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Heuristic Methods for the Unrestricted Dynamic
Container Relocation Problem
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Abstract—In this work, we address the unrestricted Dynamic
Container Relocation Problem (DCRP). The DCRP is an ex-
tension of the Container Relocation Problem (CRP) that is NP-
hard. The CRP aims to empty a single yard-bay, which contains
containers with a given retrieval sequence from the yard-
bay, such that the total number of relocations is minimized.
The DCRP extends the CRP so that containers both arrive
and depart at the yard-bay. The unrestricted DCRP relaxes
a common assumption which enforces container relocations
are performed only to retrieve containers that needs to leave
the yard-bay. A mathematical formulation is suggested for
the unrestricted DCRP. Then, three efficient heuristic methods
are offered. An extensive set of computational experiments
is performed on standard test instances. Our results indicate
that savings can be achieved by using the suggested heuristic
methods.

Index Terms—Container relocation, cleaning moves, heuris-
tics, integer programming.

I. INTRODUCTION

HE global containerized cargo flow have increased to

a total of 171 million Twenty-Equivalent Units (TEUs)
in 2014 [1]. Excluding the effect of the negative growth of
world’s economy in 2008, the volume of container trade has
an average annual growth of over 5% since 1996 [1]. This
implies that container terminals are expected to operate more
efficiently to meet increasing demand for cargo handling.
Additionally, container liner shipping companies continue to
order mega container vessels requiring container terminal
operations to be managed well. The container terminal area
can be divided into two areas: quay side and yard side. Berth
allocation, quay crane assignment and scheduling, and vessel
storage planning can be considered as quay side operations.
Transfer of containers from quay side, scheduling of yard
cranes, and storage allocation and placement of containers
at the yard storage area constitute yard side operations. This
work focuses on the yard side operations. In particular, we
address the unrestricted Dynamic Container Relocation Prob-
lem (DCRP) which arises in a single yard-bay in container
terminal yard areas.

The DCRP generalizes the so called “static” Container
Relocation Problem (CRP) which is shown to be NP-hard [2].
The CRP tries to minimize the total number of relocations
required to clear out a single yard-bay with a container
storage capacity of C' columns (stacks) and H rows (tiers)
where initially NV containers exist in the yard-bay with known
retrieval order. In addition to container retrievals, the DCRP
allows container arrivals at the yard-bay resulting in a more
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realistic problem than the CRP. The DCRP aims to minimize
the total number of relocations in a yard-bay with given
arrival and retrieval sequences of N containers.

The CRP is classified as the restricted and unrestricted
CRP with respect to the existence of its original assumptions
given by [3]. The restricted problem assumes that the relo-
cations can only be performed to take a container out of the
yard-bay. On the other hand, unrestricted CRP relaxes this
assumption and allows pre-marshaling operations to reduce
future relocations. In this work, we address the unrestricted
DCRP. To the best of our knowledge, this is the first study
addressing the unrestricted DCRP. The contribution of this
study can be summarized as follows. First, we propose a
mathematical programming formulation for the unrestricted
DCRP. Second, we develop three heuristic approaches for
the unrestricted DCRP. Third, we perform our computational
experiments on a standard set of test instances from the
literature. Our results imply that the suggested heuristic
methods are able to produce promising outcomes for the
unrestricted DCRP. In what follows, we give a brief review
of the relevant literature for the CRP and the DCRP.

There exist a considerable amount of studies that consider
the CRP within the last two decades. Kim et al. [4] aims to
minimize the expected number of relocations for the case of
grouped containers based on their weights. Kim and Hong [3]
offer a branch and bound (BB) algorithm and employ a rule
based heuristic approach for the CRP. Wan et al. [5] is the
first study offering a mathematical programming formulation
for the CRP where the authors present fast heuristics for the
CRP. Caserta et al. [6] use a metaheuristic algorithm named
as “corridor method” that is based on dynamic programming.
A tree search based solution procedure is given by [7]. The
CRP is shown to be NP-hard by [2]. Caserta et al. [2] offer
two mathematical programming formulations: the first solves
the unrestricted CRP and the second solves the restricted
CRP. Unliiyurt and Aydin [8] consider a different objective
of minimizing the total time to empty a yard-bay with
heuristic procedures. Petering and Hussein [9] develop an
improved formulation and a look-ahead heuristic method for
the unrestricted CRP. Jovanovic and Vo [10] suggest chain
heuristics that employ the Max-Min (MM) algorithm used
by [2] for the CRP. The work by [11] is an excellent survey
on CRP and related studies. Jin et al. [12] offer a greedy
look-ahead heuristic approach for solving both restricted and
unrestricted CRP. Zehendner et al. [13] propose an improved
CRP formulation which works efficiently. Recently, Ku and
Arthanari [14] employ an exact abstraction method that can
significantly reduce the search space of the CRP.

