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A Hyperexponential Approximation to Finite- and
Infinite-time Ruin Probabilities of Compound
Poisson Processes
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Abstract—This article considers the problem of
evaluating infinite-time (or finite-time) ruin proba-
bility under a given compound Poisson surplus pro-
cess. By approximating the claim size distribution by
a finite mixture exponential, say Hyperexponential,
distribution. It restates the infinite-time (or finite-
time) ruin probability as a solvable ordinary differen-
tial equation (or a partial differential equation). Ap-
plication of our findings has been given though a sim-
ulation study.
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1 Introduction

Consider the following compound Poisson process

N(#)

U = u—O—ct—ZXj, (1)
Jj=1

where X1, X5,--- are a sequence of i.i.d. random vari-
ables with common density function fx(-), N(t) is a Pois-
son process with intensity rate A, v and ¢ stand for initial
wealth /reserve and premium of the process, respectively.

The finite-time and infinite-time ruin probabilities for the
above compound Poisson process are, respectively, de-
noted by ¢ (u; T) and 1 (u) and defined by
V(w;T)=P(ry <T); & (u) =Pty <o0), (2)
where 7, = inf{t: U; <0|Uy = u} is the hitting time.

Ref. [15] among others, established that an infinite-time
ruin probability 1(u) under a compound Poisson process
can be restated as the following integro-differential equa-
tion

() = X+ [ B ) fx@de = 003

where 9(u) = 1 — v (u) and 1i_)m P(u) =0.
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A finite-time ruin probability ¢ (u; T') under a compound
Poisson process can be restated as the following partial
integro-differential equation

MW(w;T)
ou oT c

+ 2 /0 Bu— T fx(@)de =0,  (4)

Mp(w;T) A

P(u; T)

where ¢(u;T) = 1 — h(u; T), ILm Y(u;T) = 0 for all
T >0 and ¥(u; T =0) =0 for all u > 0, see Ref [23].

Since the compound Poisson surplus process plays a vi-
tal role in many actuarial models, several authors studies
ruin probability under surplus process (1). An excellent
review for infinite-time ruin probability can be found in
[3]. For finite-time ruin probability: [23] showed for expo-
nential claim size distribution partial integro-differential
equation (4) can be transformed into a second-order par-
tial differential equation. Ref. [1] considered a compound
Poisson surplus process with constant force of real in-
terest. Then, they restated finite-time ruin probability
1p(u) as a gamma series expansion. Ref. [14] provided
a global Lagrange type approximation in the z-space for
tr(u) under surplus process (1). Ref. [2] and [29] em-
ployed the Padé approximant method to approximate
¥ (u) under surplus process (1).

This article in the first step approximates claim size den-
sity function fx () with a finite mixture exponential, say
Hyperexponential, density function f%(-). Then, it trans-
forms two integro-differential equations (3) and (4), re-
spectively, into an ordinary differential equation (ODE)
and a partial differential equation (PDE). A simulation
study has been conducted to show practical application
of our findings.

The rest of this article is organized as follows. Some
mathematical background for the problem has been col-
lected in Section 2. Section 3 provides the main contribu-
tion of this article. Applications of the results have been
given in Section 4.

2 Preliminaries

From hereafter now, we set Zg:a A; =0, forb<a.
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The following recalls the exponential type T functions
which plays a vital role in the rest of this article.

Definition 1. An Li(R)NLy(R) function f is said to be
of exponential type T on C if there are positive constants
M and T such that | f(w)| < M exp{T|wl|}, for w € C.

The Fourier transforms of exponential type functions are
continuous functions which are infinitely differentiable ev-
erywhere and are given by a Taylor series expansion over
every compact interval, see [6], [18], [19], and [30] for
more details.

From the Hausdorff-Young Theorem, one can observe
that if {s,} is a sequence of functions converging, in
L?(R) sense, to s. Then, the Fourier transforms of s,
converge, in L? (R) sense, to the Fourier transform of s,
see [17] for more details. Using [13]’s method, [12] and
[20] showed that most of the common distributions do
have characteristic functions that can be extend to mero-
morphic functions.

