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Abstract— The existence problem of specific base
hypergraphs of formulas on basis of the fibre perspec-
tive on the propositional satisfiability problem is ad-
dressed. Further, the orbit structure of the set of
fibre-transversals imposed by the flipping operation
is investigated. Moreover some complexity results
are proven. Methodogically, the concept of linear and
exact linear hypergraphs, respectively, formulas is ex-
ploited.
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1 Introduction

A fundamental open question in mathematics is the NP
versus P problem which is attacked within the theory of
NP-completeness [8]. The genuine and one of the most
important NP-complete [6] problems is the propositional
satisfiability problem (SAT) for conjunctive normal form
(CNF) formulas. More precisely, SAT is the natural NP-
complete problem and thus lies at the heart of compu-
tational complexity theory. Moreover, SAT plays an es-
sential role in the theory of designing exact algorithms,
and it offers various applications due to the fact that
instances of numerous computational problems can be
encoded as equivalent instances of CNF-SAT via reduc-
tion [10]. The reason for this is the high expressiveness
of the CNF language. In industrial applications most
often the modelling CNF formulas are of a specific struc-
ture. And therefore it would be desirable to have fast
algorithms for such instances. Also from a theoretical
point of view one is interested in classes for which SAT
can be solved in polynomial time. There are known sev-
eral classes, for which SAT can be tested efficiently, such
as quadratic formulas, (extended and q-)Horn formulas,
matching formulas, nested and co-nested formulas etc.
[2, 4, 5, 7, 11, 12, 13, 9, 19, 21]. It turns out that a useful
tool in revealing the structure of CNF-SAT is provided
by linear CNF formulas. Note that the complexity of
various satisfiability problems on linear formula classes is
well studied confer, e.g. [16, 18]. On basis of LCNF-SAT
we discuss in this paper the complexity of SAT restricted
to classes defined through the flipping operation on CNF
formulas. Further, we exploit the fibre view on clause
sets and investigate the structure and existence questions
of specific base hypergraphs of formulas. Also the orbit
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structure of fibre-transversals is investigated with respect
to the flipping operation on formulas. Specifically, we
show that the orbit space of the class of diagonal fibre-
transversals generally is non-trivial for diagonal base hy-
pergraphs.

2 Preliminaries

A Boolean or propositional variable x taking values from
{0, 1} can appear as a positive literal which is x or as a
negative literal which is the negated variable x also called
the flipped or complemented variable. Setting a literal to
1 means to set the corresponding variable accordingly. A
clause c is a finite non-empty disjunction of different lit-
erals and it is represented as a set c = {l1, . . . , lk}. A
clause containing no negative literal is called positive. A
clause containing only negated variables is called nega-
tive. A unit clause contains exactly one literal. A con-
junctive normal form formula C, for short formula, is a
finite conjunction of different clauses and is considered
as a set of these clauses C = {c1, . . . , cm}. A formula
can also be empty which is denoted as ∅. Let CNF be
the collection of all formulas. For a formula C (clause
c), by V (C) (V (c)) denote the set of variables occurring
in C (c). Let CNF+ (CNF−) denote that part of CNF
containing only positive (negative) clauses. A formula
C ∈ CNF is called linear if each pair ci, cj ∈ C, i �= j,
satisfies |V (ci)∩V (cj)| ≤ 1. By LCNF the class of linear
formulas is denoted. In an exact linear formula the vari-
able sets of distinct clauses have exactly one member in
common. For a finite set M , let 2M denote its powerset.
Given a finite group G, let Gn(G) denote a set of genera-
tors of G. Given C ∈ CNF, SAT asks whether there is a
truth assignment t : V (C) → {0, 1} such that there is no
c ∈ C all literals of which are set to 0. If such an assign-
ment exists it is called a model of C, and M(C) denotes
the collection of all models of C. Let SAT ⊆ CNF denote
the collection of all clause sets for which there is a model,
and UNSAT := CNF \ SAT. Clauses containing a com-
plemented pair of literals are always satisfied. Hence, it
is assumed throughout that clauses only contain literals
over different variables.

