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Abstract—In the literature, some studies have shown that de-
termining the consistency of bipolar fuzzy relational equations
is NP-complete. Namely, the solution procedure for solving a
system of bipolar fuzzy relational equations with max-product
composition contains a high computational complexity. In this
study, some sufficient conditions for consistency of bipolar fuzzy
relational equations are proposed to reduce the difficulty of
detecting the case of an empty solution set. Numerical examples
illustrate that the proposed properties are simple to use and do
not require to generate the set of possible feasible solution pairs.

Index Terms—bipolar fuzzy relational equalities, max-
product composition, NP-complete.

I. INTRODUCTION

IN the literature, a system of fuzzy relational equations
usually formulates in a matrix form as follows:

x ◦A = b,

where x = (xi)1×m, A = [aij ]m×n and b = (bj)1×n are
all defined over [0, 1]. The operation “◦” represents a well-
defined algebraic composition for matrix multiplication.

Fuzzy relational equations have played an important role
in the field of fuzzy set theory [5], [13], [16] since the
first study proposed by Sanchez [17] in 1976. After then,
fuzzy relational equations or inequalities with different kinds
of compositions have been proposed over the years [11],
[12], [19]. The commonly seen max-min, maxi∈I(xi ∧
aij) = bj ,∀j ∈ J , and max-product compositions,
maxi∈I(aijxi) = bj ,∀j ∈ J , are special cases of the
max-triangular-norm (max-t-norm) composition. Di Nola et
al. [3] indicated that the solution set of fuzzy relational
equations with max-continuous t-norm composition can be
completely determined by a unique maximum solution and
a finite number of minimal solutions. The maximum solu-
tion can easily be computed by an analytic formula while
finding all of the minimal solutions become much more
difficult because it is NP-hard [1], [2], [10]. However, many
researchers continuously investigated relevant properties of
minimal solution and proposed novel solution methods [9],
[14], [15], [18], [20]. Furthermore, Lin et al. [8] presented
that all systems of max-continuous u-norm fuzzy relational
equations (e.g., max-product, max-continuous Archimedean
t-norm and max-arithmetic mean) are essentially equivalent,
because they all are equivalent to the covering problem.

In 2012, Li and Yang [7] left from the field of max-t-norm
composition to introduce the fuzzy relational inequalities
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with addition-min composition. In 2013, Perfilieva [15] pro-
posed a new sufficient condition and new solvability criteria
for two types of fuzzy relation equations with sup-* and inf-
→ compositions. Peeva [14] proposed a universal and exact
method, algorithms and software for solving fuzzy linear
systems of equations with max-min, min-max, and max-
product compositions etc. Matusiewicz et al. [11] showed
that the structure of the solution set of fuzzy relational
inequality with max-t-norm composition is similar to that
of the fuzzy relational equation.

Recently, Freson et al. [4] considered a generation of the
linear optimization problem subject to a system of bipolar
fuzzy relational equations with max-min composition. They
wanted to pursue the idea of taking into account antagonistic
effects for this new optimization problem. For instance, con-
sider a supplier who wants to optimize its public awareness
and attributes a degree of appreciation to their products. Such
a degree of appreciation can be denoted by a real number xi

in the unit interval [0, 1] whose complement x̃i = 1−xi in [0,
1] stands for the degree of disappreciation. Generally, when
the positive effect xi increases, the negative effect x̃i = 1−xi

will fall. It is called the bipolar character. It is clear that
the bipolar fuzzy relational equations contain the decision
vector and its negation simultaneously. Motivated by Freson
et al. [4], Li and Liu [6] considered the linear optimization
problem with bipolar max-Łukasiewicz equation constraints
and transformed this problem into a 0-1 integer linear pro-
gramming problem.

A system of bipolar fuzzy relational equations with max-
product composition formulates in the matrix form as fol-
lows:

x ◦A+ ∨ x̃ ◦A− = b (1)

where x = (xi)1×m, x̃ = (x̃i)1×m, A+ = [a+ij ]m×n, A− =

[a−ij ]m×n and b = (bj)1×n are all defined over [0, 1]. The
notation “∨” denotes max operation and the operation “◦”
represents the max-product composition. x̃i = 1−xi denotes
the bipolar character.

