
A Preliminary Study on Formal Verification of
Formula Transformations for Mathematical

Programming
Masaki Nakamura, and Kazutoshi Sakakibara

Abstract—To use a solver for optimization problems, we need
to formulate a mathematical programming model acceptable
by the solver. Such a formulation may need some heuristic
techniques with professional knowledge and the user is re-
sponsible for the correctness of the formulation. In this paper
we investigate a way to verify the correctness of formulation
by using formal verification techniques. Through examples of
formulation techniques in optimization problems, we give a way
to describe formal specifications of given models and a way to
verify the correctness of the models.

Index Terms—optimization problems, mathematical pro-
gramming, formula transformations, formal methods, algebraic
specifications.

I. INTRODUCTION

Optimization problems are the problems to find the best
solution from all feasible solutions which satisfy expressions
of equalities or inequalities. There are lots of applications,
for example, supply chain planning, transport planning, and
so on [1], [2], [3]. In general, an optimization problem is
modeled as follows:

minimize f(x) subject to C

where f(x) is an objective function and C is a set of
constraints written in equalities or inequalities, e.g. g0(x) ≤
a0, g1(x) = a1, g2(x) ≥ a2, The goal of this optimiza-
tion problem is to find the value of x satisfying C with min-
imal value f(x). There are lots of solvers to solve optimiza-
tion problems. To use a solver, we need to formulate models
which can be accepted by the solver. For example, when we
use an integer linear programming (ILP) solver, we have to
formulate a model with linear relationships. The following
is an example of ILP models: f(x1, x2) = −4x1 − 5x2 and
C = { 2x1 + 2x2 ≤ 7, 3x1 + 5x2 ≤ 14, x1 ≥ 0 x2 ≥ 0 }
where x1, x2 ∈ Z [4]. When ignoring domain of integers
for x1 and x2, the problem can be regarded as a linear
programming problem and the simplex method, for example,
can easily achieve the optimal solution (x1, x2) = (7/4, 7/4)
with the minimal value f(x1, x2) = −15.75. To obtain the
solution of the original integer linear programming problem,
we need to round down x1 and round up x2 such that
(x1, x2) = (1, 2) with the minimal value f(x1, x2) = −14.
In general, it is not so easy to find the solution of an
integer linear programming problem from the solution of
the corresponding linear programming problem. With the

Manuscript received Dec 8th, 2017; revised Jan 16th, 2018.
Masaki Nakamura and Kazutoshi Sakakibara are with the Department of

Electrical and Computer Engineering, Toyama Prefectural University, Japan
(e-mail: masaki-n@pu-toyama.ac.jp, sakakibara@pu-toyama.ac.jp).

integer constraint, all points satisfying the constraints of C
are (0, 0), (0, 1), (0, 2), (0, 3), (1, 0), (1, 1), (1, 2), (2, 0) and
(2, 1), and thus the above problem can be rewritten into the
following formulation: C ′ = { x1 +x2 ≤ 3, x2 ≤ 2, x1 ≥ 0
x2 ≥ 0 }.

Formula transformations may help us to find a solution of a
given optimization problem to which it is hard or impossible
to apply a solver. The goal of formula transformations is
to find a formula such that (1) a solver can be applied to
the formula and/or it is easier to obtain a solution than
the original formula and (2) a solution obtained from the
transformed problem is a solution of the original problem. To
find such transformations is not easy and needs professional
knowledges and insights. We focus on the latter condition
(2), that is, the correctness of formula transformations. In
the above example, the transformed formula C ′ have to be
sufficient to C, i.e., C ′ ⇒ C should hold. The user is
responsible for correctness of the formula transformation.

Our motivation is to give a way to prove the correctness
of formula transformations by using formal method tech-
niques. Formal methods are mathematical techniques for the
specification and verification of software and/or hardware
systems. Formal specification languages play an important
role in formal methods. Algebraic specification languages,
e.g. OBJ language family: OBJ3[5], CafeOBJ[6], Maude[7],
are formal specification languages whose models are algebra.
Algebraic specifications are used for describing and verifying
wide ranges of systems: from abstract data types to abstract
machines. For example, we can describe a specification of
natural numbers and operators on them (in Peano style) ,
and verify a property of such operators (e.g. the distribu-
tion law on multiplication and addition). A behavior of a
system, like authentication protocols, bank account systems,
e-government systems, can be specified and some desired
properties of those systems can be verified formally [8],
[9], [10], [11]. In this study, we use CafeOBJ algebraic
specification language and give a way to specify constraints
of optimization problems and to verify that formula transfor-
mations are correct or not.