The following from [16] and [26] recalls Hausdorff-Young
inequality for the Laplace transform.

Lemma 1. Suppose h(-) is a given and nonnegative func-
tion that f € LY(RY)NL2(RY). Then, |||z < Sz,
where L(h) stands for the Laplace transform.

The Schwarz integrability condition states that in situ-
ation that all partial derivatives of a bivariate function
exist and are continuous, one may change order of par-
tial derivatives, see [4] for more details.

The following lemma provides useful results for the next
section.

Lemma 2. Suppose k(-) is a given and differentiable
function and y(-) is an unknown function that satisfy

/01 y(t) (i wmie_”i(m_t)) dt = k(z), z>0,(5)

=1

where w;, p; and p; are some given and nonnegative con-
stants. Then, the above integral equation can be trans-
formed into differential equatz’on

Zw piy ™ () +ZZwm pyt"

i=1 i7#£1
n o n n
> >
i=1 iti k>j,#i
22 >
i#1 k>7,7#

0 = “(x)

wi#iﬂj#ky(n73) (z)

n n
+ > wipipspemy ™ ()
P15k

i=1 i k>j,

— o (0" [Ty @ (@)

i=1j#i
22wk (@)

—k(")(r) _ ka(nfl)(m) —_
_ H ik (z

i=1 i=1 j#£i

*ZZ Z pipg k™= (z) —

i=1 j#i k>j#1
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Proof. For n =1 see [23]. For n > 1, set A; = w;u,; and
hi(z) = [y y(t)exp{—pi(z — t)}dt. Using the fact that
the nt! derivatives h; (z) with respect to x is hgn)(:ﬁ) =
(=)™ hi(z) + 3757 o (—1)" "1 77y@ (), one may restate

all first n derlvatlves of (5) as the following system of
equation.

kM) (2)

zn:Ai [y("‘_”(x) — iy (@) 4
=1
+(—p)" YO (@) + (—pa)hi()]

k(o)(ac) = ZAJLZ(CC)

i=1

Multiplying both sides of: the first equation by
1, the second equation by >°I , p;; the third equa-
tion by >, ZJ>Z wij; the forth equation by
S Z;;z ZZ>j>i L fej s and so on until the last equa-
tion which multiplying its both sides by [\, y;, then
adding together all equations leads to the desired results.
O

Hyperexponential distributions

The Hyperexponential (or mixture exponential) distri-
bution is characterized by the number of n exponen-
tial distributions with means 1/u; and associated wight
w; € R (i.e. Y7 w; = 1). The density function for a
n—component Hyperexponential distribution is given by

Zwime_“”c, x> 0. (6)

Ref. [7] showed that, one may approximate a large class
of distributions, including several heavy tail distribu-
tions such as Pareto and Weibull distributions, arbitrarily
closely, by Hyperexponential distributions. Ref. [8] es-
tablished that a survival function at x7, for all > 0, is
a completely monotone function if and only if its corre-
sponding density function is a mixture of Weibull distri-
butions with fixed shape parameter 1/v. Ref. [9] showed
that any Weibull distribution with shape parameter less
than 1 can be restated as a Hyperexponential distribu-
tions.

Using the Hausdorff-Young Theorem, the following pro-
vides error bound for approximating the claim size den-
sity function fx () by Hyperexponential density function

fx (), given by (6).

Lemma 3. Suppose random claim size X is surplus
process (1) has density function fx(-) and character-
istic function Ox(-). Moreover, suppose that character-
istic function Ox(-) is (or can be extend to) a mero-
morphic function. Then, (1) density function of com-
pound sum S(t) = Zij\;(f) Xi, say fsw)(-), can be ap-
proximated by density function fg-(-), where S(t) =

ZN(t) Y; and Y; is a n—component Hyperexponential dis-
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tribution; (2) Error bound for such approzimation sat-

isfies || fsw) — fsxllz2 < Ate™ [|0x — Oy ||2, where Oy (s) =
n

> wiki/ (i + sv/—=1).

