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Abstract—This article considers the problem of
evaluating infinite-time (or finite-time) ruin proba-
bility under a given compound Poisson surplus pro-
cess. By approximating the claim size distribution by
a finite mixture exponential, say Hyperexponential,
distribution. It restates the infinite-time (or finite-
time) ruin probability as a solvable ordinary differen-
tial equation (or a partial differential equation). Ap-
plication of our findings has been given though a sim-
ulation study.
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1 Introduction

Consider the following compound Poisson process

Ut = u+ ct−
N(t)∑
j=1

Xj , (1)

where X1, X2, · · · are a sequence of i.i.d. random vari-
ables with common density function fX(·), N(t) is a Pois-
son process with intensity rate λ, u and c stand for initial
wealth/reserve and premium of the process, respectively.

The finite-time and infinite-time ruin probabilities for the
above compound Poisson process are, respectively, de-
noted by ψ(u;T ) and ψ(u) and defined by

ψ(u;T ) = P (τu ≤ T ); & ψ(u) = P (τu < ∞), (2)

where τu = inf{t : Ut ≤ 0|U0 = u} is the hitting time.

Ref. [15] among others, established that an infinite-time
ruin probability ψ(u) under a compound Poisson process
can be restated as the following integro-differential equa-
tion

cψ̃(1)(u)− λψ̃(u) + λ

∫ u

0

ψ̃(u− x)fX(x)dx = 0,(3)

where ψ̃(u) = 1− ψ(u) and lim
u→∞ψ(u) = 0.
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A finite-time ruin probability ψ(u;T ) under a compound
Poisson process can be restated as the following partial
integro-differential equation

∂ψ̃(u;T )

∂u
− ∂ψ̃(u;T )

∂T
− λ

c
ψ̃(u;T )

+
λ

c

∫ u

0
ψ̃(u− x;T )fX(x)dx = 0, (4)

where ψ̃(u;T ) = 1 − ψ(u;T ), lim
u→∞ψ(u;T ) = 0 for all

T > 0 and ψ(u;T = 0) = 0 for all u ≥ 0, see Ref [23].

Since the compound Poisson surplus process plays a vi-
tal role in many actuarial models, several authors studies
ruin probability under surplus process (1). An excellent
review for infinite-time ruin probability can be found in
[3]. For finite-time ruin probability: [23] showed for expo-
nential claim size distribution partial integro-differential
equation (4) can be transformed into a second-order par-
tial differential equation. Ref. [1] considered a compound
Poisson surplus process with constant force of real in-
terest. Then, they restated finite-time ruin probability
ψT (u) as a gamma series expansion. Ref. [14] provided
a global Lagrange type approximation in the z-space for
ψT (u) under surplus process (1). Ref. [2] and [29] em-
ployed the Padé approximant method to approximate
ψT (u) under surplus process (1).

This article in the first step approximates claim size den-
sity function fX(·) with a finite mixture exponential, say
Hyperexponential, density function f ∗

X(·). Then, it trans-
forms two integro-differential equations (3) and (4), re-
spectively, into an ordinary differential equation (ODE)
and a partial differential equation (PDE). A simulation
study has been conducted to show practical application
of our findings.

The rest of this article is organized as follows. Some
mathematical background for the problem has been col-
lected in Section 2. Section 3 provides the main contribu-
tion of this article. Applications of the results have been
given in Section 4.

2 Preliminaries

From hereafter now, we set
∑b

j=a Aj = 0, for b < a.
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The following recalls the exponential type T functions
which plays a vital role in the rest of this article.

Definition 1. An L1(R)∩L2(R) function f is said to be
of exponential type T on C if there are positive constants
M and T such that |f(ω)| ≤ M exp{T |ω|}, for ω ∈ C.

The Fourier transforms of exponential type functions are
continuous functions which are infinitely differentiable ev-
erywhere and are given by a Taylor series expansion over
every compact interval, see [6], [18], [19], and [30] for
more details.

