fields; see e.g.,
[20, 32, 35, 41]. In 1976, Korpelevich [28] proposed an
iterative algorithm, which is known as the extragradient
method, for solving the VIP (1) in Euclidean space Rn.
The literature on the VIP is vast and Korpelevich’s ex-
tragradient method has received great attention given by
many authors, who improved it in various ways; see e.g.,
[5, 6, 9, 10, 11, 12, 14, 16, 17, 21, 31, 39, 43] and references
therein, to name but a few.

In 2001, Yamada [38] introduced a hybrid steepest-
descent method for solving the VIP (1) with C = Fix(T ).
The problem of finding a point in VI(Fix(T ),A) is called
a hierarchical VIP or a hierarchical fixed point problem.
Yamada’s hybrid steepest-descent method has received
great attention given by many authors, who improved it
in various ways; see e.g., [8, 15, 36, 42] and references
therein.

On the other hand, let A : C → H and B : H → H be
two mappings. Consider the following bilevel variational
inequality problem (BVIP):

BVIP. Finding x∗ ∈ VI(C,B) such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ VI(C,B), (2)

where VI(C,B) denotes the set of solutions of the VIP:
Finding y∗ ∈ C such that

⟨By∗, y − y∗⟩ ≥ 0, ∀y ∈ C. (3)
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In particular, whenever H = Rn, the BVIP was recently
studied by Anh, Kim and Muu [1].

Bilevel variational inequalities are special classes of qua-
sivariational inequalities (see [2, 4, 18, 37]) and of equilib-
rium with equilibrium constraints considered in [30, 25].
However it covers some classes of mathematical pro-
grams with equilibrium constraints (see [30]), bilevel min-
imization problems (see [34]), variational inequalities (see
[19, 27, 40, 44]) and complementarity problems. In 2012,
Anh, Kim and Muu [1] introduced an extragradient iter-
ative algorithm for solving the above bilevel variational
inequality.

It is well known that the Tikhonov regularization method
is an important approach to the BVIP. Recently, in
[22, 25, 26] the Tikhonov method with generalized reg-
ularization operators and bifunctions is extended to
pseudomonotone variational inequalities and equilibrium
problems, respectively. However in this case, the regular-
ized subproblems, may fail to be strongly monotone, even
pseudomonotone, since the sum of a strongly monotone
operator and a pseudomonotone operator, in general, is
not pseudomonotone. In our opinion, the existing meth-
ods that require some monotonicity properties cannot be
applied to solve the regularized subvariational inequali-
ties. Therefore the extragradient-type algorithm is an ef-
ficient approach for directly solving bilevel pseudomono-
tone variational inequalities.

Furthermore, we recall the variational inequality for a
monotone operator A1 : H → H over the fixed point
set of a nonexpansive mapping T : H → H as follows:
Find x̄ ∈ VI(Fix(T ), A1), where

VI(Fix(T ), A1)

:= {x̄ ∈ Fix(T ) : ⟨A1x̄, y − x̄⟩ ≥ 0, ∀y ∈ Fix(T )},

and Fix(T ) := {x ∈ H : Tx = x} ̸= ∅. In [23, 24], Iiduka
introduced the following monotone variational inequality
with variational inequality constraint over the fixed point
set of a nonexpansive mapping:

Problem I (see [23, Problem 3.1]). Assume that

(i) T : H → H is a nonexpansive mapping with Fix(T ) ̸=
∅;

(ii) A1 : H → H is α-inverse strongly monotone;

(iii) A2 : H → H is β-strongly monotone and L-Lipschitz
continuous;

(iv) VI(Fix(T ), A1) ̸= ∅.
Then the objective is to find x∗ ∈ VI(VI(Fix(T ), A1), A2),
where,

VI(VI(Fix(T ), A1), A2)

:= {x∗ ∈ VI(Fix(T ), A1) : ⟨A2x
∗, v − x∗⟩ ≥ 0,

∀ v ∈ VI(Fix(T ), A1)}.

Since this problem has a triple structure in contrast
with bilevel programming problems (see [30, 33]) or
hierarchical constrained optimization problems or hi-
erarchical fixed point problem, it is referred to as
a triple-hierarchical constrained optimization problem
(THCOP). More precisely, it is referred as a triple hi-
erarchical variational inequality problem (THVIP); see
Ceng, Ansari and Yao [8]. Very recently, some authors
continued the study of Iiduka’s THVIP (i.e., Problem I)
and its variant and extension; see e.g., [3, 7, 8, 13, 15, 42].