Wan et al. [5] is the first study addressing the DCRP. Rei
and Pedroso [15] proves that the DCRP is NP-hard. Akyiiz
and Lee [16] suggests the first mathematical programming
formulation for the DCRP. The authors [16] also implement
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efficient heuristic procedures for the DCRP. Konig et al.
[17] focuses on a similar problem of stacking steel slabs.
Casey and Kozan [18] deals with a DCRP having a different
objective of minimizing the total processing time of the
straddle carrier serving a single yard-bay. Borjian et al.
[19] study a variant of the DCRP by introducing a class of
flexible service policies to make minor changes in the order
of container retrievals. Recently, Zhang et al. [20] focus on
a CRP where containers can be handled in batches (i.e., two
containers simultaneously).

The rest of this work is organized as follows. In Section
2, we introduce the unrestricted DCRP and its mathematical
programming formulation. Section 3 presents three straight-
forward heuristic approaches for the unrestricted DCRP. This
is followed by Section 5 where we present our computational
results. Conclusions are presented in Section 6.

II. THE UNRESTRICTED DYNAMIC CONTAINER
RELOCATION PROBLEM

A yard-bay contains C' container stacks (or columns). Each
column has a capacity to accumulate H tiers (or rows) of
containers on top of each other. Slot is the term used to
state the space occupied by a container that is defined by its
column and row number. A yard crane serves the yard-bay
of interest and it has access to the containers only from the
top slot of a column. Hence, when a target container is to
be retrieved from the yard-bay, the yard crane should first
remove all the containers above it. The containers above the
target containers are misplaced and they called as blocking
containers. A blocking container needs to be repositioned
into another column within the yard-bay in order to reach a
target container. This repositioning of a blocking container
is denominated as a relocation. In addition, a container is
an arrival (retrieval) container when a container is to arrive
(depart) at the yard bay. Then, the unrestricted DCRP aims to
minimize the total number of relocations performed to handle
N containers whose arrival/departure times at the yard-bay
are known in advance. The restricted DCRP has the following
assumptions given by [16]: “Al: The yard-bay is served
by one yard crane which can handle a single container
at a time. A2: The sequences of the events described by
arrival and retrieval of containers are known a priori. A3:
Relocations are allowed only at the departure time period of
the containers and a container can be relocated at most once
at a time period. A4: Relocations can occur only within the
yard-bay. AS5: Containers are of the same type in the yard-
bay.” This work focuses on the unrestricted DCRP in which
the assumption A3 is relaxed. Removing assumption A3
permits pre-marshaling operations between container arrivals
and departures to reduce the number of future relocations that
has to be made in the existence of A3.

Let ¢t = 1,...,T denotes the maximum allowed number
of time periods that a yard crane is in service. Define T}
and T as the arrival and departure time of container i that
can join/depart at the yard-bay. Here, it is assumed that
a container handling operation is completed within a pre-
defined amount of time shown as p. That is, total service time
for the yard crane is p - T'. The following decision variables
are used. x!, is a binary decision variable which takes a
value of 1 if and only if container ¢ is at column c at time
t and zero otherwise. Similarly, y!, equals 1 if and only if
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container ¢ is at height h at time ¢ and zero otherwise. The
binary variable vf,, becomes 1 if and only if container 7 is
in column c at height h at time ¢ which keeps the position
of a container i using binary variables !, and y!,. Lastly,
the binary variables 7, a! and d! take a value of 1 if and
only if container ¢ is relocated at time ¢, container ¢ arrives
to the yard-bay after time ¢ and container ¢ leaves the yard-
bay before time ¢, respectively, and zero otherwise. Now, the
mathematical programming formulation of the unrestricted

DCRP can be given as follows.