From the Hausdorff-Young Theorem, one can observe
that if {sn} is a sequence of functions converging, in
L2(R) sense, to s. Then, the Fourier transforms of sn
converge, in L2(R) sense, to the Fourier transform of s,
see [17] for more details. Using [13]’s method, [12] and
[20] showed that most of the common distributions do
have characteristic functions that can be extend to mero-
morphic functions.

The following from [16] and [26] recalls Hausdorff-Young
inequality for the Laplace transform.

Lemma 1. Suppose h(·) is a given and nonnegative func-
tion that f ∈ L1(R+)∩L2(R+). Then, ||h||2 ≤ 1√

π
||L(h)||2,

where L(h) stands for the Laplace transform.

The Schwarz integrability condition states that in situ-
ation that all partial derivatives of a bivariate function
exist and are continuous, one may change order of par-
tial derivatives, see [4] for more details.

The following lemma provides useful results for the next
section.

Lemma 2. Suppose k(·) is a given and differentiable
function and y(·) is an unknown function that satisfy∫ x

0

y(t)

(
n∑

i=1

ωiμie
−μi(x−t)

)
dt = k(x), x ≥ 0,(5)

where ωi, μi and μi are some given and nonnegative con-
stants. Then, the above integral equation can be trans-
formed into differential equation

0 =

n∑
i=1

ωiμiy
(n−1)(x) +

n∑
i=1

n∑
i�=i

ωiμiμjy
(n−2)(x)

−
n∑

i=1

n∑
i�=i

n∑
k>j, �=i

ωiμiμjμky
(n−3)(x)

+
n∑

i=1

n∑
i�=i

n∑
k>j, �=i

n∑
l>k,�=i

ωiμiμjμkμly
(n−4)(x)

− · · ·+ (−1)n
n∑

i=1

n∏
j �=i

μjy
(0)(x)

−k(n)(x)−
n∑

i=1

μik
(n−1)(x)−

n∑
i=1

n∑
j �=i

μiμjk
(n−2)(x)

−
n∑

i=1

n∑
j �=i

n∑
k>j �=i

μiμjμkk
(n−3)(x)− · · · −

n∏
i=1

μik
(0)(x).

Proof. For n = 1 see [23]. For n > 1, set Ai = ωiμi and
hi(x) =

∫ x

0
y(t) exp{−μi(x − t)}dt. Using the fact that

the nth derivatives hi(x) with respect to x is h
(n)
i (x) =

(−μi)
nhi(x) +

∑n−1
j=0 (−μi)

n−1−jy(j)(x), one may restate
all first n derivatives of (5) as the following system of
equation.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k(n)(x) =
n∑

i=1

Ai

[
y(n−1)(x)− μiy

(n−2)(x) + · · ·

+(−μi)
n−1y(0)(x) + (−μi)

nhi(x)
]
,

...
...

...

k(0)(x) =

n∑
i=1

Aihi(x)

Multiplying both sides of: the first equation by
1, the second equation by

∑n
i=1 μi; the third equa-

tion by
∑n

i=1

∑n
j>i μiμj ; the forth equation by∑n

i=1

∑n
j>i

∑n
k>j>i μiμjμk; and so on until the last equa-

tion which multiplying its both sides by
∏n

i=1 μi, then
adding together all equations leads to the desired results.
�

Hyperexponential distributions

The Hyperexponential (or mixture exponential) distri-
bution is characterized by the number of n exponen-
tial distributions with means 1/μi and associated wight
ωi ∈ R (i.e.

∑n
i=1 ωi = 1). The density function for a

n−component Hyperexponential distribution is given by

f∗
X(x) =

n∑
i=1

ωiμie
−μix, x ≥ 0. (6)

Ref. [7] showed that, one may approximate a large class
of distributions, including several heavy tail distribu-
tions such as Pareto and Weibull distributions, arbitrarily
closely, by Hyperexponential distributions. Ref. [8] es-
tablished that a survival function at xγ , for all x > 0, is
a completely monotone function if and only if its corre-
sponding density function is a mixture of Weibull distri-
butions with fixed shape parameter 1/γ. Ref. [9] showed
that any Weibull distribution with shape parameter less
than 1 can be restated as a Hyperexponential distribu-
tions.