II. PRELIMINARIES

We introduce algebraic specification languages briefly (See
[12], [6] for more details).

A CafeOBJ specification consists of modules. The follow-
ing is an example of CafeOBJ modules:

mod! ABC{
[Elt]
ops a b c : -> Elt

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

op f : Elt -> Elt
eq a = b .
eq f(X:Elt) = X .

}

The module name is ABC. A module consists of imports, a
signature, and axioms. There no imports in ABC. A signature
consists of sorts and operation symbols. Sorts are declared
between [and]. Operation symbols are declared after op
or ops. An operation symbol has its rank of sorts s1 s2
sn−1 -> sn, where s1, . . . sn−1 are called arity sorts and
sn is called co-arity sort. The operation symbols a, b and c
have the rank -> Elt. The empty arity operation symbols
are called constants. The operation symbol f has the rank
Elt -> Elt. A term is a tree structure whose nodes are
operation symbols and leaves are variables. An operation
symbol d : -> s with the empty arity forms a term of
the sort s by itself. A variable x of the sort s is denoted
by x :s in term expressions, and it is also a term of s.
From an operation symbol f with the rank s1 s2 sn−1
-> sn and terms t1, . . . , tn−1 of the sorts s1, . . . sn−1, the
expression f(t1, . . . , tn) is a term of the sort sn. Axioms are
equations or transitions. An equation is declared with eq l =
r, where l and r are terms of the same sort. When equations
have variables, the variables mean the arbitrary terms. For
example, f(X:Elt) = X means that f(t) = t for any
term t of Elt.

A CafeOBJ module with the signature Σ and axioms
E denotes (a set of) (Σ, E)-algebras. A (Σ, E)-algebra M
consists of carrier sets and operations on the sets. A sort
s is interpreted into a carrier set Ms and an operation
symbol f : s1 s2 . . . , sn−1 → sn is interpreted into an
operation Mf : Ms1 × Ms2 × · · · × Msn−1 → Msn . A
term with variables is also interpreted into an operation
which takes elements corresponding to the variables. In a
(Σ, E)-algebra M , the left-hand side and the right-hand side
of an equation l = r is interpreted into a same function
or element Ml = Mr. The following algebra M01 is one
of the denotation of the module ABC: (M01)Elt = {0, 1}
(M01)a = 0, (M01)b = 0, (M01)c = 1, (M01)f(x) = x for
each x ∈ {0, 1}.

CafeOBJ supports semi automated equational reasoning
by term rewriting, which is implemented as the reduction
command in CafeOBJ interpreter. In the theory of term
rewriting, a term is reduced by applying equations as left-
to-right rewrite rules. The followings are examples of the
CafeOBJ executions.

OP3> select ABC
ABC> red f(a) = f(b) .
(true):Bool
ABC> red c = f(f(c)) .
(true):Bool
ABC> red f(c) = b .
(c = b):Bool

The three equations f(a) = f(b), c = f(f(c)) and f(c) = b
are tried to be proved. For the first and second ones, CafeOBJ
interpreter returns true, which means that those equations
are deducible from the equations of axioms in the module
ABC, and thus they are true in every denotational model of
ABC (e.g. M01). The last equation is not proved and the

reduction command returns the equation c = b. A returned
value except true does not imply the disproof of the input
equation. When true is not returned, the input equation may
or may not hold. The CafeOBJ reduction command shows
a hint for the proof. In this case, c = b is returned and it
means that f(c) = b holds if c = b holds.

The following is another example of CafeOBJ modules:

mod! AMGM{
pr(INT)
op p : Int Int -> Bool .
eq p(X:Int, Y:Int) =
(X + Y) * (X + Y) > 4 * X * Y .