UDCRP:
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The objective function (1) tries to minimize the total
handling time of the yard crane to serve N containers.
Constraints (2) ensure that at most one container is placed
within a slot of the yard-bay. Constraints (3) and (4) are
capacity constraints stating that the maximum height of
each column is limited by the number of rows H and the
maximum number of columns at each tier is C, respectively.
Constraints (5), (6) and (7) define the relationship between
binary variables indicating the location of containers. Con-
straints (8) and (9) indicate that a container occupies a space
within the yard-bay if and only if it has joined and did not
leave the yard-bay. Thus, if df —a! is positive, then container
1 exists within the yard-bay. Otherwise, it does not occupy a
slot. Constraints (10) guarantee that containers do not float
in the air. A slot becomes available for placement as long as
there are other containers underneath or it is at the ground
level. Constraints (11) imply that at most one relocation
can be performed in a time period ¢. Constraints (12), (13),
(14) and (15) enforce that a container maintains its current
position in the yard-bay for the next time period ¢ 4 1 if it
is not relocated. Constraints (16) state that when a container
is relocated at time ¢, then it can not be located at the same
column in the next time period ¢ + 1. When a container has
not arrived at the yard-bay (i.e., al = 1), it can not occupy
a space within the yard-bay (i.e. z{, =0 forall c=1,...,C
) by constraints (17) and (18). Similarly, if a container has
left the yard-bay (i.e., df = 0), then it can not exists within
the yard-bay (i.e., xf, = 0) by constraints (19) and (20).
Constraints (21) and (22) respectively restrict the joining time
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of a container to be earlier than or equal to its arrival time
and the retrieving time of a container to be later than or equal
to its departure time at the yard-bay. Once a container joins
the yard-bay at time ¢ (i.e., af = 0 ) constraints (23) prevent
that it can join the yard-bay again for the time periods after
t (i.e., t + 1,1 4+ 2 etc.). Similarly, constraints (24) is for the
case of container departures from the yard-bay. Constraints
(25), (26), (27) and (28) help maintaining the sequence to
join and leave the yard bay with respect to the arrival and
retrieval times of containers. Namely, when container ¢ would
Join the yard-bay earlier than a container j, i.e., T;" <T7', it
guarantees that container j is accepted later than container 1.
When a container 7 joins the yard-bay at time ¢ (i.e., a’ = 0),
constraints (29) provide that a! = 0 for all remaining time
periods until 7. When a container 7 leaves the yard-bay at
time ¢ (i.e., dt = 0), constraints (30) ensure that d} = 0 for all
remaining time periods until 7T'. Lastly, the binary restrictions
are given by constraints (31)—(34).

III. HEURISTIC METHODS FOR THE UNRESTRICTED
DCRP

The UDCRP is a binary programming formulation which
quickly becomes intractable as the number of time periods 7',
the number of containers N to be served and the size of the
yard-bay increase. As a remedy, we suggest three heuristic
methods in the following.