If either A+ or A− is the zero matrix, the system
(1) degenerates into unipolar max-product fuzzy relational
equations as x ◦ A+ = b or x̃ ◦ A− = b, respectively.
Essentially, solving the bipolar fuzzy relational equations
with max-product composition is to find a set of solution
vectors x = (xi)i∈I such that

max
i∈I
{a+ijxi, a

−
ij x̃i} = bj , j ∈ J , (2)

where index sets I = {1, 2, · · · ,m} and J = {1, 2, · · · , n},
respectively.

For investigating the solution set of bipolar max-min fuzzy
relational equations to (1),

max
i∈I
{min(a+ij , xi),min(a−ij , x̃i)} = bj , j ∈ J , (3)
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Freson et al. [4] first analyzed each single equation by a
piecewise linear function. Based on the analyzed results
which obtained from all of equations, then they structured the
solution set of (3) by taking proper intersections and unions.
They also figured out that the solution set of a system of
bipolar fuzzy relational equations can be determined by a
finite set of maximal and minimal solution pairs. However,
Li and Liu [6] presented that determining the consistency of a
system of bipolar fuzzy relational equations is NP-complete.
That is to say, applying the proposed solution procedure
by Freson et al. [4] for solving bipolar max-product fuzzy
relational equations of (2) contains the high computation
complexity. To improve the difficulty of solving this problem,
this study proposes some properties for the bipolar fuzzy re-
lational equations with max-product composition. Numerical
examples illustrate that the proposed properties can be easily
used to detect the case of an empty solution set of (2).

II. SOME RESULTS

For a system of fuzzy relational equations with continu-
ous max-t-norm composition, a well-known property exists
according to which its solution set, if non-empty, can be com-
pletely determined using a unique maximum solution and a
finite number of minimal solutions. However, this structural
property can not extend to the solution set of bipolar fuzzy
relational equations because the (2) contains the decision
vector and its negation simultaneously. To investigate the
property of the solution set, denoted by X(A+, A−, b),
for the bipolar fuzzy relational equations with max-product
composition in (2), some results are given as follows:
Lemma 1. If a+ij < bj and a−ij < bj , ∀i ∈ I holds for some
j ∈ J in (2), the solution set X(A+, A−, b) is empty.
Proof. Due to 0 ≤ xi ≤ 1 for each i ∈ I, if a+ij < bj and
a−ij < bj , ∀i ∈ I holds for some j ∈ J in (2), then this
result leads to

a+ijxi < bj and a−ij x̃i < bj

and no solution for x ∈ X(A+, A−, b) can satisfy the jth
equation in (2). �

According to Lemma 1 we can conclude that if solution set
X(A+, A−, b) of (2) is nonempty, for each j ∈ J , a+ij ≥ bj
or a−ij ≥ bj , for i ∈ I, that is bj ≤ maxi∈I{a+ij , a

−
ij} must

hold true.
Henceforth, this study assumes bj

a+
ij

→ ∞ and bj

a−
ij

→ ∞
for all i ∈ I, j ∈ J if a+ij = 0 or a−ij = 0. We also define
a−
ija

+
ij

a−
ij+a+

ij

= 0 if a+ij = 0 and a−ij = 0.

Lemma 2. If x = (xi)i∈I ∈ X(A+, A−, b) 6= ∅ is a
feasible solution for (2), maxj∈J {1 − bj

a−
ij

, 0} ≤ xi ≤

minj∈J { bj
a+
ij

, 1},∀ i ∈ I.

Proof. For any solution x = (xi)i∈I ∈ X(A+, A−, b) 6= ∅,

max
i∈I
{a+ijxi, a

−
ij x̃i} = bj , j ∈ J ,

This implies that a+ijxi ≤ bj and a−ij x̃i ≤ bj , for all i ∈ I,
for each j ∈ J .

Consider the situation where a+ijxi ≤ bj to yield xi ≤ bj
a+
ij

,
for each j ∈ J .

