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Abstract—Supergrid graphs include grid graphs and trian-
gular grid graphs as their subgraphs. The Hamiltonian path
problem for general supergrid graphs is a well-known NP-
complete problem. A graph is called Hamiltonian connected
if there exists a Hamiltonian path between any two distinct
vertices. In the past, we verified the Hamiltonian connectivity
of some special supergrid graphs, including rectangular, trian-
gular, parallelogram, trapezoid, and alphabet supergrid graphs,
except few trivial conditions. In this paper, we will prove that
everyL-shaped supergrid graph always contains a Hamiltonian
cycle except one trivial condition. We also present necessary and
sufficient conditions for the existence of a Hamiltonian path
between two given vertices inL-shaped supergrid graphs. The
Hamiltonian connectivity of L-shaped supergrid graphs can be
applied to compute the optimal stitching trace of computer
embroidering machines while a varied-sized letterL is sewed
into an object.

Index Terms—Hamiltonicity, Hamiltonian connectivity,
longest path, supergrid graphs, computer embroidering
machines.

I. I NTRODUCTION

A Hamiltonian path(resp.,cycle) in a graph is a simple
path (resp., cycle) in which each vertex of the graph

appears exactly once. TheHamiltonian path(resp.,cycle)
probleminvolves deciding whether or not a graph contains a
Hamiltonian path (resp., cycle). A graph is calledHamilto-
nian if it contains a Hamiltonian cycle. A graphG is said to
beHamiltonian connectedif for every pair of distinct vertices
u andv of G, there is a Hamiltonian path fromu to v in G.
If (u, v) is an edge of a Hamiltonian connected graph, then
there exists a Hamiltonian cycle containing edge(u, v). Thus,
a Hamiltonian connected graph contains many Hamiltonian
cycles, and, hence, the sufficient conditions of Hamiltonian
connectivity are stronger than those of Hamiltonicity. The
longest path problemis to find a simple path with the
maximum number of vertices in a graph. The Hamiltonian
path problem is clearly a special case of the longest path
problem.

The Hamiltonian path and cycle problems have numerous
applications in different areas, including establishing trans-
port routes, production launching, the on-line optimization of
flexible manufacturing systems [1], computing the perceptual
boundaries of dot patterns [37], pattern recognition [2],
[39], [42], DNA physical mapping [14], and fault-tolerant
routing for 3D network-on-chip architectures [9]. It is well
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known that the Hamiltonian path and cycle problems are NP-
complete for general graphs [11], [26]. The same holds true
for bipartite graphs [32], split graphs [12], circle graphs [8],
undirected path graphs [3], grid graphs [25], triangular grid
graphs [13], and supergrid graphs [20].

In the literature, there are many studies for the Hamiltonian
connectivity of interconnection networks, including WK-
recursive network [10], recursive dual-net [34], hypercom-
plete network [5], alternating group graph [27], arrangement
graph [36]. The popular hypercubes are Hamiltonian but are
not Hamiltonian connected. However, many variants of hy-
percubes, including augmented hypercubes [19], generalized
base-b hypercube [18], hypercube-like networks [38], twisted
cubes [17], crossed cubes [16], Möbius cubes [7], folded
hypercubes [15], and enhanced hypercubes [35], have been
known to be Hamiltonian connected.

A supergrid graph is a graph in which vertices lie on
integer coordinates and two vertices are adjacent if and
only if the difference of theirx or y coordinates is not
greater than 1. Letv = (vx, vy) be a vertex in a supergrid
graph, wherevx and vy represent thex and y coordinates
of v, respectively. Then, the possible adjacent vertices ofv

include(vx, vy − 1), (vx − 1, vy), (vx +1, vy), (vx, vy + 1),
(vx − 1, vy − 1), (vx + 1, vy + 1), (vx + 1, vy − 1), and
(vx − 1, vy +1). Let R(m,n) be the supergrid graph whose
vertex setV (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and
1 6 vy 6 n}. A rectangular supergrid graphis a supergrid
graph which is isomorphic toR(m,n). LetL(m,n; k, l) be a
supergrid graph obtained from a rectangular supergrid graph
R(m,n) by removing its subgraphR(k, l) from the upper
right corner. AL-shaped supergrid graph is isomorphic to
L(m,n; k, l). In this paper, we only considerL(m,n; k, l).

The possible application of the Hamiltonian connectiv-
ity of L-shaped supergrid graphs is presented as follows.
Consider a computerized embroidery machine to embroider
the object, e.g., clothes, with aL letter. First, we produce
a set of lattices to represent the letter. Then, a path is
computed to visit the lattices of the set such that each lattice
is visited exactly once. Finally, the software transmits the
stitching trace of the computed path to the computerized
embroidering machine, and the machine then performs the
stitching work along the trace on the object. Since each stitch
position of an embroidering machine can be moved to its
eight neighboring positions (left, right, up, down, up-left,
up-right, down-left, and down-right), one set of neighboring
lattices forms aL-shaped supergrid graph. Note that each
lattice will be represented by a vertex of a supergrid graph.
The desired stitching trace of the set of adjacent lattices is the
Hamiltonian path of the correspondingL-shaped supergrid
graph. The width and height ofL-shaped supergrid graph
L(m,n; k, l) can be adjusted according to the parametersm,
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Fig. 1. (a) The structure ofL-shaped supergrid graphL(m,n; k, l), (b)
L(10, 11; 6, 8), (c) L(10, 11; 7, 9), (d) L(7, 10; 3, 7), and (e) a possible
stitching trace for the sets of lattices in (b)–(d), where solid arrow lines
indicate the computed trace and dashed arrow lines indicate the jump lines
connecting two continuous letters.