A. The Unrestricted Dynamic Reshuffling Index Heuristic

Reshuffling Index (RI) heuristic is originally proposed by
[21] for the CRP. When a container is to be relocated, a
reshuffling index, i.e., RI, is calculated for each column c.
RI is determined as the number of blocking containers in
a column. Notice that, blocking containers need not consist
of the ones blocking only the earliest container that leaves
the yard-bay. Once the retrieval container is taken out of the
yard-bay, there can be other blocking containers underneath.
Therefore, RI of a column c is the total number of blocking
containers in column c. The RI is adapted for the restricted
DCRP by [16] such that it also considers the arrival con-
tainers to obtain RI of columns. For the unrestricted DCRP,
relocations can be performed not only to retrieve a container
from the yard-bay, but also between the retrieval (or arrival)
of containers. The term cleaning move is used to define the
relocations executed to clean the blocking containers within
the yard-bay and place them in a column where they are no
longer a blocking container. Recall that, blocking containers
are misplaced so that they have to be relocated to reach a
target container. Cleaning moves have a chance to reduce
the number of future relocations by allowing pre-marshaling
of containers. Then, the Unrestricted Dynamic Reshuffling
Index (UDRI) heuristic performs cleaning moves by letting
the relocation of containers between retrieval and arrival of
containers. The RI of a container that is going to be cleared
(i.e., by a cleaning move) is also calculated as described.
Similarly, for a retrieval or arrival container RI is determined
for each column. The location of a container is decided such
that it is assigned to the column which has the lowest RI
value among all available columns. Clearly, a column c is
not available if it is full or it is the same column with the
container to be relocated. When there is a tie among the
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RI values of the columns, the container is assigned to the
highest column. In case of a further tie for the height of the
columns, then the selection of a column is made randomly
among the tie columns. The UDRI heuristic attempts to find
if there exists a cleaning move before the retrieval (or arrival)
of a target container. When there exist such a cleaning move,
UDRI first performs the cleaning move and then focuses on
the retrieval (or arrival) container. We limit ourselves with
up to two cleaning moves in between retrieval (or arrival) of
containers. The RI values are determined for each container
relocation as mentioned. The UDRI heuristic ends when all
containers are handled.

B. The Unrestricted Dynamic Min-Max Heuristics

The Min-Max (MM) heuristic is first suggested by [2]
for the CRP. Then, it is further improved by [10]. The MM
heuristic aims to prevent new relocations that may be created
by blocking containers. That is to say, a blocking container
may continue to be a blocking container after it is relocated
in reaching a target container. So the MM heuristic tries
to refrain from creating new blocking containers as much
as possible. For that purpose, the MM heuristic employs
priorities that are defined as the inverse order of the retrieval
sequence for containers. A container has a higher priority
when its departure time is earlier than other containers. The
relocation of blocking containers are performed depending
on their priorities. The columns are also assigned a priority
level that is evaluated as the priority of the earliest departing
container (i.e. the priority of the container with the highest
priority) within the column. Empty columns has the lowest
priority and the heuristic tries to save empty columns for later
departing containers when possible. A blocking container is
first relocated to a column with a lower priority than the
blocking container. It is possible that there are more than
one such columns. In this case, the blocking container is
placed in the column having the highest priority. On the
other hand, when there is no column with a lower priority
than the blocking container, this implies that the blocking
container needs to be relocated one more time after it is
repositioned. In such a case, the blocking container is placed
to the column having the lowest priority (i.e., the column
whose earliest container leaves the yard-bay latest among all
columns). Thus, the next relocation of the blocking container
occurs as late as possible until the earliest departing container
has to leave the yard-bay.

The first Unrestricted Dynamic Min-Max (UDMMI)
heuristic inherits the MM heuristic ideas. In the unrestricted
DCREP, arrival of the containers are taken into account such
that the MM heuristic rule is applied on the arrival container.
Namely, deciding the position of arrival containers need
additional effort. Arrival containers can be placed to all
columns having an empty slot is evaluated. Here, notice that,
the column of a blocking is excluded from consideration
when it is to be relocated. Similar to the UDRI heuristic,
UDMMI heuristic allows cleaning moves between container
retrievals and arrivals. The containers on which cleaning
move is applied undergo the MM heuristic rules as described.
The number of cleaning moves is restricted to be at most two
moves at each container retrieval and arrivals.

The second UDMM (UDMM?2) heuristic benefits from
the improvement offered by [10] on the MM heuristic. [10]
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noticed that when a blocking container is relocated and it
continues to be a blocking container, it would be better to
reposition the blocking container in a column which has at
most H — 2 containers. This implies that the new column of
a blocking container is not full for the next stages. In such a
case, the corresponding column maintains its chance to host
one more container with the hope that its priority is higher
than the column priority. This modification is employed for
our implementation of the UDMM2 heuristic. The remaining
steps of the UDMM?2 heuristic is the same as the UDMMI1
heuristic.