The other situation is where a−ij x̃i = a−ij(1 − xi) ≤ bj to
yield xi ≥ 1− bj

a−
ij

, for each j ∈ J .

Combining the results of these two situations with each
variable xi ∈ [0, 1], i ∈ I, can yield

max
j∈J
{1− bj

a−ij
, 0} ≤ xi ≤ min

j∈J
{ bj
a+ij

, 1},∀ i ∈ I. �

Lemma 2 shows that if x = (xi)i∈I ∈ X(A+, A−, b) 6=
∅ is a feasible solution for (2), the value of each
variable xi is bound between maxj∈J {1 − bj

a−
ij

, 0} and

minj∈J { bj
a+
ij

, 1},∀ i ∈ I. They can be called the lower
and upper bounds of variable xi, denoted using xi and x̄i,
respectively.

The lower bound xi = maxj∈J {1− bj
a−
ij

, 0} and the upper

bound x̄i = minj∈J { bj
a+
ij

, 1} of variable xi, i ∈ I can be
easily computed, but they may not be solutions for (2).
Remark. Clearly, Lemma 2 can further deduce that if
variable xi exists the case xi > x̄i, for some i ∈ I, then
the solution set of (2) is empty.
Lemma 3. If x = (xi)i∈I ∈ X(A+, A−, b) 6= ∅ is a feasible

solution for (2), maxi∈I{
a−
ija

+
ij

a−
ij+a+

ij

} ≤ bj ≤ maxi∈I{a+ij , a
−
ij}

for all j ∈ J .
Proof. According to Lemma 2, if x = (xi)i∈I ∈
X(A+, A−, b) 6= ∅ is a feasible solution for (2), xi =
maxj∈J {1− bj

a−
ij

, 0} ≤ xi ≤ x̄i = minj∈J { bj
a+
ij

, 1},∀ i ∈ I.
This implies that for each j ∈ J the following inequalities
hold true:

1− bj

a−ij
≤ xi and x̄i ≤

bj

a+ij
, i ∈ I, for all j ∈ J .

Since xi ≤ x̄i, there exists 1 − bj
a−
ij

≤ bj
a+
ij

, i ∈ I such that
a−
ija

+
ij

a−
ij+a+

ij

≤ bj , i ∈ I. Hence, maxi∈I{
a−
ija

+
ij

a−
ij+a+

ij

} ≤ bj , for all
j ∈ J .

In addition, bj ≤ maxi∈I{a+ij , a
−
ij} according to Lemma

1. Hence,

max
i∈I
{

a−ija
+
ij

a−ij + a+ij
} ≤ bj ≤ max

i∈I
{a+ij , a

−
ij} for all j ∈ J . �

Lemma 3 shows that if the value of bj is not in the range

of maxi∈I{
a−
ija

+
ij

a−
ij+a+

ij

} to maxi∈I{a+ij , a
−
ij} for some j ∈ J ,

the system of (2) is inconsistent. Hence, Lemma 3 can be
used to check whether the solution set of (2) is empty or not.
Example 1. Consider the following matrix form of bipolar
fuzzy relational equations with max-product composition.
We use this example to detect the case of an empty solution
set by verifying Lemma 3.

x ◦A+ ∨ x̃ ◦A− = b

where x = (x1, x2, · · · , x6), x̃ = (x̃1, x̃2, · · · , x̃6), x̃i = 1−
xi, i ∈ I = {1, 2, · · · , 6},

A+ =



0.45 0.11 0.18 0.05 0.16 0.23

0.21 0.12 0.11 0.08 0.17 0.16

0.32 0.32 0.15 0.18 0.37 0.20

0.05 0.19 0.30 0.25 0.24 0.35

0.96 0.32 0.25 0.21 0.37 0.36

0.27 0.21 0.22 0.12 0.26 0.27


,
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A− =



0.18 0.09 0.12 0.14 0.10 0.21

0.37 0.29 0.10 0.01 0.09 0.49

0.16 0.77 0.07 0.12 0.02 0.44

0.24 0.11 0.20 0.04 0.13 0.47

0.09 0.19 0.09 0.27 0.13 0.30

0.01 0.17 0.08 0.17 0.06 0.22


,

b = ( 0.32, 0.25, 0.10, 0.16, 0.24, 0.18).