3 Base-Hypergraphs of Formulas

The hyperedge set B(C) of the base hypergraph H(C) =
(V (C), B(C)) assigned to a formula C ∈ CNF is de-
fined as B(C) := {V (c) : c ∈ C} ∈ CNF+. As intro-
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duced in [14] the collection of all clauses c such that
V (c) = b, for a fixed b ∈ B(C), is the fibre Cb of C
over b. Conversely, a hypergraph H = (V,B) can be re-
garded as base hypergraph if its vertex set V is a finite
non-empty set of Boolean variables such that for every
x ∈ V there is a b ∈ B containing x meaning B �= ∅.
By Wb := {c : V (c) = b} denote the collection of all
possible clauses over a fixed b ∈ B. By definition, a hy-
pergraph H = (V,B) is linear if |b∩b′| ≤ 1, for all distinct
b, b′ ∈ B, and H is exact linear if the symbol ≤ above is
replaced with =. Recall that a hypergraph H = (V,B)
is called loopless if |b| ≥ 2, for all b ∈ B [3]. Observe
that the base hypergraph H(C) is (exact) linear if the
formula C is (exact) linear. Moreover H(C) is loopless
if C is free of unit clauses. The set of all clauses over
H is KH :=

⋃
b∈B Wb. A H-based formula is a subset

C ⊆ KH such that Cb := C ∩ Wb �= ∅, for every b ∈ B.
For H-based C ⊆ KH let C̄ := KH \ C be its comple-
ment formula. If C satisfies C̄b := Wb \ Cb �= ∅, for all
b ∈ B, then C̄ also is H-based with non-empty fibres C̄b,
for every b ∈ B. A fibre-transversal of KH is a H-based
formula F ⊂ KH such that |F ∩Wb| = 1, for every b ∈ B,
this clause is denoted as F (b). By F(KH) denote the
set of all fibre-transversals of KH. Observe that, given
a linear base hypergraph H then every fibre-transversal
F ∈ F(KH) is linear. A compatible fibre-transversal is de-
fined by the property that

⋃
b∈B F (b) ∈ WV . Fcomp(KH)

is the set of all compatible fibre-transversals of KH. A
diagonal fibre-transversal is defined through the property
that for each F ′ ∈ Fcomp(KH) one has F ∩ F ′ �= ∅.
Finally, let Fdiag(KH) be the collection of all diagonal
fibre-transversals of KH. We call a base hypergraph H
diagonal [15] if and only if Fdiag(KH) �= ∅. As for the
total clause set KH we can define fibre-transversals for a
H-based formula C ⊂ KH as follows. A fibre-transversal
F of C contains exactly one clause of each fibre Cb of
C. The collection of all fibre-transversals of C is denoted
as F(C). We also have compatible and diagonal fibre-
transversals of C via Fcomp(C) := F(C) ∩ Fcomp(KH),
and Fdiag(C) := F(C) ∩ Fdiag(KH).

4 The Flipping Operation

For a fixed finite and non-empty set of propositional vari-
ables V let CNF := CNF(V ) denote the set of all CNF
formulas with V (C) ⊆ V . Let cX be the clause ob-
tained from c by complementing all variables in X∩V (c),
where X is an arbitrary subset of V , for short we set
cγ := cV (c), and further c∅ := c. This flipping oper-
ation ϕ(c,X) := cX on clauses induces via the identi-
fication of c with {c} an action on arbitrary members
of CNF: For C = {c1, . . . , cm} ∈ CNF and X ∈ 2V ,
we define ϕ : CNF × 2V → CNF, through ϕ(C,X) :=
{ϕ(c1, X), . . . , ϕ(cm, X)} =: CX ∈ CNF. Again set
Cγ := CV (C) in case that all variables in C are flipped,
and C∅ := C. Thus formally we obtain the GV -action
of the abelian group GV := (2V ,⊕) with neutral ele-

