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Abstract—The artificial-variable free technique along the
objective direction for the simplex algorithm was proposed for
solving a linear programming problem in 2014. It was designed
to deal especially with unrestricted variables. Before starting the
simplex algorithm, a single unrestricted variable is rewritten us-
ing two nonnegative variables causing the number of variables
increasing. In this paper, we present that this technique can
deal with nonnegative variables which the real world problems
needed the variables to be nonnegative. Moreover, we propose
some criteria for selecting a variable to transform the problem.
The computational results show that the average number of
iterations from the selected variable which has the maximum
coefficient of the objective function outperform the original
simplex algorithm.

Index Terms—artificial-free, linear programming, trans-
formed problem, relaxed problem, objective direction.

I. INTRODUCTION

THE simplex algorithm [1] has been popularly used
to solve linear programming problems and it is quite

efficient in practice for small or medium size [2]. However,
in 1972, a collection of linear programming problems which
shows the worst case running time for the simplex algorithm
using the original Dantzig’s rule was given by Klee and
Minty [3]. Then, Karmarkar [4] has proposed a new faster
algorithm and many researchers have improved pivoting rule
for the simplex algorithm [5]. However, finding the new
initial feasible point which is closer the optimal point and
solving without artificial variables were proposed [2], [6],
[7], [9], [10], [11], [12].

The simplex algorithm starts at an initial basic feasible
solution, x = 0 (the origin point). If the origin point is not
a basic feasible solution then the artificial variables will be
added for finding the basic feasible solution. Big-M and Two-
Phase method are well-known algorithms which are used to
handle artificial variables. By adding artificial variables, the
number of variables will be increased.

In 1997, Arsham [6], [7] proposed the algorithm without
using artificial variables. However, in 1998, Enge and Huhn
[8] proposed a counterexample, in which Arsham’s algorithm
declared the infeasibility of a feasible problem.

In 2000, the algorithm for solving a linear programming
problem without adding artificial variables was proposed
again by Pan [9]. The algorithm starts at the initial basis
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which corresponds to a solution in primal and a solution
in dual. If the primal solution and the dual solution are
infeasible, then costs of objective function in primal will
be perturbed to some positive number for dual feasibility
and the dual simplex method can start. The computational
results were shown to be superior for small problems and
this algorithm starts from the origin point.

Arsham [10], [11] then presented the new solution algo-
rithm without using artificial variables repeatedly in 2006.
Before the algorithm starts, the right hand side values need
to be nonnegative. The simplex algorithm can start without
using artificial variable by relaxing the ≥ constraints. Then
all relaxed constraints will be reinserted to the problem to
guarantee the optimal solution. However, the computational
result was not shown the effectiveness of the algorithm. In
that year, Corley et al. [12] proposed the algorithm without
introducing artificial variables for nonnegative right hand side
problems. They solve the relaxed problem which consists of
the original objective function subject to a single constraint
which makes a largest cosine angle with the gradient vector
of the objective function. At each subsequent iteration, the
constraint which had the new maximum cosine angle among
those constraints would be added, and the dual simplex
method is applied. However, their research is restricted for
a feasible and bounded linear programming problem and the
computational experiment was not shown.

In 2014, Boonperm and Sinapiromsaran [13] presented
the algorithm without using artificial variables which starts
by fixing one of variables which has a nonzero coefficient
of the objective function in term of another variable in the
objective plane. Then constraints are split into three groups:
the positive group, the negative group and the zero group.
Moving on the objective direction, the optimal solution may
be formed by some constraints in the positive group. So the
algorithm starts by relaxing constraints from the negative
and the zero groups. The simplex algorithm is applied to
solve this relaxed problem, and additional constraints from
the negative the zero coefficient groups will be introduced to
the relaxed problem, and the dual simplex method is used to
determine the new optimal solution. However, they lacked
the computational result to show the effectiveness of the
algorithm. Then, in that year, Boonperm and Sinapiromsaran
[14] proposed the algorithm without using artificial vari-
ables by separating constraints into two groups: the acute
constraint group and the non-acute constraint group. They
start the algorithm by relaxing the non-acute constraint and
solve the relaxed problem first. The results of the algorithm
are superior than the original simplex algorithm. However,
the algorithm deals with unrestricted variables which it
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is rewritten using two nonnegative variables causing the
number of variables increasing by a factor of two for each
unrestricted variable.