Followong Lemma 3, we use the range of terms,

maxi∈I{
a−
ija

+
ij

a−
ij+a+

ij

} and maxi∈I{a+ij , a
−
ij} for all j ∈ J =

{1, 2, · · · , 6}, to check whether Example 1 is empty or not.
Compute

max
i∈I
{ a−i1a

+
i1

a−i1 + a+i1
}

= max{0.129, 0.134, 0.107, 0.041, 0.082, 0.010} = 0.134

and

max
i∈I
{a+i1, a

−
i1}

= max{0.45, 0.37, 0.32, 0.24, 0.96, 0.27} = 0.96

to yield 0.134 ≤ b1 = 0.32 ≤ 0.96.
Using the same calculation, we can get the other terms as

follows:

0.226 ≤ b2 = 0.25 ≤ 0.77, 0.120 � b3 = 0.10 ≤ 0.30,

0.118 ≤ b4 = 0.16 ≤ 0.27, 0.096 ≤ b5 = 0.24 ≤ 0.37,

and 0.201 � b6 = 0.18 ≤ 0.49.

Clearly, Lemma 3 is not satisfied by the above results.
Hence, Example 1 is inconsistent. �

Moreover, Lemma 2 can also be used to check the con-
sistency of (2). Let us compute the lower bound and upper
bound of variable xi for Example 1 to yield

x̄ = (x̄i)i∈I = (0.556, 0.909, 0.649, 0.333, 0.333, 0.455)

and
x = (xi)i∈I = (0.167, 0.633, 0.675, 0.617, 0.407, 0.182).

Because above results show x̄3 = 0.649 < x3 =
0.675, x̄4 = 0.333 < x4 = 0.617 and x̄5 = 0.333 < x5 =
0.407, such that Example 1 is inconsistent by Lemma 2.
Definition 1. For any variable xi, i ∈ I in (2), xi is called a
binding variable for the jth bipolar fuzzy relational equation
if a+ijxi = bj or a−ij x̃i = bj holds true for some j ∈ J . The
set J(xi) := {j ∈ J |a+ijxi = bj , or a−ij x̃i = bj ,∀j ∈ J }
denotes the binding set of the binding variable xi.

Note that a feasible solution for bipolar fuzzy relational
equations with max-product composition in (2) is to find a
set of vector x = (xi)i∈I that satisfies all equations. By
Definition 1, to find a solution for (2) can be considered the
selection of binding variables from the binding sets J(xi)
and J(x̃i) to satisfy all equations.
Theorem 1. Let x = (xi)i∈I be a solution for (2) and,
x = (xi)i∈I and x̄ = (x̄i)i∈I represent vectors of the lower
and upper bounds, respectively. If xi is binding in the jth
equation, x̄i or xi is also binding there. Moreover, if x̄i

and xi are non-binding variables, xi is also non-binding any
solution x.

Theorem 1 shows that for any solution x = (xi)i∈I ∈
X(A+, A−, b), if xi is a binding variable, x̄i or xi is also
binding there, that is J(xi) ⊆ J(x̄i)

⋃
J(xi).

Definition 2. Let xi = maxj∈J {1 − bj

a−
ij

, 0} and x̄i =

minj∈J { bj
a+
ij

, 1} be the corresponding lower bound and upper
bound of variable xi, i ∈ I for (2). Two index sets define
as follows:

Ij := {i ∈ I|xia
−
ij = bj , i ∈ I},

and
Īj := {i ∈ I|x̄ia

+
ij = bj , i ∈ I},∀j ∈ J .