ment ∅ on CNF providing CNF as a GV -space. Indeed,
first flipping C by X ∈ GV then by Y ∈ GV obviously
yields ϕ(ϕ(C,X), Y ) = (CX)Y = CX⊕Y = ϕ(C,X ⊕ Y )
where ϕ(∅, X) := ∅ ∈ CNF, for every X ∈ GV . Ob-
serve that as the group is commutative the operation
is the same regarded as a left action or as a right ac-
tion. In case V (C) �= V the relevant subgroup of GV is
GV (C) = (2V (C),⊕). By O(C) := {CX : X ∈ GV (C)}
= {CX : X ∈ GV } denote the (GV -)orbit of C in
CNF yielding the classes of an equivalence relation on
CNF whose quotient space CNF/GV therefore is usually
called the orbit space. Let GV (C)(C) := {X ∈ GV (C) :
CX = C} denote the isotropy group also called stabilizer
of C ∈ CNF. More generally GV (C) := {X ∈ GV :
C ∈ C ⇒ CX ∈ C} denotes the isotropy group of the
class C ⊆ CNF. Observe that also the latter concept can
easily be verified to be a subgroup of GV . Indeed, for
X, Y ∈ GV (C) and arbitrary C ∈ C let CX =: C ′ ∈ C
then we have CX⊕Y −1

= CX⊕Y = C ′Y ∈ C hence
X ⊕ Y −1 ∈ GV (C). The mapping fX : CNF → CNF
defined by fX(C) := CX is GV -equivariant, by definition
meaning that fX(CY ) = [fX(C)]Y , for every Y ∈ GV

and every C ∈ CNF. Clearly, V (C ′) = V (C) for
C ′ ∈ O(C). So CX = C and C ′ = CY ∈ O(C) implies
C ′X = (CY )X = (CX)Y = C ′ and vice versa. Therefore
GV (C)(C ′) = GV (C)(C) for all C ′ ∈ O(C). Also as usual
a fixed point of an operation, cf. e.g. [20], is the unique
member of an 1-point invariant subspace, so by definition
its isotropy group equals the whole group.

Lemma 1 [15] ∅ �= C ∈ CNF is a fixed point of the
GV -action if and only if Cb = Wb, for all b ∈ B(C).

Given C ∈ CNF, we set A(C) := {c ∈ C : cγ �∈ C} and
S(C) := {c ∈ C : cγ ∈ C}. This yields subclasses of CNF,
namely A := {C ∈ CNF : C = A(C)} denoting the set of
anti-symmetric formulas and S := {C ∈ CNF : C = Cγ}
which is the set of symmetric formulas as introduced in
[17]. Observe that A(C) can be the empty formula as is
the case for C = Wb ∈ S, b ⊆ V . If C ∈ LCNF we also
have S(C) = ∅ therefore {∅} = S ∩ A. A specific class
of symmetric formulas is given by those C ∈ S such that
every clause c ∈ C either belongs to CNF+ or to CNF−.
Let S± denote the collection of such formulas yielding the
key to the complexity of S-SAT as is shown next. We also
prove that the complexity does not decrease if the input
is restricted to anti-symmetric instances.

Theorem 1 The computational complexity of SAT re-
stricted to C is NP-complete, for C ∈ {S±,S,A}.

Proof. Clearly, C-SAT belongs to NP, for C ∈
{S±,S,A}. Regarding S± first recall that the NP-
complete hypergraph bicolorability problem for given hy-
pergraph H = (V,B) asks whether a 2-coloring t : V →
{0, 1} of the vertex set exists such that no hyperedge ap-
pears monochromatic. Next B can be interpreted as a set
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of positive clauses B ∈ CNF+ if its vertices are assigned
to Boolean variables. Clearly one has Bγ ∈ CNF− and
C := B∪Bγ ∈ S±. Thus the decision of the bicolorability
problem for H means a decision of SAT for C. Hence a
polynomial-time reduction is provided establishing that
SAT restricted to S± is NP-complete. The assertion for S
therefore holds true via the inclusion S± ⊂ S. Regarding
the additional statement, first recall that SAT remains
NP-complete for the class of linear formulas that are free
of unit clauses according to [18]. Next assume there is
C ∈ LCNF free of unit clauses such that c, cγ ∈ C im-
plying |V (c) ∩ V (cγ)| ≥ 2 and contradicting the linear-
ity, hence such a formula must be a member of A. In
consequence also the computational complexity of SAT
restricted to A is NP-complete. �

Note that both classes A,S are stable subspaces of
CNF under the flipping operation [15], meaning that
GV (C) = GV , for C ∈ {A,S}. However, the subclasses
CNF−,CNF+ ⊆ A are non-invariant subspaces. Also
C ∈ S± then O(C) �⊆ S±. Moreover one has:

Lemma 2 Given C ∈ S± then a set of generators of
GV (C) can be computed in polynomial time.

For a given base-hypergraph H let C(H) := {C ∈ C :
H(C) = H}, for C ∈ {A,S}.

Theorem 2 For H = (V,B) one has. (1) There is an
GV -equivariant bijection σ : A(H) → S(H). (2) Given
C ∈ A(H) with G := GV (C) then Gn(GV (σ(C))) =
Gn(G) ∪ Gn(GB), where GB := GV (B ∪ Bγ). More-
over for input Gn(G), Gn(GV (σ(C))) can be computed
in polynomial time.

5 Orbits of Fibre-Transversals

This section is devoted to study to some extent the orbit
structure with respect to the flipping operation within the
set of fibre-transversals over specific base hypergraphs.
To that end, first let H = (V,B) be a fixed but arbitrary
base hypergraph with total clause set KH. Before, several
results which are proven elsewhere and turn out to be
useful are recalled here. A first one characterizes the
satisfiability of a formula C in terms of compatible fibre-
transversals in its based complement formula C̄ = KH\C.

Theorem 3 [14] For H = (V,B), let C ⊂ KH be a
H-based formula such that C̄ is H-based, too. Then C
is satisfiable if and only if C̄ admits a compatible fibre-
transversal F . Moreover, the union

⋃
c of all clauses

c ∈ F γ is a member of M(C).

Lemma 3 [17] (i) Fcomp(KH) is bijective to WV . (ii)
F ∈ Fdiag(KH) ⇔ F ∈ UNSAT, F ∈ F(KH).

Fibre-transversals yield stable classes with respect to the
flipping operation.

Lemma 4 For H = (V,B) each of the classes F(KH),
Fcomp(KH), Fdiag(KH) and F(KH) \ (Fcomp(KH) ∪
Fdiag(KH)) is invariant under GV -action.

Proof. For F ∈ F(KH) and X ⊆ V we have by defini-
tion FX = {cX : c ∈ F} = {(F (b))X : b ∈ B}. Hence
it is (FX)(b) = (F (b))X ∈ Wb, thus 1 = |F ∩ Wb| =
|FX ∩Wb|, for every b ∈ B, implying FX ∈ F(KH) prov-
ing the first claim. Next assume F ∈ Fcomp(KH) then⋃

b∈B(FX)(b) =
⋃

b∈B(F (b))X = (
⋃

b∈B F (b))X ∈ WV ,
for every X ∈ GV hence FX ∈ Fcomp(KH). Next,
take an arbitrary F ∈ Fdiag(KH) �= ∅ otherwise the
claim holds for sure. As F ′X ∈ Fcomp(KH) for every
X ⊆ V and every F ′ ∈ Fcomp(KH) there exists b ∈ B de-
pending on F ′, X such that F (b) = (F ′X)(b) = F ′(b))X

equivalent with (F (b)X = (FX)(b) = F ′(b). Therefore
FX ∈ Fdiag(KH), for every X ∈ GV . The last claim
directly follows from the first three results. �

Observe that every fibre-transversal F ∈ F(KH) belongs
to A. Therefore as a direct consequence from Lemma 1
one has that there are no fixed points within sets of fibre-
transversals at all, except for the empty base hypergraph.
One even obtains stronger results as follows.