Motivated and inspired by the above facts, we introduce
and analyze a hybrid steepest-descent extragradient algo-
rithm for solving triple hierarchical pseudomonotone vari-
ational inequalities, which will be defined in Section 2.
The proposed algorithm is based on Korpelevich’s ex-
tragradient method (see [28]), Mann’s iteration method,
hybrid steepest-descent method (see [38]) and Halpern’s
iteration method. Under mild conditions, the strong con-
vergence of the iteration sequences generated by the algo-
rithm is derived. Our results improve and extend the cor-
responding results announced by some others, e.g., Iiduka
[23, Theorem 4.1] and Anh, Kim amd Muu [1, Theorem
3.1].

2 Main Results

Throughout this section, we always assume the following:

• F : H → H is a κ-Lipschitzian and η-strongly mono-
tone operator with positive constants κ, η > 0;

• T : H → H is a nonexpansive mapping;

• A,B : H → H satisfy the hypotheses (H1)-(H4):

(H1) B is pseudomonotone on H and A is β-strongly
monotone on H;

(H2) A is L1-Lipschitz continuous on H;

(H3) B is L2-Lipschitz continuous on H;

(H4) VI(Fix(T ), B) ̸= ∅;

• µ and τ are two positive numbers such that 0 < µ <
2η
κ2 and 0 < τ ≤ 1 with τ = 1−

√
1− µ(2η − µκ2).

In this paper, we will consider the following triple hier-
archical pseudomonotone variational inequality problem
(THPVIP) defined over the fixed point set of a nonex-
pansive mapping T : H → H.

Problem 1 Finding x∗ ∈ VI(Fix(T ), B) such that

⟨Ax∗, x− x∗⟩ ≥ 0, ∀x ∈ VI(Fix(T ), B), (4)

where Fix(T ) := {x ∈ H : Tx = x}, and VI(Fix(T ), B)
denotes the set of solutions of the VIP: Finding y∗ ∈
Fix(T ) such that

⟨By∗, y − y∗⟩ ≥ 0, ∀y ∈ Fix(T ). (5)
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For solving Problem 1, we propose the following algo-
rithm:

Algorithm 2 Initialization. Choose u ∈ H, x0 ∈
H, k = 0, 0 < λ ≤ 2β

L2
1
, positive sequences

{δk}, {λk}, {αk}, {βk}, {γk} and {ϵ̄k} such that

lim
k→∞

δk = 0,

∞∑
k=0

ϵ̄k < ∞,

αk + βk + γk = 1 ∀k ≥ 0,
∞∑
k=0

αk = ∞, lim
k→∞

αk = 0,

lim
k→∞

βk = ξ ∈ (0, 1
2 ], lim

k→∞
λk = 0, λk ≤ 1

L2
∀k ≥ 0.

• Step 1. Compute vk := Txk − λkµF (Txk),
yk := PFix(T )(vk − λkBvk),
zk := PFix(T )(vk − λkByk).

• Step 2. Inner loop j = 0, 1, .... Compute

xk,0 := zk − λAzk,
yk,j := PFix(T )(xk,j − δjBxk,j),
xk,j+1 := αjxk,0 + βjxk,j

+ γjPFix(T )(xk,j − δjByk,j).
If ∥xk,j+1 − PVI(Fix(T ),B)xk,0∥ ≤ ϵ̄k then set
hk := xk,j+1 and go to Step 3.
Otherwise, increase j by 1 and repeat
the inner loop Step 2.

• Step 3. Set xk+1 := αku + βkxk + γkhk. Then
increase k by 1 and go to Step 1.

First of all, we have the following lemma.

Lemma 1 Suppose that the hypotheses (H1)-(H4) hold.
Then the sequence {xk,j} generated by Algorithm 2 con-
verges strongly to the point PVI(Fix(T ),B)(zk − λAzk) as
j → ∞. Consequently, we have

∥hk − PVI(Fix(T ),B)(zk − λAzk)∥ ≤ ϵ̄k ∀k ≥ 0.

In the sequel we always suppose that the inner loop in
the Algorithm 2 terminates after a finite number of steps.
This assumption, by Lemma 1, is satisfied when B is
monotone on Fix(T ).

Moreover, the following lemmas are needed to derive the
strong convergence of the iteration sequences generated
by our algorithm 2.