}

The module AMGM specifies the inequality of arithmetic
and geometric means. The module imports the built-in mod-
ule INT in the protect mode. A denotational model M of
a module imported in the protect mode is a sub model of a
model M ′ of the importing module, that is, the carrier set
of each sort in the imported module is same in both M and
M ′ (Ms = M ′s for each sort). In the built-in module INT,
the sort Int of the set of integer numbers, the constants
. . . − 2,−1, 0, 1, 2, . . . of the integer numbers, and several
operations +,−, ∗, >, . . . on integers are declared. A model
of AMGM has the carrier set MInt = Z . Importing modules
can use members of imported modules. The built-in Boolean
module BOOL with the sort Bool is also imported implicitly
in CafeOBJ. AMGM specifies the predicate p(x, y) on a
pair of the integer numbers which checks the inequality of
arithmetic and geometric means (x+y

2 >
√
xy). For example,

the term p(3, 4) is reduced into true as follows:

AMGM> red p(3,4) .
---> (((3 + 4) * (3 + 4))

> (4 * (3 * 4))):Bool
---> ((7 * (3 + 4)) > (4 * (3 * 4))):Bool
---> ((7 * 7) > (4 * (3 * 4))):Bool
---> (49 > (4 * (3 * 4))):Bool
---> (49 > (4 * 12)):Bool
---> (49 > 48):Bool
---> (true):Bool

Next, we introduce a way to describe a transition system in
CafeOBJ. The following is an example of CafeOBJ modules
of transition systems.

mod! CHECK{
pr(INT)
[Pair]
op pair : Int Int -> Pair
op n : -> Int
trans n => n + n .
trans n => 1 .
trans n => 3 .

}

The module CHECK imports INT and declares the sort
Pair for the pair of integer numbers, the operation symbol
pair of a constructor of the pairs, and the constant n
of Int. A transition rule is declared like trans l => r.
Roughly speaking, a CafeOBJ module with transition rules
denotes a transition system (T,→) where the set T of states
is the set of terms modulo equations and the state transition

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

→ on T is obtained from the transition rules. The relation
t1 → t2 holds if and only if t2 is obtained by applying the
transition rules repeatedly from t1. In the above example,
n → 1 and n → 3 hold from the latter transitions. n → 2
and n → 4 also hold since n → n + n → 1 + 1 = 2 and
n→ n + n→ 1 + 3 = 4.

The exhaustive search command is supported in CafeOBJ
for specifications with transition rules, denoted by red t0
=(m,n)=>* t1 suchThat p. The command searches m
states (terms) which are reachable from the initial state t0
by the transition rules within the depth n, match the pattern
t1 and satisfy the predicate p.

The following is an example of the exhaustive search
command:

select CHECK .
red pair(n, n) =(3,10)=>*

pair(X1:Int,X2:Int)
suchThat (X1 + X2 = 5) .

CafeOBJ interpreter computes all states matching the
pattern pair(X1, X2) reachable from the initial state
pair(n, n) within the depth ten, and three states satisfy-
ing X1 + X2 = 5 is returned as follows:

** Found [state 72] (pair(2,3)):Pair

** Found [state 74] (pair(4,1)):Pair

** Found [state 95] (pair(1,4)):Pair
-- found required number of solutions 3.

III. PROVING THE CORRECTNESS OF FORMULA
TRANSFORMATIONS BY ALGEBRAIC SPECIFICATIONS

In this section, we investigate how to prove the correctness
of formula transformations in optimization problems by
using (1) exhaustive searching and (2) interactive theorem
proving in CafeOBJ.

A. Exhaustive search

Consider the following example of optimization problems:
there are ten projects Pi and their costs ai. At least five
projects should be done. For the projects P1, P2 and P3,
either exactly two of them or no projects are chosen. Choose
projects to minimize the total costs.

The problem is straightforwardly formulated as follows:

minimize
10∑
i=1

aixi

subject to
10∑
i=1

xi ≥ 5 x1 + x2 + x3 = 2
∨
x1 + x2 + x3 = 0

(1)

where each xi ∈ {0, 1} represents a decision variable, that
is, Pi is chosen when xi = 1, otherwise Pi is not.