Proof. Using the Hausdorfl-Young Theorem, one may can
conclude that ||fs) — fsx(o)ll2 < [[eXOx =1 — Oy =D,

The rest of proof arrives by using the fact that 1) x and
0y are (or can be extend to) two meromorphic functions.
O

3 Ruin Probability

This section utilizes integro-differential Equations (3) and
(4) to derive an approximate formula for the infinite (and
finite)-time ruin probability of a compound Poisson pro-
cess (1). We seek an analytical solution ¢(-) which is an
exponential type function. In the other word, we assume:
[(w)| < MeTl?l) w e C, for some real numbers M and
T in R.

If this assumption is not met, as might be the case if,
for example, there are point masses in 9(-), our method
works, but our error bounds may not be valid anymore.

The following theorem provides an (n + 1)—order ODE
for infinite-time ruin probability ¢ (-) in the situation that
claim size distribution X has been approximated by an
n—component Hyperexponential density function f%(-).

Theorem 1. Suppose claim size density function
fx(-) has been approzimated by an n—component
Hyperexponential — density  function  f%(-).  Then,
infinite-time  survivals probability (-) of a com-
pound Poisson process (1) can be approzimated by
infinite-time survivals probability .(-) which can be
evaluated wusing the following (n + 1)—order ODE.
S ATV @)+ Dy S Awipan T ()
D1 2 kg i Awiﬂiﬂjﬂki£"73) (u) +
S s S ot otk i Attt b ()
= + (1) S Ty 194" () -
b () = e )] = Sy s M () = b ()] -
it Z?;m‘ Hifby [Aiin72)(“) - Clzfinil)(“)] -
i Zj}m ZZ>J'¢1‘ Hifbg ke [)‘Tz’in_& (u) — Cl[’in_m(“)] -
= Tl M @) - P @] = 0 with
ary conditions that satisfy C&Em)(O) - Al/;,(kmil)(()) +
AZ;’ZOQ P9 (0)f(m=2-9)(0) =0, form =1,--- ,n.

+

bound-

Proof. An application of Lemma (2) by changing k(u) —
—cqﬁil)(u) + Ay (1), y(u) — ¥y (), and w; — Aw; lead to
the desired result. [

Using the fact that ,(0) = 1 — AE(X)/c, (see [10], Page
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104) the above boundary condition equation leads to:

W0 = 602,

B0 = 6.0 |G - i),

00 = .0 2107 - o).
and so on.

The following provides error bound for approximating
infinite-time survivals probability ¥ (-) by 1. ().

Theorem 2. Suppose claim size density function fx(-)
has been approximated by an n—component Hyperez-
ponential density function f%(-). Then, the infinite-
time survival probability @(u) of compound Poisson

process (1) can be approzimated by .(u), given
by Theorem (1), and its error satisfies ||¢(u) —
Ge(w)ll < T ||ex(s) = iy pikt]] . where ay =

Wi fbi

sup{px(s), Y5, L} and ox (s) stands for the char-
acteristic function of random claim X.

Proof. Application of the Hausdorfl-Young for Laplace
transform (Lemma 1) along with fact that £(¢'(x); x; s) =

sL(g(x);x;5) — 9(0) and L([ (9(x — y)f(y)dy: z;5) =
L(g(z);z;8)L(f(x);x; 8), one may conclude that

L@ - £l

K
1
NG

A

[[W(u) = u(u)l]2 <

@0 )
cu — XN+ AL(f)  cu— N+ AL(f*)

Application of inequality |[1/h; — 1/ha|l2 < a=2||hy —
ha||2, where a = sup{hi,ho}, from [11] completes the
desired proof. [

The following theorem provides an (n + 1)—order PDE
for finite-time ruin probability 1 (-) in the situation that
claim size distribution X has been approximated by an
n—component Hyperexponential distribution function.