Using the Hausdorff-Young Theorem, the following pro-
vides error bound for approximating the claim size den-
sity function fX(·) by Hyperexponential density function
f∗
X(·), given by (6).

Lemma 3. Suppose random claim size X is surplus
process (1) has density function fX(·) and character-
istic function θX(·). Moreover, suppose that character-
istic function θX(·) is (or can be extend to) a mero-
morphic function. Then, (1) density function of com-
pound sum S(t) =

∑N(t)
i=1 Xi, say fS(t)(·), can be ap-

proximated by density function fS∗(t)(·), where S(t) =∑N(t)
i=1 Yi and Yi is a n−component Hyperexponential dis-
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tribution; (2) Error bound for such approximation sat-
isfies ||fS(t) − fS∗(t)||2 ≤ λte−λt||θX − θY ||2, where θY (s) =∑n

j=1 ωiμj/(μi + s
√−1).

Proof. Using the Hausdorff-Young Theorem, one may can
conclude that ||fS(t) − fS∗(t)||2 ≤ ||eλt(θX−1) − eλt(θY −1)||2.

The rest of proof arrives by using the fact that ψX and
θY are (or can be extend to) two meromorphic functions.
�

3 Ruin Probability

This section utilizes integro-differential Equations (3) and
(4) to derive an approximate formula for the infinite (and
finite)-time ruin probability of a compound Poisson pro-
cess (1). We seek an analytical solution ψ̃(·) which is an
exponential type function. In the other word, we assume:
|ψ̃(ω)| ≤ MeT |ω|, ω ∈ C, for some real numbers M and
T in R.

If this assumption is not met, as might be the case if,
for example, there are point masses in ψ(·), our method
works, but our error bounds may not be valid anymore.

The following theorem provides an (n + 1)−order ODE
for infinite-time ruin probability ψ(·) in the situation that
claim size distribution X has been approximated by an
n−component Hyperexponential density function f ∗

X(·).

Theorem 1. Suppose claim size density function
fX(·) has been approximated by an n−component
Hyperexponential density function f ∗

X(·). Then,
infinite-time survivals probability ψ̃(·) of a com-
pound Poisson process (1) can be approximated by
infinite-time survivals probability ψ̃∗(·) which can be
evaluated using the following (n + 1)−order ODE.∑n

i=1 λωiμiψ̃
(n−1)
∗ (u) +

∑n
i=1

∑n
i�=i λωiμiμj ψ̃

(n−2)
∗ (u) −∑n

i=1

∑n
i�=i

∑n
k>j, �=i λωiμiμjμkψ̃

(n−3)
∗ (u) +∑n

i=1

∑n
i�=i

∑n
k>j, �=i

∑n
l>k,�=i λωiμiμjμkμlψ̃

(n−4)
∗ (u) +

· · · + (−1)n
∑n

i=1

∏n
j �=i μj ψ̃

(0)
∗ (u) −[

λψ̃
(n)
∗ (u)− cψ̃

(n+1)
∗ (u)

]
− ∑n

i=1 μi

[
λψ̃

(n−1)
∗ (u)− cψ̃

(n)
∗ (u)

]
−∑n

i=1

∑n
j �=i μiμj

[
λψ̃

(n−2)
∗ (u)− cψ̃

(n−1)
∗ (u)

]
−∑n

i=1

∑n
j �=i

∑n
k>j �=i μiμjμk

[
λψ̃

(n−3)
∗ (u)− cψ̃

(n−2)
∗ (u)

]
−

· · · − ∏n
i=1 μi

[
λψ̃

(0)
∗ (u)− cψ̃

(1)
∗ (u)

]
,= 0 with bound-

ary conditions that satisfy cψ̃
(m)
∗ (0) − λψ̃

(m−1)
∗ (0) +

λ
∑m−2

j=0 ψ̃
(j)
∗ (0)f (m−2−j)(0) = 0, for m = 1, · · · , n.