From the artificial-free techniques above, in this paper,
we improve the artificial-free technique along the objective
direction [13] by suggestion the criteria to choose the variable
which is used to map the problem. Moreover, the improved
algorithm can deal with the nonnegative varaiables. The
proposed algorithm starts by using the objective plane to
split constraints into three groups by considering the sign
of coefficient for each constraint. Then constraints from the
nonpositive groups (negative and zero coefficient groups) are
relaxed. The relaxed problem can identify a feasible point by
our theorem. Then it will be transformed for starting the sim-
plex algorithm without using artificial variables. Constraints
from the nonpositive groups are added for checking the
solution from the relaxed problem. Since artificial variables
is not used, the number of variables by our algorithm is
less than or equal to the number of variables by the simplex
algorithm. The number of constraints which solved by our
algorithm is less-than or equal to the number of constraints
which solved by the simplex algorithm. This is an obvious
advantage of our algorithm. Moreover, we suggest the criteria
to select the variable for mapping. From the computational
results, we found that iterations from the selected variable
which has the maximum cost of the objective function
outperform the simplex algorithm, and another criteria. The
main concept of our algorithm and theorems for guarantee
feasibility of a relaxed linear programming problem is shown
in section 2. In section 3, after the relaxed problem is solved
by the simplex algorithm, constraints from the negative group
and the zero group will be added and analysed for finding
the optimal solution. In section 4, the computational results
show the effectiveness of the algorithm. In the last section,
we conclude and discuss our new findings.

II. PRELIMINARIES

Consider a linear programming problem in the following
form:

Maximize cTx
subject to Ax ≤ b

x ≥ 0
(1)

where c is a nonzero vector and x is an n-dimensional
column vector, A is an m×n matrix, b is an m-dimensional
column vector. Let

y = cTx = c1x1 + c2x2 + · · ·+ cixi + · · ·+ cnxn. (2)

If ci 6= 0, we determine

xi =
y

ci
−

n∑
j=1
j 6=i

cj
ci
xj . (3)

After replacing xi into the problem (1), the problem in an
equivalent form can be written as follows:

Maximize y

subject to ali

ci
y +

n∑
j=1
j 6=i

(alj − alicj
ci

)xj ≤ bl, l = 1, 2, ...,m

y
ci
−

n∑
j=1
j 6=i

cj
ci
xj ≥ 0

x1, ..., xi−1, xi+1, ..., xn ≥ 0.
(4)

Since xi ≥ 0, y
ci
−

n∑
j=1
j 6=i

cj
ci
xj ≥ 0 is added to be the (m+

1)th constraint. Then the problem (4) can be rewritten as
follows:

Maximize y

subject to y ≤ b′r −
n∑

j=1,
j 6=i

a′rjxj , r ∈M1

y ≥ b′s −
n∑

j=1,
j 6=i

a′sjxj , s ∈M2

n∑
j=1,
j 6=i

atjxj ≤ bt, t ∈M3

x1, ..., xi−1, xi+1, ..., xn ≥ 0.
(5)

where M1,M2 and M3 are the set of the constraint r, s, t
if ari

ci
> 0, asi

ci
< 0 and ati

ci
= 0 respectively, and b′l = cibl

ali
,

a′lj =
cialj

ali
− cj , l ∈ {M1 ∪M2}, j = 1, 2, ..., n and j 6= i.

Consider the (m + 1)th constraint, we let a′m+1,j = cj ,
j = 1, ..., i−1, i+1, ..., n and b′m+1 = 0. If ci > 0 then m+1
will be added to M2. Otherwise, m+1 will be added to M1.
So |M1| = m1, |M2| = m2, |M3| = m3 and m1+m2+m3 =
m+ 1.

Since we classify groups by the value of coefficients, M1 is
the group of positive coefficients, M2 is the group of negative
coefficients, and M3 is the group of zero coefficients.