Lemma 2 Let sequences {vk}, {yk} and {zk} be gener-
ated by Algorithm 2, B be L2-Lipschitzian and pseu-
domonotone on H, and p ∈ VI(Fix(T ), B). Then, we
have

∥zk − p∥2 ≤ ∥vk − p∥2 − (1− λkL2)∥vk − yk∥2

−(1− λkL2)∥yk − zk∥2. (6)

Lemma 3 Suppose that the hypotheses (H1)-(H4) hold.
Then the sequence {xk} generated by Algorithm 2 is
bounded.

Lemma 4 Suppose that the hypotheses (H1)-(H4) hold.
Assume that the sequences {vk} and {zk} are generated
by Algorithm 2. Then, we have

∥zk+1 − zk∥
≤ (1 + λk+1L2)∥vk+1 − vk∥+ λk∥Byk∥

+λk+1(∥Bvk+1∥+ ∥Byk+1∥+ ∥Bvk∥). (7)

Moreover,

lim
k→∞

∥zk+1 − zk∥ = lim
k→∞

∥vk+1 − vk∥ = 0.

Lemma 5 Suppose that the hypotheses (H1)-(H4) hold.
Then for any solution x∗ of Problem 1 (THPVIP) we
have

∥xk+1 − x∗∥2

≤ αk∥u− x∗∥2 + βk∥xk − x∗∥2 + γk∥vk − x∗∥2

+2γk ϵ̄k∥zk − x∗∥+ γk ϵ̄
2
k

−γk(1− λkL2)(∥vk − yk∥2 + ∥yk − zk∥2). (8)

Moreover, if limk→∞ ∥xk − Txk∥ = 0, then

lim
k→∞

∥PVI(Fix(T ),B)(zk − λkAzk)− zk∥

= lim
k→∞

∥PVI(Fix(T ),B)(vk − λkAvk)− vk∥ = 0.

By using the above lemmas, we can obtain the following
result.

Theorem 3 Suppose that the hypotheses (H1)-(H4)
hold. If limk→∞ ∥xk − Txk∥ = 0, then the two sequences
{xk} and {zk} in Algorithm 2 with 0 < λ < 2β

L2
1
con-

verge strongly to the same point x∗ which is a solution of
Problem 1 (THPVIP).

3 Concluding Remarks

Theorem 3 extends, improves, supplements and devel-
ops Iiduka [23, Theorem 4.1] and Anh, Kim and Muu [1,
Theorem 3.1] in the following aspects.

• The problem of finding a solution x∗ of Problem 1
(THPVIP) is very different from the problem of find-
ing a solution x∗ in Problem 3.1 (THVIP) of Iiduka
[23], because our THPVIP generalizes the Iiduka’s
THVIP from the inverse-strongly monotone map-
ping A1 to the pseudomonotone and Lipschitzian
mapping B.
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• In the meantime, the problem of finding a solution
x∗ of Problem 1 (THPVIP) is very different from
the problem of finding a solution x∗ of BVIP, be-
cause our THPVIP generalizes Anh, Kim and Muu’s
BVIP in [1, Theorem 3.1] from the space Rn to the
general Hilbert space H, and extends Anh, Kim and
Muu’s BVIP in [1, Theorem 3.1] to the setting of
the THPVIP defined over the fixed point set of a
nonexpansive mapping T : H → H.

• The Algorithm 2.1 in [1] is extended to develop Al-
gorithm 2 by virtue of Yamada’s hybrid steepest-
descent method [38]. The Algorithm 2 is more ad-
vantageous and more flexible than Algorithm 2.1
in [1] because it involves solving the BVIP (with
C = Fix(T )) and the fixed point problem of a non-
expansive mapping.

• Our Algorithm 2 is very different from Algorithm
2.1 in [1], because our Algorithm 2 is based on
Korpelevich’s extragradient method, Mann’s itera-
tion method, hybrid steepest-descent method and
Halpern’s iteration method.

References

[1] P.N. Anh, J.K. Kim, L.D. Muu, “An extragradient
algorithm for solving bilevel pseudomonotone vari-
ational inequalities”, J. Glob. Optim., Vol. 52, pp.
627-639, 2012.

[2] P.N. Anh, L.D. Muu, N.V. Hien, J.J. Strodiot,
“Using the Banach contraction principle to imple-
ment the proximal point method for multivalued
monotone variational inequalities”, J. Optim. The-
ory Appl. Vol. 124, pp. 285-306, 2005.

[3] Q.H. Ansari, L.C. Ceng, H. Gupta, “Triple hierar-
chical variational inequalities”, in: Nonlinear Anal-
ysis: Approximation Theory, Optimization and Ap-
plications, Q.H. Ansari, ed., Birkhäuser, Basel, pp.
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