Proof. An application of Lemma (2) by changing k(u) �→
−cψ̃

(1)
∗ (u)+λψ̃∗(u), y(u) �→ ψ̃∗(u), and ωi �→ λωi lead to

the desired result. �

Using the fact that ψ̃∗(0) = 1−λE(X)/c, (see [10], Page

104) the above boundary condition equation leads to:

ψ̃
(1)
∗ (0) = ψ̃∗(0)

λ

c
,

ψ̃
(2)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)2 − (

λ

c
)fX(0)

]
,

ψ̃
(3)
∗ (0) = ψ̃∗(0)

[
(
λ

c
)3 − 2fX(0)(

λ

c
)2 − (

λ

c
)f

(1)
X (0)

]
,

and so on.

The following provides error bound for approximating
infinite-time survivals probability ψ̃(·) by ψ̃∗(·).

Theorem 2. Suppose claim size density function fX(·)
has been approximated by an n−component Hyperex-
ponential density function f∗

X(·). Then, the infinite-
time survival probability ψ̃(u) of compound Poisson
process (1) can be approximated by ψ̃∗(u), given
by Theorem (1), and its error satisfies ||ψ(u) −
ψ∗(u)||2 ≤ cλψ̃(0)√

πa2
1

∣∣∣∣∣∣ϕX(s)−∑n
j=1

ωiμi
μi+s

∣∣∣∣∣∣
2
, where a1 =

sup{ϕX(s),
∑n

j=1
ωiμi

μi+s} and ϕX(s) stands for the char-
acteristic function of random claim X.

Proof. Application of the Hausdorff-Young for Laplace
transform (Lemma 1) along with fact that L(g′(x);x; s) =
sL(g(x);x; s) − g(0) and L(∫ x

0
(g(x − y)f(y)dy;x; s) =

L(g(x);x; s)L(f(x);x; s), one may conclude that

||ψ(u)− ψ∗(u)||2 ≤ 1√
π
||L(ψ̃)− L(ψ̃∗)||2

=
1√
π

∣∣∣∣∣
∣∣∣∣∣ cψ̃(0)

cu− λ+ λL(f) − cψ̃(0)

cu− λ+ λL(f∗)

∣∣∣∣∣
∣∣∣∣∣
2

.

Application of inequality ||1/h1 − 1/h2||2 ≤ a−2||h1 −
h2||2, where a = sup{h1, h2}, from [11] completes the
desired proof. �

The following theorem provides an (n + 1)−order PDE
for finite-time ruin probability ψ(·) in the situation that
claim size distribution X has been approximated by an
n−component Hyperexponential distribution function.

Theorem 3. Suppose claim size density function fX(·)
has been approximated by an n−component Hyperexpo-
nential density function f∗

X(·). Then, finite-time sur-
vivals probability ψ̃(u;T ) of a compound Poisson process
(1) can be approximated by finite-time survivals probabil-
ity ψ̃∗(u;T ) which can be evaluated using the following
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(n+ 1)−order PDE.

0 =
n∑

i=1

λωiμi
∂n−1

∂un−1
ψ̃∗(u;T ) +

n∑
i=1

n∑
i�=i

λωiμiμj
∂n−2

∂un−2
ψ̃∗(u;T )

−
n∑

i=1

n∑
i�=i

n∑
k>j,�=i

λωiμiμjμk

∂n−3

∂un−3
ψ̃∗(u;T )

+
n∑

i=1

n∑
i�=i

n∑
k>j,�=i

n∑
l>k, �=i

λωiμiμjμkμl

∂n−4

∂un−4
ψ̃∗(u;T )

− · · · + (−1)
n

n∑
i=1

n∏
j �=i

μj
∂0

∂u0
ψ̃∗(u;T )