Theorem 4 [15] Let H = (V,B). (i) FX �= F for every
F ∈ F(KH) and every ∅ �= X ∈ GV . (ii) Fcomp(KH) =
O(F ), for any fixed F ∈ Fcomp(KH).

Observe that the statement (ii) above means that the
GV -action is transitive [20] restricted to the space of com-
patible fibre-transversals. Further, statement (i) implies
that every fibre-transversal over a base hypergraph has
the trivial isotropy group E. Regarding the space of diag-
onal fibre-transversals of a base hypergraph H = (V,B),
let the integer δ(H) ≥ 0 denote the cardinality of the
orbit space Fdiag(KH)/GV . Clearly δ(H) essentially de-
pends on the structure of B. Further denote the number
of orbits in the space of all fibre-transversals of H by
ω(H) and set β(H) :=

∑
b∈B |b| − |V | ≥ 0.

Corollary 1 Given a base hypergraph H = (V,B), then
we have ω(H) = 2β(H) ≥ 1, |F(KH)| = ω(H)2|V |, and
|Fdiag(KH)| = δ(H)2|V |.

Proof. r := |B| and n := |V | are positive inte-
gers. According to Lemma 4 and Theorem 4 (i), for
every F ∈ F(KH) we have |O(F )| = 2n, therefore
|Fdiag(KH)| = δ(H)2n, and |F(KH)| = ω(H)2n. Next
one has |F(KH)| ≥ |Fcomp(KH)| = 2n according to
Lemma 3 (i), hence ω(H) ≥ 1. Finally one obtains

|F(KH)| =
r∏

i=1

|Wbi | = 2
∑r

i=1
|bi| = 2β(H)2n
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hence ω(H) = 2β(H). �

The question whether δ(H) can be larger than one is ad-
dressed later. A connection to the monotonicity index as
introduced in [15] appears as follows.

Theorem 5 Let H then μ(F ) = 0, for every F ∈
F(KH) \ Fdiag(KH).

Proof. Recall that for C ∈ CNF the value μ(C) :=
min{min{|C ′

+|, |C ′
−|} : C ′ ∈ O(C)} is the monotonicity

index of C, where C+ ∈ CNF+, respectively, C− ∈ CNF−
is the collection of all positive, respectively negative
clauses in C. As shown in [15] we have C ∈ SAT if
and only if μ(C) = 0. So, the claim follows directly from
Lemma 3 (ii). �

Let H = (V,B) be a base hypergraph, then have
|Fcomp(KH)| = |WV | due to Lemma 3 (i). Whether
Fdiag(KH) �= ∅ depends on the structure of the base hy-
pergraph H. Consider, e.g. a loopless and exact linear
base hypergraph H = (V,B). Recalling that according to
[18] each exact linear formula without unit clauses is sat-
isfiable it follows that Fdiag(KH) = ∅. However, choose
an unsatisfiable linear formula [18] then its base hyper-
graph admits diagonal fibre-transversals. On that basis
we can address the question whether the second assertion
of Theorem 4 (ii) is valid for diagonal fibre-transversals
also. As the result below tells us, the answer in general is
no, implying that the orbit structure of the set of diagonal
fibre-transversal can be more complex.

Theorem 6 There exist loopless and linear diagonal
base hypergraphs H = (V,B) such that the orbit space
Fdiag(KH)/GV contains more than one element.

Proof. Let F0 ∈ UNSAT be a linear formula free of
unit clauses which exists according to [18], and let H0 =
(V0, B0) := H(F0) be its base hypergraph. Hence F0 ∈
Fdiag(KH0) �= ∅ meaning that H0 is a diagonal base hy-
pergraph that is loopless and linear. Let bi with |bi| ≥ 2,
V0∩bi = ∅, i = 1, 2 and b1∩b2 = {x}. We set H = (V,B)
where V := V0∪b1∪b2, B := B0∪{b1, b2}. Now we define
distinct fibre-transversals F, F ′ ∈ Fdiag(KH) by continu-
ing F0 over Wb1 ,Wb2 as follows. Let F := F0 ∪ {b1, b2}
and F ′ := F0 ∪ {b1, c2}, where c2 = b