The last disjunctive constraint, x1 + x2 + x3 = 2 ∨ x1 +
x2+x3 = 0, is not acceptable for most solvers. For example,
the above formulation is out of the scope of the integer linear
programming, which allows only a conjunction of equalities
and inequalities. The disjunction can be transformed to a
conjunction of four inequalities as follows:

minimize
10∑
i=1

aixi

subject to
10∑
i=1

xi ≥ 5

x1 + x2 + x3 ≤ 2
x1 − x2 − x3 ≤ 0
x2 − x3 − x1 ≤ 0
x3 − x1 − x2 ≤ 0

(2)

Those two formulations are described in CafeOBJ speci-
fications as follows:

mod! OP{
pr(INT)
[Int < EInt]
[Triple]
op n : -> EInt .
op triple : EInt EInt EInt -> Triple
op req : EInt EInt EInt -> Bool .
op cond : EInt EInt EInt -> Bool .

vars X1 X2 X3 : Int

eq (X1 = X2) = X1 <= X2 and X1 >= X2 .

eq req(X1, X2, X3) =
X1 + X2 + X3 = 2 or
X1 + X2 + X3 = 0 .

eq cond(X1, X2, X3) =
X1 + X2 + X3 <= 2 and
X1 + - X2 + - X3 <= 0 and
X2 + - X3 + - X1 <= 0 and
X3 + - X1 + - X2 <= 0 .

trans n => 0 .
trans n => 1 .

}

The module OP imports the built-in module INT. The
sort EInt is introduced to avoid unnecessary computation
in the exhaustive searching. The sort EInt is declared as
a super sort of Int. A super sort is interpreted into a
super set of the carrier set of its sub sorts in a denotational
model. The constant n of the sort EInt is declared. In
the last part of OP, two transition rules are declared. The
constant n has two successor states 0 or 1 of Int. The
operation symbols req and cond correspond to the formulas
x1 + x2 + x3 = 2 ∨ x1 + x2 + x3 = 0 (req) and
x1 + x2 + x3 ≤ 2 ∧ x1 − x2 − x3 ≤ 0 ∧ x2 − x3 − x1 ≤
0x3−x1−x2 ≤ 0 (cond). Note that the variables X1, X2 and
X3 are declared as variables of Int. The term req(1,0,1)
is equivalent to the term 1 + 0 + 1 = 2 or 1 + 0 +
1 = 0, however, the term req(n,n,n) is not equivalent to
the term n + n + n = 2 or n + n + n = 0 since
the constant n is not of the sort Int. Because of this
mechanism, we can avoid unnecessary check for n + n +
n = 2 or n + n + n = 0, which cannot be evaluated
into true or false.

The correctness of the transformation can be proved by
exhaustive searching in CafeOBJ. To prove the predicate P

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

on states, we prove that there is no reachable state s satisfy-
ing the negation of P (s). The predicate to be proved is the
equivalence of req(n1, n2, n3) and cond(n1, n2,
n3) for each n1, n2, n3 ∈ {0, 1}. Thus, we can prove the
correctness of the formula transformation by the following
command:

red triple(n,n,n) =(*,*)=>*
triple(X1,X2,X3)
suchThat

(not (cond(X1,X2,X3) = req(X1,X2,X3))) .

The above command returns false, that is, there is no
combination of n1, n2, n3 ∈ {0, 1} satisfying req(n1,
n2, n3) 6= cond(n1, n2, n3).

The exhaustive searching can also be used to find wrong
formula transformations. Consider the following formulation:

eq cond(X1, X2, X3) =
X1 + X2 + X3 <= 2 and
X1 + - X2 + - X3 <= 0 and
X2 + - X3 + - X1 <= 0 and
X3 + - X1 + - X2 <= 1 .

where the right-hand side of the last inequality is one
wrongly. Then, the above command returns the follow-
ing state as a counter-example of req(n1, n2, n3) =
cond(n1, n2, n3):

** Found [state 20] (triple(0,0,1)):Triple

Certainly, the results are different for (0, 0, 1), that is,
cond(0, 0, 1) = true 6= false = req(0, 0, 1).