−
⎡
⎣λ ∂n

∂un
ψ̃∗(u;T ) − c

∂n+1

∂un+1
ψ̃∗(u;T ) + c

∂n+1

∂T∂un
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

μi

⎡
⎣λ ∂n−1

∂un−1
ψ̃∗(u;T ) − c

∂n

∂un
ψ̃∗(u;T ) + c

∂n

∂T∂un−1
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

n∑
j �=i

μiμj

⎡
⎣λ ∂n−2

∂un−2
ψ̃∗(u;T ) − c

∂n−1

∂un−1
ψ̃∗(u;T )

+c
∂n−1

∂T∂un−2
ψ̃∗(u;T )

⎤
⎦

−
n∑

i=1

n∑
j �=i

n∑
k>j �=i

μiμjμk

⎡
⎣λ ∂n−3

∂un−3
ψ̃∗(u;T ) − c

∂n−2

∂un−2
ψ̃∗(u;T )

+c
∂n−2

∂T∂un−3
ψ̃∗(u;T )

⎤
⎦

− · · · −
n∏

i=1

μi

⎡
⎣λ ∂0

∂u0
ψ̃∗(u;T ) − c

∂1

∂u1
ψ̃∗(u;T ) + c

∂1

∂T1
ψ̃∗(u;T )

⎤
⎦ ,

where ψ̃
(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ) and boundary
conditions that satisfy cψ̃

(m)
∗ (0;T ) − c ∂

∂T ψ̃
(m−1)
∗ (0;T ) −

λψ̃
(m−1)
∗ (0;T ) + λ

∑m−2
j=0 ψ̃

(j)
∗ (0;T )f

(n−2−j)
X (0) = 0, for

m = 1, · · · , n.

Proof. Using partial integro-differential equation (4) and
the Schwarz integrability condition, one may change or-
der of differentiation and obtain the above recursive for-
mula for boundary conditions. An application of Lemma
(2) by changing k(u) �→ −c ∂

∂u ψ̃∗(u;T ) + c ∂
∂T ψ̃∗(u;T ) +

λψ̃∗(·), y(u) �→ ψ̃∗(u;T ), and ωi �→ λωi lead to the de-
sired result. �

Using the fact that ψ̃∗(u; 0) = 1, ψ̃∗(0;T ) =∫ cT

0
FS,T (x)dx/(cT ), and FS,T (x) = P (

∑N(T )
j=1 Xj ≤ x),

for all x ∈ R
+ (see [3], Page 121). One may compute

the following from boundary conditions from recursive
formula given by Theorem (3).

ψ̃
(1)
∗ (0;T ) =

λ

c
ψ̃∗(0;T ) +

∂

∂T
ψ̃∗(0;T ),

ψ̃
(2)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
2 − (

λ

c
)fX (0)

]
+

∂

∂T
ψ̃
(1)
∗ (0;T ),

ψ̃
(3)
∗ (0;T ) = ψ̃∗(0;T )

[
(
λ

c
)
3 − 2fX (0)(

λ

c
)
2 − (

λ

c
)f

(1)
X

(0)

]
+

∂

∂T
ψ̃
(2)
∗ (0;T ),

where ψ̃
(n)
∗ (0;T ) = limu→0

∂n

∂un ψ̃∗(u;T ).

Using the central limit theorem for compound sum
N(t)∑
i=1

Xi (see [10], §2.5, or [27], §1.9), one may provide

the following approximation for expression ψ̃∗(0;T ) =∫ cT

0
FS,T (x)dx/(cT )

ψ̃∗(0;T ) ≈ 1

cT

∫ cT

0

Φ

(
x− λTm1√

λTm2

)
dx,

where mi = E(Xi), for i = 1, 2, and Φ(·) stands for cu-
mulative distribution function for standard normal distri-
bution, see [10], §2.5 ,or [27], §1.9, for other parametric
approximation approaches and [24] for a nonparametric
approximation approach. For heavy tailed random claim
size X that the ordinary central limit theorem does not
work properly. One has to employ an appropriated ver-
sion of the central limit theorem, see [25] and [5], among
others, for more details.