Theorem 3. Suppose claim size density function fx(-)
has been approximated by an n—component Hyperexpo-
nential density function f%(-). Then, finite-time sur-

vivals probability &(u, T) of a compound Poisson process
(1) can be approzimated by finite-time survivals probabil-

ity . (u; T) which can be evaluated using the following
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(n+ 1)—order PDE.

n—1
Aw; g
i lau

371.—2

w (u; T) + Z Z Awl"l’lu‘]i?
i=11i7#i Ou
on—3

P (u; T)

M=

0 =

°
1

|
s
M=
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Aw; by Mg bRy m
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DT YT H "y

i=1j%i
an

—|x D
Dun

d*(u T)

on+1 an+1
(u; T) — cid*(u T) + ¢
un

mi&*(u; T):|
w

n an 1 _ an an
= > [A——— P (w; T) — ¢ Du(u; T) + c ——— P (u; T)
i1 oun—1 oun oTdu™—1
n = oan—2 on—1 _
=30 > mip (A (i T) — c———— P (u; T)
= : Sun—2 Sun—1
gn—1
Pu (u; T)
AT dun—2
n.n n an—3 n—2
=203 3 mimgmg |X b (u; T) — ¢ 5 ¥w (u; T)
i=1j#1 k>j#i
on—2
te——— hu(u; T)
9T oun—3
n 60 at ot
— =TI mi > . w(uT)+r TP (w )|
i=1

where w(")(O;T) = lim,_0 8‘97&*(% T) and boundary
conditions that satisfy cqﬂm)(O;T) — ca%ﬁimfl)(o;T) —

MOT) + AT DO T) T (0) = 0, for
m=1---,n

Proof. Using partial integro-differential equation (4) and
the Schwarz integrability condition, one may change or-
der of differentiation and obtain the above recursive for-
mula for boundary conditions. An application of Lemma
(2) by changing k(u) — —c 2, (u;T) + cZ=hu(w; T) +
My (1), y(u) = P, (u;T), and w; — Aw; lead to the de-
sired result. [J

Using the fact that ¢.(u;0) = 1, 1, (0;T) =
JoT Fsp(x)dz/(cT), and Fsr(z) = P(CND X; < 2),
for all z € R (see [3], Page 121). One may compute

the following from boundary conditions from recursive
formula given by Theorem (3).

(D) (0. _ i 2 5 o
0T = D80T+ — i (0:T),
c aT
- . A A a
Py = G [<7>2 - Orrx (o)] + Ewi”(o;m,
- - A A A o _
sP o) = bl [<7>3 —2fx(0)(5)? - (7)f§(1>(0)} + O—Twi”(o; ™),
c c c

where ${") (0;T) = Timy, 0 2= (u; T).

Using the central limit theorem for compound sum
N(t)
ZXi (see [10], §2.5, or [27], §1.9), one may provide
i=1
the following approximation for expression J)*(O;T) =

fOCT Fgr(x)dx/(cT)
1 [T Tz — \NT'my
oz [ (i)
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where m; = E(X?), for i = 1,2, and ®(-) stands for cu-
mulative distribution function for standard normal distri-
bution, see [10], §2.5 ,or [27], §1.9, for other parametric
approximation approaches and [24] for a nonparametric
approximation approach. For heavy tailed random claim
size X that the ordinary central limit theorem does not
work properly. One has to employ an appropriated ver-
sion of the central limit theorem, see [25] and [5], among
others, for more details.

The following provides error bound for approximating
finite-time survivals probability ¢ (u; T) by ¥.(u; T).

Theorem 4. Suppose claim size density function fx(-)
has been approximated by an n—component Hyperexpo-
nential density function f%(-). Then, the infinite-time

survival probability @(u, T) of compound Poisson process

(1) can be approzimated by 1. (u;T), given by Theorem
(3), and its error satisfies

A{ ap(o T)  asT
VT al

[|[Error|l2 < + —
c

01;(0; T)a%a§a3:|

U Wil
j; Wi + 8 5
where  Error = YwT) — (1), a1 =
sup{px(s), X5, e}, ax = sup{l/s — c/A(s),1/s —
c/A.(5)}, as = sup{eA®/T AS)/TY  A(s) =
es = A+ Apx(s), Ax(s) = cs = A+ A0 wipti/ (b + 5),
and @x(s) stands for the characteristic function of
random claim X.