0

optimal pointy

x2

M2

M1

M3

M2

Fig. 1. Example of a feasible region after mapping in R2

Pleasantly, the problem (5) can be written in the matrix
form as follows:

Maximize y
subject to 1m1

y ≤ b′m1
− A′m1

xī,
1m2

y ≥ b′m3
− A′m2

xī,
Am3

xī ≤ bm3

xī ≥ 0

(6)

where 1m1
is an m1-dimensional column vector of 1,

1m2
is an m2-dimensional column vector of 1, b′m1

, b′m2

and bm3 are the right hand side vector corresponding to the
group M1, M2 and M3, respectively. A′m1

, A′m2
and Am3

are submatrices corresponding to the group M1, M2 and M3,
repectively. xT

ī
= [x1, x2, ..., xi−1, xi+1, ..., xn]

T.
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A. The relaxed problem

Consider the problem (6), it will be feasible when y is
between constraints in the group of M1 and constraints in
group M2, and xī satisfies constraints in group M3 as figure
1. Since we want to maximize y, the optimal solution will
be formed by some constraints from group M1. So we will
relax some constraints from group M2 and M3. Then, we will
solve the problem with constraints from the group M1 first.
Therefore, the relaxed problem can be rewritten as follows:

Maximize y
subject to 1m1

y ≤ b′m1
− A′m1

xī
xī ≥ 0

(7)

We will show that the problem (7) is always feasible.

0

y

M1

optimal point

x2

Fig. 2. Example of a feasible region of the relaxed problem (7) in R2

Theorem 1. If M1 6= ∅ and b′min = min
r∈M1

{b′r}. Then

(y0,x
T
ī0
) = (b′min,0

T) is a feasible point of the problem
(7).

Proof: Suppose M1 6= ∅ and b′min = min
r∈M1

{b′r}. Choose

(y0, xT
ī0
) = (b′min, 0

T). We get 1m1
y0 = 1m1

b′min ≤ b′m1
.

So (y0, xT
ī0
) = (b′min, 0

T) is a feasible point of the problem
(7). The problem (7) is always feasible.

If M1 = ∅ and M3 = ∅ then the problem (6) can be
rewritten as follows:

Maximize y
subject to 1m2

y ≥ b′m2
− A′m2

xī,
xī ≥ 0

(8)

We can show that the problem (8) is unbounded.

Theorem 2. If M1 = ∅ and M3 = ∅ then the problem (8)
is unbounded.

Proof: Assume M1 = ∅ and M3 = ∅. Let X =
{(y, xT

ī
)|1m2

y ≥ bm2
− A′m2

xī} and b′max = max
s∈M2

{b′s}.
Show that X is not empty.

Choose (y0, xT
ī0
) =(b′max, 0

T). We get 1m2
y0 =

1m2
b′max ≥ b′m2

. So (y0, xT
ī0
) = (b′max, 0

T) is a feasible
point of the problem (8). So X is not empty.

We will show that dT = [1,0, ...,0]T is a recession
direction[1] where d is an n-dimensional column vector. For
all α > 0 and (y0, xT

ī0
) + αdT = (y0 + α, xT

ī0
+ α0T) =

(y0 + α, xT
ī0
) ∈ X . Since 1m2

y0 ≥ b′m2
− A′m2

xī0 and
1m2

α > 0,

1m2
(y0 + α) = 1m2

y0 + 1m2
α ≥ b′m2

− A′m2
(xī0 + 0)

= b′m2
− A′m2

xī0.

Therefore d is a recession direction of X .
Consider the objective cost of the problem (8) is cT =

[1,0, ...,0]T, (y0 + α, xT
ī0
+ α0T)c = y0 + α. Since α > 0,

y0 + α → ∞ as α → ∞. Therefore the problem (8) is
unbounded.

B. The transformed problem

The relaxed problem (7) is always feasible. If b′m1
≥ 0

then (y0, xT
ī0
) = 0T is a feasible point and we can start

the simplex algorithm by adding slack variables. Otherwise,
(y0, xT

ī0
) = (b′min, 0

T) is a feasible point. Then we transform
the problem (7) using y′ = y − y0. The equivalent form is
in the following:

Maximize y′ + y0

subject to 1m1
y′ + A′m1

xī ≤ b′m1
− 1m1

y0

xī ≥ 0
(9)

Constraints of group M2 will be transformed as
1m2

y′ + Am2
xī ≥ b′m2

− 1sy0. The variable y is not in
constraints in group M3. So constraints in group M3 is not
transformed. The transformed problem can be written in the
following:

Maximize y′ + y0

subject to 1m1
y′ + A′m1

xī ≤ b′m1
− 1m1

y0

1m2
y′ + A′m2

xī ≥ b′m2
− 1m2

y0

Am3
xī ≤ bm3

xī ≥ 0

(10)

If the transformed problem is infeasible or unbounded then
the problem (6) will be infeasible or unbounded, respectively.
If the optimal solution of the transformed problem (y′∗, xī∗

T)
is found then the optimal solution (y∗, xī

∗T) of the problem
(6) will be found by letting y∗ = y′

∗
+ y0. Then optimal so-

lution of the original problem is
[
x∗ ī
x∗ ī

]
=

y∗

ci
−

n∑
j=1
j 6=i

cj
ci
x∗j

x∗ ī

.

III. THE PROPOSED ALGORITHM

Consider the problem (9), we found that b′m1
−1m1

y0 ≥ 0.
So the standard form can be written as follows:

Maximize y+ − y− + y0

subject to 1m1
y+ − 1m1

y− + A′m1
xī + s = b′m1

− 1m1
y0

y+, y−, xī, s ≥ 0
(11)

Let b̂m1
=b′m1

−1m1
y0. So the initial tableau of the relaxed

problem (11) can be shown as follows:

z y+ y− xī s RHS
z 1 -1 1 0T 0T y0

s 0 1m1
−1m1

A′m1
Im1

b̂m1

where Im1 is an m1×m1 identity matrix. Since the problem
(11) is always feasible, the solution can be one of two cases:
optimal or unbounded solution.
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A. The optimal solution case

After we found the optimal solution of the problem (11),
then we will check that it will be the optimal solution of
the original problem by adding constraints from group M2

and M3 into the problem (11). For the transformed problem,
constraints of group M2 will be changed as 1m2

y′+A′m2
xī ≥

b′m2
− 1m2

y0 or −1m2
y′ − A′m2

xī ≤ −bm2
+ 1m2

y0. The
standard form for the transformed problem is −1m2

y+ +
1m2y

− − Am2xī + sM2 = −bm2 + 1m2y0 where sM2 is a
nonnegative column vector.

Let Bm∗
1

and Nm∗
1

are the optimal basis and the associ-
ated nonbasic matrix of the problem (11), respectively. The
corresponding tableau of the relaxed problem is as follows:

z xBm∗
1

xNm∗
1

RHS

z 1 0 ZNm∗
1
− cT

Nm∗
1

zm∗
1
+ y0

xBm∗
1

0 Im1
B−1
m∗

1
Nm∗

1
B−1
m∗

1
b̂m1

where ZNm∗
1
, =cT

Bm∗
1

B−1
m∗

1
Nm∗

1
, zm∗

1
=cT

Bm∗
1

B−1
m∗

1
b̂m1

, cT
Bm∗

1

and

cT
Nm∗

1

are costs of objective function vectors of the problem
(11) which rearranged by basic and nonbasic columns.

Let Â =

[
−1m2

1m2
−A′m2

0 0 Am3

]
be the combined co-

efficient matrix of group M2 and M3. I23 =
[

Im2 0
0 Im3

]
where Im2

is an m2 × m2 identity matrix and Im3
is an

m3 × m3 identity matrix. b23 =

[
−b′m2

− 1m2
y0

bm3

]
So the

additional constraints from the group M2 and M3 is rewritten
as follows:

ÂBm∗
1

xBm∗
1
+ ÂNm∗

1
xNm∗

1
+ I23s23 = b23 (12)

where Â = [ÂBm∗
1
, ÂNm∗

1
] are rearranged by basic and

nonbasic columns. After adding constraints (12) into tableau,
we get

z xBm∗
1

xNm∗
1

s23 RHS

z 1 0 ZNm∗
1
− cT

Nm∗
1

0 zm∗
1
+ y0

xBm∗
1

0 Im1 B−1
m∗

1
Nm∗

1
0 B−1

m∗
1
b̂m1

s23 0 ÂBm∗
1

ÂNm∗
1

I23 b23

We can eliminate ÂBm∗
1

by multiplying the second row by

ÂBm∗
1

and subtracting from the third row gives the following
tableau:

z xBm∗
1

xNm∗
1

s23 RHS

z 1 0 ZNm∗
1
− cT

Nm∗
1

0 zm∗
1
+ y0

xB̂m∗
1

0 Im1
B−1
m∗

1
Nm∗

1
0 B−1

m∗
1
b̂m1

s23 0 0 Â
′
Nm∗

1

I23 b̂23

where b̂23 = b23 − ÂBm∗
1

B−1
m∗

1
b̂m1 and Â

′
Nm∗

1

= ÂNm∗
1
−

ÂBm∗
1

B−1
m∗

1
Nm∗

1
. We can obtain the optimal solution by con-

sidering the sign of the right hand side in row s23. If b̂23 ≥ 0,
then the current solution is optimal. Otherwise, perform the
dual simplex method to find the solution. Then we can
conclude that if we find the optimal solution by the dual
simplex method using Dantzig’s rule, the value of the right
hand side in the optimal tableau is the optimal solution of the

transformed problem. Otherwise, if the dual is unbounded,
we can conclude that the original problem is infeasible.

B. The unbounded case

Let Bm1
be the basis and Nm1

be the associated nonbasic
matrix of the problem (11). The corresponding tableau of the
relaxed problem is as follows:

z xBm1
xNm1

RHS
z 1 0 ZNm1

− cT
Nm1

zm1
+ y0

xBm1
0 Im1

B−1
m1

Nm1
B−1
m1

b̂m1

where ZNm1
= cT

Bm1
B−1
m1

Nm1
, zm1

= cT
Bm1

B−1
m1

b̂m1
.

Let R be an index set of nonbasic variables and zj =
cT

Bm1
B−1
m1

Nm1 :j
, j ∈ R. If the relaxed problem is unbounded,

it means that there is zj−cj < 0 and B−1
m1

Nm1 :j
≤ 0. We will

find the solution of the transformed problem by adding all
constraints from group M2 and M3 into the current relaxed
tableau.

Similarly, we can use the equation (12) like the optimal
solution case for adding to the current tableau when Bm∗

1

and Nm∗
1

are replaced by Bm1
and Nm1

. After elimination, if
b̂23 ≥ 0, then the current solution is primal feasible then the
primal simplex will be applied. Otherwise, both primal and
dual solutions are infeasible at the current iteration because
of zj − cj < 0. In [9], his method perturbs zj − cj < 0 to
a positive value to obtain the dual feasible and then perform
the dual simplex. After the optimal solution is found, the
original zj − cj will be restored and the primal simplex is
used. However, if the dual problem is unbound, then the
original problem is infeasible.

C. The special case

If M1 = ∅ and M2 = ∅ then the problem (6) remains in
the following

Maximize y
subject to Am3

xī ≤ bm3

xī ≥ 0
(13)

From the problem (13), the solution can be one of two
cases: unbounded or infeasible. Because of the variable y is
not in constraints, if there is xī0 that Am3

xī0 ≤ bm3
then

the problem is feasible and y can increase to infinity. So
the problem will be unbounded. Otherwise, the problem is
infeasible. In this case, we will start with the first constraint
and relax the remaining constraints as in the following:

Maximize y
subject to aT

1:xī ≤ b1
xī ≥ 0

(14)

where a1: is the coefficient vector of the first constraint.
For fixing j ∈ {1, 2, ..., n}, if a1j 6= 0 where j 6= i then

y = 0, xj =
b1
a1j

and xl = 0 is a feasible point of the problem
(14) where l = 1, 2, ..., n, l 6= j 6= i. Then the transformed
problem is

Maximize y
subject to a11

alj
x1 + · · ·+ x′j + · · ·+ a1n

alj
xn+ s = 0

x1, ..., x
′
j , ..., xn, s ≥ 0

(15)
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where x′j = xj − b1
a1j

. This problem is unbounded. Then we
will add the remaining constraints and use the unbounded
case for checking the solution.

D. Summary of the algorithm

The algorithm is summarized in the following:
Step 1: Map the original problem with xi = y − (c1x1 +

ci−1xi−1 + · · ·+ ci+1xi+1 + · · ·+ cnxn)/ci where
ci 6= 0 to the problem (4) and split constraints into
3 groups.

Step 1.1: If M1 6= ∅, relax constraints from group M2

and M3. If b′r ≥ 0 for all r ∈ M1, start the
simplex algorithm at the origin point. Other-
wise, transform the problem using y′ = y−b′min

where b′min = min
r∈M1

{b′r} and start the simplex

algorithm.
If the optimal solution is found, go to Step 2
(the optimal solution case.). Otherwise, go to
Step 3.