The following provides error bound for approximating
finite-time survivals probability ψ̃(u;T ) by ψ̃∗(u;T ).

Theorem 4. Suppose claim size density function fX(·)
has been approximated by an n−component Hyperexpo-
nential density function f∗

X(·). Then, the infinite-time
survival probability ψ̃(u;T ) of compound Poisson process
(1) can be approximated by ψ̃∗(u;T ), given by Theorem
(3), and its error satisfies

||Error||2 ≤ λ√
π

[
− cψ̃(0;T )

a21
+

a2T

c
− cψ̃(0;T )a21a

2
2a3

]

×
∣∣∣∣∣∣
∣∣∣∣∣∣ϕX(s)−

n∑
j=1

ωiμi

μi + s

∣∣∣∣∣∣
∣∣∣∣∣∣
2

,

where Error = ψ(u;T ) − ψ∗(u;T ), a1 =
sup{ϕX(s),

∑n
j=1

ωiμi

μi+s}, a2 = sup{1/s − c/A(s), 1/s −
c/A∗(s)}, a2 = sup{eA(s)/cT , eA∗(s)/cT }, A(s) =
cs− λ+ λϕX(s), A∗(s) = cs− λ+ λ

∑n
j=1 ωiμi/(μi + s),

and ϕX(s) stands for the characteristic function of
random claim X.

Proof. Taking the Laplace transform from both sides of
Equation (4) leads to the following first-order PDE

A(s)L(ψ̃(u;T );u; s)−cψ̃(0;T )−c
∂

∂T
L(ψ̃(u;T );u; s) = 0,

where L(ψ̃(u; 1);u; s) = 1/s. Therefore, the Laplace
transform of finite-time ruin probability for compound
Poisson process (1) is

L(ψ̃(u;T );u; s) =
cψ̃(0;T )

A(s)
+

(
1

s
− cψ̃(0;T )

A(s)

)
eA(s)/cT .

The above finding along with an application of the
Hausdorff-Young for Laplace transform (Lemma 1) lead
to

||E||2 ≤
1

√
π

||L(ψ̃(u;T );u; s) − L(ψ̃∗(u;T );u; s)||2

=
1

√
π

∣∣∣∣∣
∣∣∣∣∣
cψ̃(0;T )

A(s)
+

(
1

s
−

cψ̃(0;T )

A(s)

)
e
A(s)/cT

−
cψ̃(0;T )

A∗(s)
−
(

1

s
−

cψ̃(0;T )

A∗(s)

)
e
A∗(s)/cT

∣∣∣∣∣
∣∣∣∣∣
2

≤
cψ̃(0;T )
√

πa2
1

||A(s) − A∗(s)||2 +
b

√
π

∣∣∣∣∣
∣∣∣∣∣
TA(s)

c
−

TA∗(s)

c

∣∣∣∣∣
∣∣∣∣∣
2

+
b

√
π

∣∣∣∣∣
∣∣∣∣∣ln(

1

s
−

cψ̃(0;T )

A(s)
) − ln(

1

s
−

cψ̃(0;T )

A∗(s)
)

∣∣∣∣∣
∣∣∣∣∣
2

,

where E = ψ(u;T ) − ψ∗(u;T ), the second inequality
arrives by application of inequality ||1/h1 − 1/h2||2 ≤
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a−2||h1 − h2||2, and a = sup{h1, h2}, from [11], tri-
angle inequality, and the Mean value theorem (i.e.,
(exp{A(s)/cT +ln( 1s − cψ̃(0;T )

A(s) )}−exp{A∗(s)/cT +ln( 1s −
cψ̃(0;T )
A∗(s)

)})/(A(s)/cT + ln( 1s − cψ̃(0;T )
A(s) ) − A∗(s)/cT −

ln( 1s − cψ̃(0;T )
A∗(s)

)) ≤ b where b = sup{A(s)/cT + ln( 1s −
cψ̃(0;T )
A(s) ), A∗(s)/cT + ln( 1s − cψ̃(0;T )

A∗(s)
)}).