IV. COMPUTATIONAL EXPERIMENTS

In this section, we first give our computational results
on the performance of the UDCRP formulation. Next, we
present the outcome of our heuristic methods on standard
test instances. Our experiments are performed on a Dell
Precision T5810 workstation with Intel(R) Xeon(R) ES5-
1650v3 processor of 3.50 GHz and 64 GB RAM operating
within Microsoft Windows 7 Pro 64-bit environment. The
callable library of Gurobi 5.6.3 with default settings is used
to solve the UDCRP formulation and all codings are written
in C*F programming language.

A. The Performance of the UDCRP Formulation

Table I presents the performance of our UDCRP formu-
lation on standard test instances with heavy container traffic
by [16]. The first column states the size of the test instances
for which there exists C' columns and H rows in the yard-
bay as well as the number of time periods 7' to retrieve
five containers from the yard-bay. Here, each cell gives the
average of five test instances. The second column stands for
the upper bound value obtained. The third column shows the
number of relocations performed within the yard-bay. The
last column gives the average CPU times in seconds. The test
instance, that is marked with *, having 6 columns and 6 rows
yielded an output only for three out of five test instances. The
performance of the UDCRP formulation quickly deteriorates
even on small instances. Next, we proceed to our results with
the suggested heuristic methods.

TABLE I
THE PERFORMANCE OF THE UDCRP FORMULATION ON STANDARD
TEST INSTANCES BY [16].

Instance UB Number of || CPU (s)
C,H,T) Relocations

(6, 2, 19) 158.8 7.8 62.94
(6, 3, 23) 267.8 8 1037.17
(6, 4, 27) 336.4 8 3662.20
(6, 5, 21) 136.4 8 1541.69
(6, 6, 36)* 428.8 8 4833.53

B. The Performance of the Heuristic Methods for the UD-
CRP

The performance of the UDRI, UDMMI1 and UDMM?2
heuristics is tested on standard test instances by [16]. These
instances have Medium and High Density container traffic
in the yard-bay and they are shortly indicated as MD and
HD, respectively. The yard-bay has C' = 6 columns and
height H selected from the set H € {2,3,4,5,6}. The
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number of containers that are retrieved from the yard-bay
are chosen from the set {5, 50, 100, 200, 400, 800}. For each
combination of density, height and number of containers 20
test instances exists, thus, a total of 1200 test instances are
considered. The details on the generation of the test bed and
its properties can be obtained from [16]. Table II shows the
summary of the performance of the UDRI heuristic. The first
column gives the property of the test instances the density
as “MD” or “HD”, the number of columns and rows of the
yard-bay in parenthesis, i.e., (C,H). The UDRI heuristic is
considered with at most one or two Cleaning Moves (CM),
that are indicated as “1 CM” and “2 CM”. The number of
relocations made to finish container handling operations is
given in the rows under “UB” and their corresponding CPU
time is shown under “CPU”. The UDRI heuristic is run for
100 times and the best upper bound is reported here. Notice
that each cell states the average of 120 test instances in
Table II as described. Average values of different densities
are given in the row below the MD and HD instances. Note
that, the values superior than other heuristic methods are
marked in bold characters.

TABLE II
THE PERFORMANCE OF THE UDRI HEURISTIC ON STANDARD TEST
INSTANCES BY [16].

Instance UDRI (I CM) UDRI (2 CM)
(C,H) UB | CPU UB | CPU
MD (6,2) 0.15 | 0.04 0.17 | 0.04
MD (6,3) 3.83 | 0.05 395 [ 0.05
MD (6,4) 30.77 | 0.06 31.95 | 0.06
MD (6,5) 69.34 [ 0.06 70.86 | 0.06
MD (6,6) 115.74 | 0.07 118.89 | 0.07
Average 43.97 | 0.06 45.16 | 0.06
HD (6,2) 40.18 | 0.05 40.88 | 0.04
HD (6,3) || 102.33 | 0.09 || 105.09 | 0.07
HD (6,4) [[ 159.35 | 0.08 163.03 | 0.08
HD (6,5) || 241.71 | 0.09 [[ 247.18 | 0.09
HD (6,6) || 318.12 | 0.10 [[ 323.68 | 0.10
Average || 172.34 | 0.08 17597 | 0.08