Step 1.2: Otherwise, if M3 = ∅, the problem is un-
bounded. Then stop.
Otherwise, relax constraints from the group M3

and transform the problem using y′ = y−b′max

where b′max = max
s∈M2

{b′s}. This relaxed problem

is unbounded. Go to Step 3 (the unbounded
case.).

Step 2: Test the optimal solution with all constraints from
group M2 and M3.

Step 2.1: If it satisfies all constraints, it is the optimal
solution. Then stop.

Step 2.2: Otherwise, perform the dual simplex at the
unsatisfied constraints until the optimal solution
is found. Then stop.

Step 3: Add all constraints from group M2 and M3.
Step 3.1: If the current solution satisfies all constraints,

perform the primal simplex algorithm until the
optimal solution is obtained. Then stop.

Step 3.2: Otherwise, perturb the negative reduced cost to
a positive value for dual feasibility, then per-
form the dual simplex until the optimal solution
is found. Restore the original reduced cost and
perform the primal simplex until the optimal
solution is found. Then stop.

E. The proposed criteria

In this paper, we suggest three criteria to choose the
mapping variable as follows:

1. Choose the variable which has the smallest m1.
2. Choose the variable which has the largest m1.
3. Choose the variable which has the largest coefficient of

the objective function.

IV. COMPUTATIONAL RESULTS

In this section, we tested the algorithm based on simulated
linear programming problems. The randomly generated lin-
ear programming test problems

- are maximization problems;
- have a vector c with ci ∈ [−9, 9], i = 1, 2, ..., n;

TABLE I
COMPARISON THE AVERAGE NUMBER OF ITERATIONS BETWEEN THREE

CRITERIA AND TWO-PHASE METHOD

The average number of iterations
m n RP-Min RP-Max C-Max Two-Phase
50 5 20.32 19.83 20.21 45.32

100 5 21.19 21.16 20.11 78.52
150 5 25.07 24.55 22.04 110.88
200 5 24.73 25.54 22.40 144.70
250 5 27.09 26.08 24.91 174.53
100 10 74.18 66.74 65.94 111.32
200 10 87.66 76.39 73.89 191.80
300 10 93.36 83.16 73.84 270.79
400 10 99.40 82.54 74.38 351.02
500 10 94.87 88.73 77.14 425.27
200 20 319.86 282.38 272.92 283.07
400 20 370.59 298.67 282.45 494.46
600 20 397.14 348.87 292.04 693.51
800 20 404.12 359.22 295.24 876.95
1000 20 405.71 348.63 295.71 1063.09
300 30 742.76 656.23 624.88 503.17
600 30 858.64 759.43 697.54 867.75
900 30 930.86 816.53 725.81 1195.50
1200 30 1000.85 860.37 719.15 1542.60
1500 30 1061.17 851.59 731.21 1869.10

- have a matrix A with aij ∈ [−9, 9], i = 1, 2, ...,m, j =
1, 2, ..., n;

- have a vector x with xi ∈ [0, 9], i = 1, 2, ..., n;
Then we derive a vector b with bi = Ai:x where i ∈

1, 2, ..., n and bj = Aj:x + 1 where j ∈ n+ 1, n+ 2, ...,m.
The different sizes of the number of variables (n) and the

number of constraints (m) were tested with our method with
three criteria and Two-Phase method where m > n, n ∈
{5, 10, 20, 30} and m increases by 10, 20, 30, 40 and 50
times of the number of variables. For each size of the tested
problems, the average number of iterations of 100 different
problems were compared and shown in table I.
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Fig. 3. The average number of iterations for five variables.

In table I, the boldface numbers identify that the smallest
average number of iterations. The result in table I is plotted
as in Fig.3.-6. RP-Min, RP-Max and C-Max identify three
criteria: the smallest m1, the largest m1 and the largest
coefficient of the objective function, respectively.

From the computational results, we found that the average
number of iterations of the proposed algorithm with three
criteria are less than two-phase method except the problem
with 30 variables and 300 constraints. The average number
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Fig. 4. The average number of iterations for ten variables.
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Fig. 5. The average number of iterations for 20 variables.

of iterations of the selected variable which has the largest
coefficient of the objective function outperform two-phase
method and another criteria.