Application of inequality || lnh1−lnh2||2 ≤ ||h1−h2||2/a,
where a = sup{h1, h2}, from [11] completes the desired
proof. �

4 Simulation Study

Consider compound Poisson process (1) with intensity
rate λ = 1 and premium c = 1.1. This section conducts
two simulation studies to show practical application the
about findings.

Example 1. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Weibull(0.3,9.26053). Ref. [7] using a three-moment
matching algorithm showed that density function of ran-
dom claim X can be approximated by the following 2-
component Hyperexponential density function

f∗
X(x) = 0.000095e−0.019x + 1.348225e−1.355x. (7)

For infinite-time ruin probability: Application of Theo-
rem (1) leads to the following second order ODE

1.1ψ̃
(3)
∗ (u) + 0.5114ψ̃

(2)
∗ (u) + 0.0026395ψ̃

(1)
∗ (u) = 0

with initial conditions ψ̃∗(0) = 0.0909090909, lim
u→0

ψ̃
(1)
∗ (u) =

0.08264462809, and lim
u→0

ψ̃
(2)
∗ (u) = −0.03629992491.

Solving the above ODE, one may approxi-
mate finite-time survival probability ψ̃(u) of
compound Poisson process (1) by ψ̃∗(u) =
0.9974815963 − 0.2101123939e−0.01502369720u −
0.2873692025e−0.8589763028u.

Figure 1 illustrates behavior for such approximated
infinite-time ruin probability.

For finite-time ruin probability: Application of Theo-
rem (3) leads to the following PDE 1.1 ∂3

∂u3 ψ̃∗(u;T ) +

0.5114 ∂2

∂u2 ψ̃∗(u;T )− 0.0539995 ∂1

∂u1 ψ̃∗(u;T )− 1.1 ∂3

∂u2∂T
ψ̃∗(u;T )−

1.5114 ∂2

∂u∂T
ψ̃∗(u;T ) − 0.0283195 ∂

∂T
ψ̃∗(u;T ) = 0with initial

conditions ψ̃∗(u, 0) = 0, ψ̃∗(0;T ) = β(T ), lim
u→20

ψ̃∗(u;T ) =

1, lim
u→0

∂

∂u
ψ̃∗(u;T ) = 0.9091β(T ) +

∂

∂T
β(T ), where β(T ) =

1
1.1T

∫ 1.1T
0 Φ

(
x−T√
29.36T

)
dx.

Solving the above PDE, one may approximate finite-time
survival probability ψ̃(u;T ) of compound Poisson process
(1) by ψ̃∗(u;T ), that its behavior (for T = 50, 100, 200)
has been illustrated in Figure 2.

Figure 1: Behavior for approximated: infinite-time ruin
probability ψ∗(u).

Figure 2: Behavior for approximated finite-time ruin
probability ψ∗(u;T ), for T = 50, 100, 200.

Example 2. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Gamma(0.7310,1). Ref. [29] using the Padé approximant
method showed that density function of random claim X
can be approximated by by the following 3-component Hy-
perexponential density function

f∗
X(x) = 0.8099e−3.2398x + 0.3616e−1.4465x

+0.5198e−1.0396x. (8)

For infinite-time ruin probability: Application of
Theorem (1) leads to the following second order
ODE 1.1ψ̃

(4)
∗ (u) + 5.29849ψ̃

(3)
∗ (u) + 6.479507012ψ̃

(2)
∗ (u) +

1.797919457ψ̃
(1)
∗ (u) = 0with initial conditions ψ̃∗(0) =

0.3354861821, lim
u→0

ψ̃
(1)
∗ (u) = 0.3049874383, lim

u→0
ψ̃
(2)
∗ (u) =

−0.2385743202, and lim
u→20

ψ̃∗(u) = 1.

Solving the above ODE, one may approximate infinite-
time survival probability ψ̃(u) of compound Pois-
son process (1) by ψ̃∗(u) = 1 − 0.013037e−3.073097u −
0.008568e−1.349630u − 0.642908e−0.394082u. Figure 3 illustrates
behavior for such approximated infinite-time ruin proba-
bility.