X

ox(s) —

)

Proof. Taking the Laplace transform from both sides of
Equation (4) leads to the following first-order PDE

_ _ o -
AL (u; T)yus8) = (0, T) = e LW (uw; T); s 5) = 0,
where L(¢(u;1);u;s) 1/s. Therefore, the Laplace
transform of finite-time ruin probability for compound
Poisson process (1) is

L Tyus) = PO <1

1 e)(0;7) QA(s)/eT
A(s) s A(s) '

The above finding along with an application of the
Hausdorft-Young for Laplace transform (Lemma 1) lead
to

1 . .
IBllz S e T)iuie) = L0 (ui Thiui )2
1 e (0; T) (1 mL(o;T)> A(s)/eT
= — - e
NS s A(s)
761/;(0;7") B (i B C"/:(O?T)> LAx(s)/eT
A (s) Ax(s) 2
e (0; T b TA(s T Ay (s)
< O ) - avolly + — ‘¥ _ A
J7a? ¢ ¢ 5
b 1 b(0; T 1 ep(0; T
DL [ %V N S TG E SN | I
vall s A(s) s A g
where E = ¢(u;T) — ¢.(u;T), the second inequality

arrives by application of inequality |[1/h1 — 1/hsolls <
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a=2||hy — hall2, and a = sup{hy,hs}, from [11], tri-
angle inequality, and the Mean value theorem (i.e.,

(exp{A(s)/cT—&—ln(% - %)} —exp{A*(s)/cT—i—ln(% —

IO} (A(s)/eT + In(E — Uy A (5)/eT —

In(§ — %O(LT)))) < b where b = sup{A(s)/cT + In(; —

UOT)) Au(s)/cT +In(L — SODy)

Application of inequality || In hy —In he||2 < ||h1—hal|2/a,
where a = sup{hi, ho}, from [11] completes the desired
proof. [

4 Simulation Study

Consider compound Poisson process (1) with intensity
rate A = 1 and premium ¢ = 1.1. This section conducts
two simulation studies to show practical application the
about findings.

Example 1. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Weibull(0.3,9.26053). Ref. [7] using a three-moment
matching algorithm showed that density function of ran-
dom claim X can be approzimated by the following 2-
component Hyperexponential density function

fo(x) = 0.000095¢ %0197 4 1.348225¢ 13557 (7)

For infinite-time ruin probability: Application of Theo-
rem (1) leads to the following second order ODE
1193 (w) + 0.511402 (w) + 0.00263950 (w) = 0

with initial conditions .(0) = 0.0909090909, limovﬁﬁl) (u) =
u—
0.08264462809, and 111n01;£2>(u) = —0.03629992491.
u—

Solving  the above ODE, one may approxi-
mate finite-time  survival — probability = (u)  of
compound Poisson process (1) by

Pu(u) =
0.9974815963 — 0.2101123939¢—0-01502369720u _
0.2873692025¢ 0-8589763028u,

Figure 1 illustrates behavior for such approximated
infinite-time ruin probability.

For finite-time ruin probability: Application of Theo-
rem (3) leads to the following PDE 1.186—531/3*(u;T) +

2

~ 1 ~ 3 ~
0.5114 25 (u; T) — 0.0539995 2 ha (u; T) — 1.1 55550 (u; T) —

1.5114%12;4%:0 — 0.028?11958%1&*(u;T) = 0wi§h initial
conditions . (u,0) = 0, ¥.(0;T) = B(T), lin%ow*(u;T) =
u—

1, 513108%12;*@@) = 0.90918(T) + i5(T), where B(T) =

oT
1 1.1T z—T
11T Jo o <\/W) da.

Solving the above PDE, one may approximate finite-time
survival probability ¢ (u; T') of compound Poisson process
(1) by . (u; T), that its behavior (for T' = 50,100, 200)
has been illustrated in Figure 2.
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Time fain Probabitiy |

Figure 1: Behavior for approximated: infinite-time ruin
probability . (u).

Figure 2: Behavior for approximated finite-time ruin
probability ¢, (u; T'), for T = 50, 100, 200.

