Super Edge-Magic Labeling of Some Fan Graphs

Wannaporn Sanprasert and Ngarmcherd Danpattanamongkon

Abstract—For a graph $G(V, E)$ with p vertices and q edges, a bijective function f from $V(G) \cup E(G)$ to $\{1, 2, ..., p+q\}$ is called a super edge-magic labeling of G if $f(V(G)) = \{1, 2, ..., p\}$ and there exists a constant k such that for any edge uv of G, $f(u) + f(v) + f(uv) = k$. A graph G is called super edge-magic if there exists a super edge-magic labeling of G. In this paper, we shows that the fan graph $F_n,2$ and $mF_n,2$ is a super edge-magic where n is a positive integer, m positive odd number and $m \geq 3$.

Index Terms—super edge-magic graphs, edge-magic labelings.

I. INTRODUCTION

The concept of super edge-magic labeling is motivated by edge-magic labeling. Let G be a graph with p vertices and q edges. The edge-magic labeling of G is a bijective function f from $V(G) \cup E(G)$ to $\{1, 2, ..., p+q\}$ which there exists a constant k such that for any edge uv of G, $f(u) + f(v) + f(uv) = k$. In this case, G is said to be edge-magic. In 1998, Enomoto et al. [2] defined a super edge-magic labeling of a graph G as an edge-magic labeling f of G such that $f(V(G)) = \{1, 2, ..., p\}$ and G is called super edge-magic if there exists a super edge-magic labeling of G. In 2001, Figueroa-Centero et al. [3] analysed a necessary and sufficient condition for a graph to be super edge-magic and proved that the fan $F_n \cong P_n + K_1$ is an edge-magic for every positive integer n and F_n is a super edge-magic if $n \leq 6$.

Lemma 1.1. [3] A graph G with p vertices and q edges is a super edge-magic if and only if there exists a bijective function $f : V(G) \rightarrow \{1, 2, ..., p\}$ such that the set $S = \{f(u) + f(v) \mid uv \in E(G)\}$ consists of q consecutive integers. In this case, f extends to a super edge-magic labeling of G with constant $k = p + q + s$ where $s = \min(S)$ and $S = \{f(u) + f(v) \mid uv \in E(G)\} = \{k-(p+1), k-(p+2), ..., k-(p+q)\}$.

In 2008, Nguarah et al. [4] proved that the graph $K_2 + P_n$ is a super edge-magic if and only if $n \leq 2$. Later, Nguarah and Simanjuntak (2014)[5] shown that for any integers m, n such that $m \geq 3$, the graph $K_m + P_n$ is super edge-magic if and only if $n \in \{1, 2\}$. In this paper, we proved that graph fan $F_{n,2}$ is a super edge-magic for any positive integer n and $mF_{n,2}$ is a super edge-magic where n is a positive integer, m positive odd number and $m \geq 3$.

II. MAIN RESULTS

A fan graph $F_{n,2}$ is defined as the graph joint $K_n + P_2$ where K_n is the empty graph of n vertices and P_2 is the path of 2 vertices which is a graph with $n + 2$ vertices and $2n + 1$ edges as follow Fig 1.

Theorem II.1. For any positive integer n, the graph $F_{n,2}$ is super edge-magic with $k = 3n + 6$.

Proof: Let $n \in \mathbb{N}$, $V(F_{n,2}) = \{v_1, v_2, ..., v_{n+2}\}$ and $E(F_{n,2}) = \{v_1v_2, v_1v_3, ..., v_1v_{n+1}, v_1, v_{n+2}\} \cup \{v_{n+2}v_2, v_{n+2}v_3, ..., v_{n+2}v_{n+1}\}$.

Define $f : V(F_{n,2}) \rightarrow \{1, 2, ..., n+2\}$ by $f(v_i) = i$. Hence f is a bijective function. Then $S = \{f(u) + f(v) \mid uv \in E(F_{n,2})\} = \{f(v_1) + f(v_i) \mid i \in \{2, 3, ..., n+2\}\}$ and $S = \{f(v_{n+2}) + f(v_j) \mid j \in \{2, 3, ..., n+1\}\} = \{3, 4, ..., 2n+3\}$ is the set of $2n+1$ consecutive integers which $\min(S) = 3$.

By Lemma I.1, f extends to a super edge-magic labeling of $F_{n,2}$. Hence graph $F_{n,2}$ is a super edge-magic with $k = n + 2 + 2n + 1 + 3 = 3n + 6$.

Remark. From Theorem II.1, $F_{2,2}$ is a super edge-magic with $k = 12$ as follow Fig 2. and from observation, we have another super edge-magic labeling of $F_{2,2}$ as follow Fig 3.

Fig 1. $F_{n,2}$

Fig 2. Super Edge-Magic Labeling of $F_{2,2}$

Fig 3. Super Edge-Magic Labeling of $F_{2,2}$
For any positive integer \(m \), the disjoint union of \(m \) copies of \(F_{n,2} \) denoted by \(mF_{n,2} \) is a graph with \(m(n+2) \) vertices and \(m(2n+1) \) edges.

Theorem II.2. If \(m \geq 3 \) is an odd number and \(n \) is a positive integer. Then graph \(mF_{n,2} \) is super edge-magic with
\[
k = 3 \left(\frac{mn + 3m + 1}{2} \right).
\]

Proof: Let \(m, n \in \mathbb{N} \) such that \(m \geq 3 \) is an odd number. Let \(V(mF_{n,2}) = V_1 \cup V_2 \cup \ldots \cup V_m \) and \(E(mF_{n,2}) = E_1 \cup E_2 \cup \ldots \cup E_m \) where \(V_i = \{v_1, v_2, \ldots, v_{n+1}\}, E_i = \{v_1v_2, v_1v_3, \ldots, v_{n+1}v_{n+2}, v_2v_{n+2}, v_3v_{n+2}, \ldots, v_{n+1}v_{n+2}\} \).

Subcase 1.2: \(\frac{m+1}{2} < r \leq m \). We have that
\[
f(v_{q+1}^{2m+2-2r}) = (q + 1)m - \frac{m + 2 - 2r - 2}{2} = k.
\]

Case 2: \(m(n+1) < k \leq m(n+2) \). Let \(s = k - m(n+1) \) hence \(1 \leq s \leq m \).

Subcase 2.1: \(1 \leq s \leq \frac{m+1}{2} \). Thus
\[
f(v_{q+1}^{m+1-2s}) = m(n+2) - \frac{m + m + 1 - 2s - 1}{2} = k.
\]

Subcase 2.2: \(\frac{m+1}{2} \leq s \leq m \). We have
\[
f(v_{q+1}^{m+1-2s}) = m(n+2) - \frac{2m + 1 - 2r - 1}{2} = k.
\]

Thus \(f \) is a bijective function. Let \(i \in \{1, 2, \ldots, m\} \).

Recall that \(E_i = \{v_1v_2, v_1v_3, \ldots, v_{n+1}v_{n+2}\} \cup \{v_2v_{n+2}, v_3v_{n+2}, \ldots, v_{n+1}v_{n+2}\} \cup \{v_1v_2, v_1v_3, \ldots, v_{n+1}v_{n+2}\} \). Let \(S_i = \{f(x) + f(y) | xy \in E_i \} \).

Subcase 1.1: \(1 \leq r \leq \frac{m+1}{2} \). Thus
\[
f(v_{q+1}^{m+1-2r}) = (q + 1)m - \frac{m + m + 2 - 2r}{2} = k.
\]

References

ISBN: 978-988-14047-7-0

ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)