B. Interactive theorem proving

The exhaustive searching is useful since the result is re-
turned automatically and not only a proof but also a disproof
can be done. However, because of the exhaustiveness, the
computation cost (time and space) increases with increasing
the size of the reachable states of a given transition system.
The search space is not so wide for the example in the
previous section since the domain of variables is {0, 1}. If
the domain is the set Z of all integers, this approach cannot
be taken straightforwardly.

In CafeOBJ, interactive theorem proving can be done
by using equational reasoning with the CafeOBJ reduction
command. Roughly speaking, the user makes a proof plan of
a given property and checks whether components (equations)
of the proof are correct or not by using CafeOBJ interpreter.
Consider the following integer linear programming problem
(shown in Section I):

minimize −4x1 − 5x2

subject to 2x1 + 2x2 ≤ 7
3x1 + 5x2 ≤ 14
x1 ≥ 0
x2 ≥ 0

(3)

where x1, x2 ∈ Z . As we already discussed in Section I, the
above formulation can be transformed as follows:

minimize −4x1 − 5x2

subject to x1 + x2 ≤ 3
x2 ≤ 2
x1 ≥ 0
x2 ≥ 0

(4)

To prove correctness of the formula transformation, we
need prove that the constraints of (3) are equivalent to the
constraints of (4). In the following, we show a proof of one
implication: the set of the constraints of (4) implies each of
the constraints of (3).

We describe a CafeOBJ module of integer variables x1

and x2 satisfying the constraints of (4).

mod* OP4{
pr(INT)
ops x1 x2 : -> Int
eq x1 + x2 <= 3 = true .
eq x2 <= 2 = true .
eq x1 >= 0 = true .
eq x2 >= 0 = true .

}

The module OP4 imports the built-in module INT and
declares two constants x1 and x2 of Int. There are four
equations which correspond to the constraints of (4). The
module denotes all algebras in which the constants x1 and
x2 are interpreted into integers satisfying the equations in
OP4. For example, M is a denotational model of OP4 if
Mx1 = 2 and Mx2 = 1. For a given inequality t, if the
reduction command reduces t into true, the inequality t
holds in OP4. Thus, if all inequalities in the constraints of
(3) are reduced into true, the proof of the target implication
is done.

Unfortunately, it does not succeed for 2x1 + 2x2 ≤ 7 as
follows:

OP4> red 2 * x1 + 2 * x2 <= 7 .
(((2 * x2) + (2 * x1)) <= 7):Bool

The first line is the input and the second line is the output.
The input term is returned as it is. To use the equations in
OP4, the target term should be rewritten to a term which
matches the left-hand side of some equation. We know the
distribution law holds for integers:x×y+x×z = x×(y+z).
When we add the equation eq X * Y + X * Z = X *
(Y + Z) as a lemma to OP4, the output of the reduction
is changed as follows:

OP4> red 2 * x1 + 2 * x2 <= 7 .
((2 * (x1 + x2)) <= 7):Bool

The output is still not true. Because of the integer domain,
the output equation can be transformed into x1 + x2 ≤ 3 by
dividing the both-hand sides by two. In general, n×x ≤ y is
true whenever x ≤ by/nc, where by/nc is the quotient. This
lemma is written in CafeOBJ equations as follows: cq NZ

* X <= Y = true if X <= Y quo NZ, where NZ is
a variable of non-zero integers. When this equation is also
added to OP4, the proof succeeds as follows:

OP4> red 2 * x1 + 2 * x2 <= 7 .
(true):Bool

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

The inequality 3x1 + 5x2 ≤ 14 in the constraints of (3)
can also be proved by adding other two lemmas to OP4. The
remaining inequalities x1 ≥ 0 and x2 ≥ 0 are proved without
any lemma. Then, the constraints of (3) can be deduced from
those of (4) for all integers.

As above, in interactive theorem proving, a proof is made
by interaction with CafeOBJ interpreter (the reduction com-
mand). We first try to prove a target property by the reduction
command, consider suitable lemmas with observation of the
result of the reduction, add the lemmas to the module and
reduce the target property again. This cycle is repeated until
true is returned.