For Definition 2, index sets Ij and Īj denote that the
possible variables of x may be selected as a binding variable
in the jth equation.
Lemma 4. If index sets with Ij = Īj = ∅ for some j ∈ J
exists, then the solution set X(A+, A−, b) of (2) is empty.
Proof. For any solution x = (xi)i∈I ∈ X(A+, A−, b), all
equations must be satisfied. Furthermore, Theorem 1 shows
that if xi is a binding variable, x̄i or xi is also binding there.
Hence, index sets with Ij = Īj = ∅ show that no any possible
variables of x can be selected as a binding variable in the
jth equation. Hence the solution set X(A+, A−, b) of (2) is
empty. �
Example 2. Consider the following matrix form of bipolar
fuzzy relational equations with max-product composition.
We use this example to detect the case of an empty solution
set by verifying Lemma 4.

x ◦A+ ∨ x̃ ◦A− = b

where x = (x1, x2, · · · , x6), x̃ = (x̃1, x̃2, · · · , x̃6), x̃i = 1−
xi, i ∈ I = {1, 2, · · · , 6},

A+ =



0.45 0.11 0.18 0.05 0.16 0.23

0.21 0.12 0.11 0.08 0.25 0.16

0.32 0.32 0.15 0.18 0.37 0.20

0.05 0.19 0.30 0.25 0.24 0.35

0.48 0.32 0.31 0.21 0.37 0.36

0.27 0.21 0.22 0.12 0.26 0.27


,

A− =



0.18 0.09 0.12 0.24 0.10 0.21

0.37 0.29 0.10 0.01 0.09 0.49

0.16 0.64 0.07 0.12 0.02 0.44

0.24 0.11 0.20 0.04 0.13 0.47

0.09 0.19 0.50 0.27 0.13 0.30

0.01 0.17 0.08 0.17 0.06 0.22


,

b = ( 0.32, 0.25, 0.36, 0.16, 0.24, 0.28).

Following Lemma 3, we consider the range of terms,

maxi∈I{
a−
ija

+
ij

a−
ij+a+

ij

} and maxi∈I{a+ij , a
−
ij} for all j ∈ J =

{1, 2, · · · , 6}, to check the consistency of Example 2.
We can get the terms as follows:

0.134 ≤ b1 = 0.32 ≤ 0.48, 0.213 ≤ b2 = 0.25 ≤ 0.64,

0.191 ≤ b3 = 0.36 ≤ 0.50, 0.118 ≤ b4 = 0.16 ≤ 0.27,

0.096 ≤ b5 = 0.24 ≤ 0.37, 0.201 ≤ b6 = 0.28 ≤ 0.49.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2017 Vol II, 
IMECS 2017, March 15 - 17, 2017, Hong Kong

ISBN: 978-988-14047-7-0 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2017



Clearly, Lemma 3 is satisfied by above results. However,
we cannot verify the consistency of Example 2.

Computing the corresponding lower bound and upper
bound of variable xi for Example 2 can obtain

x̄ = (x̄i)i∈I = (0.711, 0.960, 0.649, 0.640, 0.649, 0.923)

and
x = (xi)i∈I = (0.333, 0.429, 0.609, 0.404, 0.407, 0.059).

Above results show that each of the lower bound xi is less
than the upper bound x̄i,∀i ∈ I = {1, 2, · · · , 6}. Namely,
the above results do not violate Lemma 2. However, we also
cannot verify the consistency of Example 2.

For Example 2, the corresponding index sets Ij and Īj , j ∈
J = {1, 2, · · · , 6} can be yielded by Definition 2 as follows:

I1 = ∅, Ī1 = {1}; I2 = {3}, Ī2 = ∅;
I3 = ∅, Ī3 = ∅; I4 = {1, 5, 6}, Ī4 = {4};
I5 = ∅, Ī5 = {2, 3, 5, 6}; I6 = {2, 4}, Ī6 = ∅.

Since I3 = Ī3 = ∅, it leads that the solution set of Example
2 is empty by Lemma 4. �

III. CONCLUSION

In this study, we propose some properties to detect the case
of an empty solution set of bipolar fuzzy relational equations
with max-product composition. Numerical examples illus-
trate that for detecting the case of an empty solution set, the
proposed properties is simple to use and does not require to
generate the set of possible feasible solution pairs.
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