For finite-time ruin probability: Application
of Theorem (3) leads to the following PDE
1.1 ∂4

∂u4 ψ̃∗(u;T )+5.29849 ∂3

∂u3 ψ̃∗(u;T )+6.479507012 ∂2

∂u2 ψ̃∗(u;T )+

1.797919457 ∂
∂u

ψ̃∗(u;T ) − 5.359146 ∂
∂T

ψ̃∗(u;T ) −
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10.5141 ∂2

∂u∂T
ψ̃∗(u;T ) − 6.2985 ∂3

∂u2∂T
ψ̃∗(u;T ) −

1.1 ∂4

∂u3∂T
ψ̃∗(u;T ) = 0 with initial conditions

ψ̃∗(u, 0) = 0, ψ̃∗(0;T ) = β(T ), lim
u→20

ψ̃∗(u;T ) = 1,

lim
u→0

∂

∂u
ψ̃∗(u;T ) = 0.9091β(T ) +

∂

∂T
β(T ), lim

u→0

∂

∂u
ψ̃∗(u;T ) =

−0.71113β(T ) + 0.9091
∂

∂T
β(T ) +

∂2

∂T 2
β(T ),where

β(T ) = 1
1.1T

∫ 1.1T

0
Φ
(

x−0.7309651999T√
0.7309651995T

)
dx.

Solving the above PDE, one may approximate finite-time
survival probability ψ̃(u;T ) of compound Poisson process
(1) by ψ̃∗(u;T ), that its behavior (for T = 50, 100, 200)
has been illustrated in Figure 4.

Figure 3: Behavior for approximated infinite-time ruin
probability ψ∗(u).

Figure 4: Behavior for approximated finite-time ruin
probability ψ∗(u;T ), for T = 50, 100, 200.

It worthwhile to mention that: A given density function
(or a density function corresponding to a given data set)
can be approximated by a Hyperexponential distribution
using a Matlab package called “bayesf”, see [28] for more
details.

5 Conclusion and Suggestions

This article approximates claim size density function
fX(·) by a n−component Hyperexponential density func-
tion f∗

X(·). Then, it restates the problem of finding
an infinite-time (or finite-time) ruin probability as a
(n + 1)−order ordinary differential equation (or a par-
tial differential equation for finite-time ruin probability).

Application of our findings has been given though a sim-
ulation study.

Certainly the following generalized Hyperexponential dis-
tribution can be provided a more accurate approxima-
tion in the situation that the true density function (or
recorded data) has more than one mode.

gGHE
X (x) =

n∑
i=1

ωiμie
−μi(x−bi)I[bi,∞)(x). (9)

In such situation the finite and infinite ruin probabilities
can be evaluated using the following lemma.

Lemma 4. Suppose claim size density function fX(·) has
been approximated by generalized Hyperexponential distri-
bution gGHE

X (·). The survival probability can be found by
the following two inverse Laplace transforms.

(i) The Laplace transform of the infinite-time survival
probability can be found by the following equation

L
(
ψ̃(u);u; s

)
=

cψ̃(0)

cs− λ+ λ
∑k

i=1
ωiμi
μi+s

e−sbi

(ii) The Laplace transform of the finite-time survival
probability can be found by the following equation

L
(
ψ̃(u;T );u; s

)
=

cψ̃(0;T )

B(s)
+

(
1

s
− cψ̃(0;T )

B(s)

)
e

B(s)
cT ,

where B(s) = cs− λ+ λ
∑k

i=1
ωiμi

μi+se
−sbi .

Proof. The desired result arrives by taking a Laplace
transform from both sides of equations (3) and (4) and
solving corresponding first-order PDE with boundary
condition ψ̃(u; 0) = 1 or L(ψ̃(u; 0);u; s) = 1/s. � An-
other possibility can be using a Lévy process to evaluate
the ruin probability, see [21] and [22] for more details.
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