Table III stands for the summary of the performance of the
UDMMI1 and UDMM?2 heuristics. The outline of the Table
IIT is very similar to Table II. The CPU times of UDMM
heuristics are negligible, i.e., 0.00, for all test instances.
Therefore, we do not include them in Table III for the sake
of brevity. The first column shows the instance properties
as before. Remaining columns present the number of relo-
cations (i.e., UB) performed to complete container handling
operations. The UDMM1 and UDMM?2 are also tested for 1
CM and 2 CM as described. Average values are given for
each traffic density of the test instances in the row under
them. The best performing heuristic is distinguished with
bold characters. The performance of the heuristic methods is
better for 1 cleaning move at most. It is observed that the
performance of our heuristic methods deteriorates when the
number of cleaning moves becomes greater than or equal to
two CM. The UDRI heuristic with 1 CM yields slightly better
results than the other heuristics on medium density instances
with height of two and three rows in the yard-bay. Broadly
speaking, MM type heuristics significantly outperform the RI
based heuristic. The UDMMI1 heuristic with 1 CM arises to
be the best performing heuristic in high density test instances.
Furthermore, the UDMM1 heuristic is the best for medium
density instances with height of H = 6 rows. Nevertheless,
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the UDMM?2 heuristic is superior than the others for medium
density instances with height of four and five rows in the
yard-bay. The unrestricted DCRP is a difficult problem to
solve to optimality. Indeed, the UDCRP formulation can only
be solved for very small instances. The heuristic methods
proposed in this work quickly yields promising outcomes
for the unrestricted DCRP.

TABLE III
THE PERFORMANCE OF THE UDMM1 AND UDMM?2 HEURISTICS ON
STANDARD TEST INSTANCES BY [16].

Instance UDMMI1 UDMM?2
(C,H) (1 CM) 2 CM) (T CM) 2 CM)
MD (6,2) 0.28 0.28 0.28 0.28
MD (6,3) 3.96 397 3.85 3.90
MD (6,4) 23.23 23.38 22.70 23.13
MD (6,5) 49.42 49.87 47.45 48.70
MD (6,6) 80.70 82.96 81.47 81.73
Average 31.52 32.09 31.15 31.55
HD (6,2) 35.70 36.26 35.70 36.26
HD (6,3) 84.75 87.91 113.53 115.15
HD (6,4) 125.83 128.78 143.01 144.36
HD (6,5) 183.96 186.87 208.00 209.43
HD (6,6) 236.43 238.78 254.53 255.07
Average 133.33 135.72 150.95 152.05

V. CONCLUSION

In this work, we addressed the unrestricted DCRP. The
unrestricted DCRP tries to handle arrival and retrieval of
containers at a single yard-bay while minimizing total num-
ber of container relocations. Unlike the restricted DCRP, the
unrestricted problem relaxes the assumption that relocations
are only made at container retrievals (or arrivals). Therefore,
unrestricted DCRP permits pre-marshaling operatios to re-
duce the number of future container relocations at the yard-
bay. For all we know, the unrestricted DCRP is new to the
literature. We suggested a mathematical programming for-
mulation for the unrestricted DCRP. The performance of the
UDCRP formulation is limited for solving small instances.
Then, we offer efficient heuristics for the unrestricted DCRP.
An extensive set of computational experiments is performed
on standard test instances.

Three efficient heuristic methods are devised for the unre-
stricted DCRP. The first heuristic UDRI employs the RI idea
by [21]. The second and third heuristics are enhancements
of the known min-max heuristics for the unrestricted DCRP.
Our results suggest that the UDMMI heuristic yields better
performance than the UDRI and UDMM2 heuristics in
general. However, the UDRI and UDMM?2 heuristics can be
superior on medium density test instances. The suggested
heuristic methods are very efficient to produce quick solu-
tions at a yard-bay. Considering the fact that the container
terminals are very busy and require fast decision making, our
solution methods are also promising for practical usage.

Existing mathematical formulations for the unrestricted
and restricted DCRP can only be used for small problems.
Therefore, designing new formulations and exact solution
approaches can be a good further research direction. This
study only focused on rule based heuristic methods. Tree
search based heuristics, i.e., beam search, for the unrestricted
DCRP can be a fruitful future research area.
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