{x}
2 ∈ Wb2 . Hence,

b2 ⊕ c2 = {x, x̄}, and H = H(F ) = H(F ′). Since F0 is
linear, by construction it is ensured that F, F ′ are fibre-
transversals over KH which therefore is loopless and lin-
ear. Since F0 ∈ UNSAT the same obviously holds for
F, F ′ and according to Lemma 3 (ii) indeed we obtain
that F, F ′ are diagonal. Suppose there is X ∈ GV such
that FX = F ′ specifically implying bX

1 = b1 and bX
2 = c2

as both formulas are fibre-transversals. The first equa-
tion means x �∈ X, the second implies x ∈ X yielding
a contradiction. Thus it is verified that O(F ) �= O(F ′)
finishing the proof. �

However unsatisfiable formulas C ⊂ KH can exist also in
case that H is not diagonal, as the next result tells us,
repeated here for convenience.

Lemma 5 [17] Let H = (V,B) be an exact linear base
hypergraph such that there is a vertex x ∈ V occurring in
each b ∈ B. Let C ⊂ KH be a H-based formula such that
C̄ also is H-based. Then we have: C ∈ UNSAT if and
only if |{b ∈ B : ∀c ∈ C̄b, x ∈ c}| > 0 and |{b ∈ B : ∀c ∈
C̄b, x̄ ∈ c}| > 0.

So C ∈ UNSAT generally does not mean Fdiag(C) �= ∅.
A diagonal base hypergraph H = (V,B) is called strictly
diagonal if for every C ⊂ KH with B(C) = B = B(C̄)
one has the equivalence C ∈ UNSAT ⇔ Fdiag(C) �= ∅
[15]. The implication from right to left here is always
valid according to Theorem 3. So, the existence of strictly
diagonal base hypergraphs needs to be proven. As a first
step we next show that the class of all strictly diagonal
base hypergraphs does not coincide with the class of all
diagonal base hypergraphs.

Theorem 7 There exist loopless and linear diagonal
base hypergraphs that are not strictly diagonal.

Proof. To proceed semi-constructively, we start with
a loopless exact linear base hypergraph H1 = (V1, B1)
such that according to Lemma 5 there is a H1-based
unsatisfiable formula C1 ⊂ KH1 such that C̄1 also is
H1-based. Next take any unsatisfiable F ′ ∈ LCNF free
of unit clauses and such that V2 := V (F ′) and V1 are
disjoint. Finally setting H2 := H(F ′) then specifically
F ′ ∈ Fdiag(KH2) is ensured. Moreover B2 := B(F ′) and
B1 are disjoint also, therefore H = (V,B) := H1 ∪ H2 is
a disjoint union. Now we claim that H is diagonal but
not strictly diagonal establishing the theorem. To verify
the claim, first observe that Fdiag(KH) �= ∅ thus H is a
diagonal base hypergraph. Indeed, let F ∈ F(KH1) then
F ∪ F ′ ∈ Fdiag(KH), because F ∪ F ′ ∈ F(KH) and, as
F ′ ∈ UNSAT, also F ∪F ′ ∈ UNSAT using Lemma 3 (ii).
Next, let C2 ∈ F(KH2) \ Fdiag(KH2) hence C2 ∈ SAT.
Then for the H-based formula C := C1 ∪ C2 ∈ UNSAT
holds because C1 ∈ UNSAT; further by construction
B(C) = B = B(C̄). Moreover, we have Fdiag(C) = ∅
because Fdiag(KH1) = ∅ and Fdiag(C2) = ∅ proving that
H is diagonal but not strictly diagonal. �

We call a diagonal base hypergraph simple iff the orbit
space of its diagonal fibre-transversals is trivial.

Lemma 6 H is simple if and only if there is a Gv-
equivariant bijection between Fcomp(KH) and Fdiag(KH).

One has the following characterization.