IV. CONCLUSION

We showed how to do formal verification of formula
transformation for optimization problems by algebraic spec-
ifications. Two approaches have been shown: the exhaustive
searching and the interactive theorem proving. The exhaus-
tive searching is fully automated and can be used for both
proofs and disproofs. The interactive theorem proving can
deal with variables with the domain of infinite elements, like
Z . Not only introduction of lemmas but also case splitting
and structural inductions can be used in interactive theorem
proving, called the proof score method [13]. For example,
strictly speaking, before introducing the distribution law
x×y+x×z = x×(y+z) for the specification of integers, the
equation should be proved. We can describe the specification
of integers in the extension of the Peano numbers, and verify
the distribution law by the proof score method in CafeOBJ.

From the experiences in this paper, it is confirmed that
formal verification techniques with algebraic specifications
may be useful to prove the correctness of formula transfor-
mations formally. The examples we have shown are very
small and simple. One of our future directions is to apply
the proposed approaches to more large and complex practical
problems, and other formulation techniques, like the Big-M
method [14] and so on.

REFERENCES

[1] A. Conejo, Decomposition Techniques in Mathematical Programming:
Engineering and Science Applications. Springer, 2006.

[2] Y. Pochet and L. A. Wolsey, Production Planning by Mixed Integer
Programming (Springer Series in Operations Research and Financial
Engineering). Secaucus, NJ, USA: Springer-Verlag New York, Inc.,
2006.

[3] J. Mula, D. Peidro, M. Dı́az-Madroñero, and E. Vicens, “Mathemat-
ical programming models for supply chain production and transport
planning,” European Journal of Operational Research, vol. 204, no. 3,
pp. 377–390, 2010.

[4] T. Fujie, “Introduction to integer linear programming formulations (in
Japanese),” Operations research as a management science research,
vol. 57, no. 4, pp. 190–197, apr 2012.

[5] J. A. Goguen, T. Winkler, J. Meseguer, K. Futatsugi, and J.-P.
Jouannaud, Software Engineering with OBJ: Algebraic Specification in
Action. Kluwers Academic Publishers, 2000, ch. Introducing OBJ*.

[6] R. Diaconescu and K. Futatsugi, CafeOBJ Report. Singapore: World
Scientific, 1998.

[7] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martı́-Oliet, J. Meseguer,
and C. L. Talcott, Eds., All About Maude - A High-Performance
Logical Framework, How to Specify, Program and Verify Systems in
Rewriting Logic, ser. Lecture Notes in Computer Science, vol. 4350.
Springer, 2007.

[8] I. Ouranos, K. Ogata, and P. S. Stefaneas, “Formal analysis of tesla
protocol in the timed OTS/CafeOBJ method,” in ISoLA (2), ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds., vol.
7610. Springer, 2012, pp. 126–142.

[9] W. Kong, K. Ogata, and K. Futatsugi, “Towards reliable e-government
systems with the OTS/CafeOBJ method,” IEICE Transactions, vol. 93-
D, no. 5, pp. 974–984, 2010.

[10] K. Ogata and K. Futatsugi, “Flaw and modification of the iKP
electronic payment protocols,” Inf. Process. Lett., vol. 86, no. 2, pp.
57–62, 2003.

[11] ——, “Formal analysis of Suzuki & Kasami distributed mutual ex-
clusion algorithm,” in FMOODS, ser. IFIP Conference Proceedings,
B. Jacobs and A. Rensink, Eds., vol. 209. Kluwer, 2002, pp. 181–
195.

[12] CafeOBJ, http://www.ldl.jaist.ac.jp/cafeobj/.
[13] K. Futatsugi, D. Găină, and K. Ogata, “Principles of proof scores

in CafeOBJ,” Theor. Comput. Sci., vol. 464, pp. 90–112, Dec. 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.tcs.2012.07.041

[14] P. Barth, Logic-based 0-1 constraint programming, ser. Operations
Research/Computer Science Interfaces. Boston, USA: Kluwer,
November 1995.

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018