V. CONCLUSIONS

In this paper, we proposed the artificial-free technique
to improve the simplex algorithm. The objective plane can
split constraints into three groups by considering the sign
of coefficient for each constraint. Then constraints from the
nonpositive groups (negative and zero coefficient groups) are
relaxed. The relaxed problem can identify a feasible point by
our theorem. Then it will be transformed for starting the sim-
plex algorithm without using artificial variables. Constraints
from the nonpositive groups are added for checking the
solution from the relaxed problem. Since artificial variables
is not used, the number of variables by our algorithm is
less than or equal to the number of variables by the simplex
algorithm. The number of constraints which solved by our
algorithm is less-than or equal to the number of constraints
which solved by the simplex algorithm. If all constraints
contain in the group M1, then the number of constraints
which solved by our algorithm and the simplex algorithm is
equal. At each iteration, our algorithm solves partial tableau
from the simplex tableau. So the dimension of parameters
which used by our algorithm is less than or equal to the
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Fig. 6. The average number of iterations for 30 variables.

dimension of parameters which the simplex algorithm used.
This is one of the advantage of our algorithm. If the group
M1 and M3 is empty, then we can conclude that the original
problem is unbounded without using the simplex algorithm.
This is an obvious advantage of our algorithm. Moreover,
we suggest the criteria to select the variable for mapping.
From the computational results, we found that iterations from
the selected variable which has the maximum cost of the
objective function outperform the simplex algorithm, and
another criteria.

REFERENCES

[1] M. S. Bazaraa, J. J. Jarvis and H. D. Sherali, Linear programming and
network flows, 2nd edn. New York : John Wiley, 1990.

[2] H.V. Junior and M.P.E. Lins, “An improved initial basis for the Simplex
algorithm,” Computers and Operations Research, vol. 32, pp. 1983–
1993, 2005.

[3] V. Klee and G. J. Minty, “How good is the simplex algorithm?,”
inequalities III, New York: Academic Press, pp. 159–175, 1972.

[4] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” Combinatorica, vol. 4, 373–395, 1984.

[5] Wei-Chang Yeh, H.W. Corley, “A simple direct cosine simplex algo-
rithm,” Applied Mathematics and Computation, vol. 214, pp. 178–186,
2009.

[6] H. Arsham, “An artificial-free simplex-type algorithm for general LP
models,” Mathematical and Computer Modeling, vol. 25, pp. 107–123,
1997.

[7] H. Arsham, “Initialization of the simplex algorithm: an artificial-free
approach,” SIAM Review vol. 39, pp. 736–744, 1997.

[8] A. Enge and P. Huhn, “A counterexample to H. Arsham’s “Initialization
of the simplex algorithm: an artificial-free approach, SIAM Review vol.
40, online, 1998.

[9] P.Q. Pan, “Primal perturbation simplex algorithms for linear program-
ming,” Journal of Computational Mathematics, vol. 18, pp. 587–596,
2000.

[10] H. Arsham, “Big-M free solution algorithm for general linear pro-
grams,” International Journal of Pure and Applied Mathematics, vol.
32, pp. 37–52, 2006.

[11] H. Arsham, “A computationally stable solution algorithm for linear
programs,” Applied mathematics and Computation, vol. 188, pp. 1549–
1561, 2007.

[12] H.W. Corley, Jar Rosenberger, Wei-Chang Yeh and T.K. Sung, “The
cosine simplex algorithm,” The international journal of Advanced
Manufacturing Technology, vol. 27, pp. 1047–1050, 2006.

[13] A. Boonperm and K. Sinapiromsaran, “The artificial-free technique
along the objective direction for the simplex algorithm,” Journal of
Physics: Conference Series, 490, pp. 1-4, 2014.

[14] A. Boonperm and K. Sinapiromsaran, “Artificial-free simplex algo-
rithm based on the non-acute constraint relaxation,” Applied Mathe-
matics and Computation, vol. 234, pp. 385-401, 2014.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017


	Introduction
	Preliminaries
	The relaxed problem
	The transformed problem

	The proposed algorithm
	The optimal solution case
	The unbounded case
	The special case
	Summary of the algorithm
	The proposed criteria

	Computational Results
	Conclusions
	References