Example 2. Suppose random claim X in compound
Poisson process (1) has been distributed according to
Gamma(0.7310,1). Ref. [29] using the Padé approzimant
method showed that density function of random claim X
can be approximated by by the following 3-component Hy-
perexponential density function

fi(x) = 0.8099e 323982 1 (3616 144657

40.5198¢ 103962 (8)

For infinite-time ruin probability:  Application of
Theorem (1) leads to the following second order
ODE 119 (w) + 5.208499 (v) + 6.479507012 (v) +
17979194579 (u) = owith initial conditions .(0) =
0.3354861821, &ii)n()iz)il)(u) 0.3049874383,  lim 2P W) =

—0.2385743202, and  lim 1. (u) = 1.
u—20

Solving the above ODE, one may approximate infinite-
time survival probability z/;(u) of compound Pois-
son process (1) by 4.(u) = 1 — 0.013037¢~3-073097u _
0.008568¢ ~1-349630u _ (9, 642908 ~0-394082u_ Figure 3 illustrates
behavior for such approximated infinite-time ruin proba-
bility.

For  finite-time  ruin  probability: Application
of Theorem (3) leads to the following PDE
1125040 (u; T) +5.29849 2 . (u; T) +6.479507012 25 o (u; T) +
1.797919457 2 1), (u; T) - 5.359146 2. (u; T) -
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2 ~ 3 ~
10.5141 52— 4. (u; T) - 6.2985 59— (u; T) -

ou2
1~.1%¢7*(u; T) o= 0 with initiail conditions
$e(u,0) = 0, P (0;T) = B(T), lim ou(u;T) = 1,

.0 - 0 .0 -
711310 aw*(u,T) = 0.90918(T) + ﬁﬁ(T), UI}EIO aw*(u,T) =

2
o B(T),where

)
—0.711138(T 9091 — B(T
0TIIBH(T)  +  0.9091-B(T)  + =

11T —0.7309651999T
T) = 1 P | L= 00990029998 ) g,
B(T) 11T Jo 0.7309651995T

Solving the above PDE, one may approximate finite-time
survival probability &(u, T) of compound Poisson process
(1) by . (u; T), that its behavior (for T' = 50,100, 200)
has been illustrated in Figure 4.

Figure 3: Behavior for approximated infinite-time ruin
probability 1. (u).

Figure 4: Behavior for approximated finite-time ruin
probability . (u; T'), for T = 50, 100, 200.

It worthwhile to mention that: A given density function
(or a density function corresponding to a given data set)
can be approximated by a Hyperexponential distribution
using a Matlab package called “bayesf”; see [28| for more
details.

5 Conclusion and Suggestions

This article approximates claim size density function
fx(-) by a n—component Hyperexponential density func-
tion f%(-). Then, it restates the problem of finding
an infinite-time (or finite-time) ruin probability as a
(n 4+ 1)—order ordinary differential equation (or a par-
tial differential equation for finite-time ruin probability).
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Application of our findings has been given though a sim-
ulation study.

Certainly the following generalized Hyperexponential dis-
tribution can be provided a more accurate approxima-
tion in the situation that the true density function (or

recorded data) has more than one mode.

g$HE () = D wipe ML, (2). 9)
i=1
In such situation the finite and infinite ruin probabilities
can be evaluated using the following lemma.

Lemma 4. Suppose claim size density function fx(-) has
been approximated by generalized Hyperexponential distri-
bution g¢HE(\). The survival probability can be found by
the following two inverse Laplace transforms.

(1) The Laplace transform of the infinite-time survival
probability can be found by the following equation

cip(0)

cs— A+ A Ei.“:l %6_3}%

L (i(U);U; S) =

(ii) The Laplace transform of the finite-time survival
probability can be found by the following equation

p(0;T) (1 e (0; T)) eB(s)

B(s) s T B(s) o

L (1/7(1% T); u; S) =

)

where B(s) =cs — A+ A Z?:l % b

e
Proof. The desired result arrives by taking a Laplace
transform from both sides of equations (3) and (4) and
solving corresponding first-order PDE with boundary
condition ¢ (u;0) = 1 or L(¢(u;0);u;s) = 1/s. O An-
other possibility can be using a Lévy process to evaluate
the ruin probability, see [21] and [22] for more details.
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