Theorem 8 [15] Let H = (V,B) be strictly diagonal.
Then a fibre-transversal F ∈ F(KH) is compatible if and
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only if it satisfies F ∩ F ′ �= ∅ for every diagonal fibre-
transversal F ′ ∈ Fdiag(KH).

We also have the following connection to minimal unsat-
isfiable formulas [1]. Recall that a formula is minimal
unsatisfiable if and only if the removal of an arbitrary
clause yields a satisfiable subformula. Similarly, call a di-
agonal base hypergraph (inclusion-)minimal if it is does
not contain another diagonal base hypergraph.

Theorem 9 Let H = (V,B) be a strictly minimal diago-
nal base hypergraph. A formula C ⊂ KH with B(C) = B
is minimal unsatisfiable if and only if it is a diagonal
fibre-transversal of KH.

Proof. H has at least two hyperedges otherwise it can-
not be diagonal. Let C ⊂ KH with B(C) = B be
a minimal unsatisfiable formula. Clearly, then C can-
not contain a complete fibre of KH. It follows that
B(C) = B = B(C̄), therefore, since H is strictly diagonal
we know that Fdiag(C) �= ∅. In other words C contains a
subformula F ⊆ C that is a diagonal fibre-transversal of
KH. So we conclude C = F . Otherwise there is a clause
c ∈ C \ F which can be removed yielding an unsatisfi-
able formula. Conversely, assume that F is a diagonal
fibre-transversal. Then removing any clause c from it
yields a fibre-transversal of the total clause set over the
hypergraph Hc := (V,B \ {V (c)}). Assume that F \ {c}
is unsatisfiable then, according to Lemma 3 (ii), it is a
diagonal fibre-transversal of KHc . So we obtain a con-
tradiction because H is assumed to be minimal diagonal.
Therefore F is minimal unsatisfiable. �

6 Open Problems and Concluding Re-
marks

It would be interesting to investigate the existence of
non-trivial isotropy groups of arbitrary as well as struc-
tured formulas with respect to the flipping action. Also,
the investigation of the orbit structure of A and S for
H-based formulas, as well as the detection of other in-
variant subspaces of CNF is devoted to future research.
Further the study of loopless simple hypergraphs has
to be continued also in connection to strictly diago-
nal base hypergraphs. Finally, the existence problem
for loopless strictly diagonal hypergraphs is open. One
might hope to find a loopless strictly diagonal hyper-
graph in case that there exists only compatible and di-
agonal fibre-transversals. Indeed, assume that there is
a loopless simple diagonal base hypergraph H such that
F(KH) = Fcomp(KH) ∪ Fdiag(KH). Take an arbitrary
C ⊂ KH which is unsatisfiable and such that C, C̄ are H-
based, then F(C) �= ∅ �= F(C̄). Moreover then one has
Fcomp(C̄) = ∅ relying on Theorem 3. Since Fcomp(KH) �=
∅ it follows F(C̄) ⊆ F(KH) \ Fcomp(KH) = Fdiag(KH)
implying C̄ ∈ UNSAT. Now assume to the contrary

that Fdiag(C) = ∅. Since Fdiag(KH) �= ∅ it follows
F(C) ⊆ F(KH) \ Fdiag(KH) = Fcomp(KH). There-
fore C̄ ∈ SAT again according to Theorem 3 yielding
a contradiction and verifying that H is strictly diago-
nal. However, a base hypergraph as required above ex-
ists if and only if there is a simple H = (V,B) such that
β(H) =

∑
b∈B |b| − |V | = 1, because then according to

Corollary 1 it follows ω(H) = 2, and δ(H) = 1. Hence
F(KH) can only contain compatible and diagonal fibre-
transversals at all. But such a situation cannot occur
as corresponding unsatisfiable formulas do not exist such
that |C| ≤ |V (C)|+1

2 ensuring that H(C) is loopless and
admits the properties as required. Although the previous
argumentation may hint towards a direction for detecting
a loopless strictly diagonal base hypergraph as desired.
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