n, k, and l. For example, Fig. 1(a) indicates the structure
of L(m,n; k, l), and Figs. 1(b)–(d) depictL(10, 11; 6, 8),
L(10, 11; 7, 9), andL(7, 10; 3, 7), respectively. Given a string
with varied-sizedL letters. By the Hamiltonian connectivity
of L-shaped supergrid graphs, we can seek the end vertices of
Hamiltonian paths in the correspondingL-shaped supergrid
graphs so that the total length of jump lines connecting two
L-shaped supergrid graphs is minimum. For instance, given
threeL-shaped supergrid graphs in Figs. 1(b)–(d), in which
eachL-shaped supergrid graph represents a set of lattices,
Fig. 1(e) shows a such minimum stitching trace for the sets
of lattices.

Previous related works are summarized as follows. Re-
cently, Hamiltonian path (cycle) and Hamiltonian connected
problems on grid, triangular grid, and supergrid graphs have
received much attention. Itaiet al. [25] showed that the
Hamiltonian path problem on grid graphs is NP-complete.
They also gave necessary and sufficient conditions for a
rectangular grid graph having a Hamiltonian path between
two given vertices. Note that rectangular grid graphs are
not Hamiltonian connected. Zamfirescuet al. [43] gave
sufficient conditions for a grid graph having a Hamiltonian
cycle, and proved that all grid graphs of positive width have
Hamiltonian line graphs. Later, Chenet al. [6] improved
the Hamiltonian path algorithm of [25] on rectangular grid
graphs and presented a parallel algorithm for the Hamilto-
nian path problem with two given endpoints in rectangular
grid graphs. Also there is a polynomial-time algorithm for
finding Hamiltonian cycles in solid grid graphs [33]. In
[41], Salman introduced alphabet grid graphs and determined
classes of alphabet grid graphs which contain Hamiltonian
cycles. Keshavarz-Kohjerdi and Bagheri gave necessary and
sufficient conditions for the existence of Hamiltonian paths
in alphabet grid graphs, and presented linear-time algorithms
for finding Hamiltonian paths with two given endpoints
in these graphs [28]. They also presented a linear-time
algorithm for computing the longest path between two given
vertices in rectangular grid graphs [29], gave a parallel
algorithm to solve the longest path problem in rectangular
grid graphs [30], and solved the Hamiltonian connected
problem inL-shaped grid graphs [31]. Reay and Zamfirescu

[40] proved that all 2-connected, linear-convex triangular grid
graphs except one special case contain Hamiltonian cycles.
The Hamiltonian cycle (path) on triangular grid graphs has
been shown to be NP-complete [13]. They also proved that all
connected, locally connected triangular grid graphs (with one
exception) contain Hamiltonian cycles. Recently, we prove
that the Hamiltonian cycle and path problems on supergrid
graphs are NP-complete [20]. We also showed that every
rectangular supergrid graph always contains a Hamiltonian
cycle. In [21], we prove linear-convex supergrid graphs,
which form a subclass of supergrid graphs, to be Hamilto-
nian. Very recently, we verify the Hamiltonian connectivity
of rectangular, shaped, and alphabet supergrid graphs [24],
[22], [23].

The rest of the paper is organized as follows. In Section II,
some notations and observations are given. Previous results
are also introduced. Section III shows thatL-shaped su-
pergrid graphs are Hamiltonian and Hamiltonian connected.
Finally, we make some concluding remarks in Section IV.

II. T ERMINOLOGIES AND BACKGROUND RESULTS

In this section, we will introduce some terminologies
and symbols. Some observations and previously established
results for the Hamiltonicity and Hamiltonian connectivity of
rectangular supergrid graphs are also presented. For graph-
theoretic terminology not defined in this paper, the reader is
referred to [4].

Let G = (V,E) be a graph with vertex setV (G) and edge
setE(G). Let S be a subset of vertices inG, and letu and
v be two vertices inG. We writeG[S] for the subgraph of
G inducedby S, G − S for the subgraphG[V − S], i.e.,
the subgraph induced byV − S. In general, we writeG− v

instead ofG − {v}. If (u, v) is an edge inG, we say that
u is adjacentto v, andu andv are incident to edge(u, v).
The notationu ∼ v (resp.,u ≁ v) means that verticesu
andv are adjacent (resp., non-adjacent). Edgee1 = (u1, v1)
is said to beparallel with edgee2 = (u2, v2) if u1 ∼ u2

andv1 ∼ v2. The notatione1 ≈ e2 means that edgese1 and
e2 are parallel. Aneighborof v in G is any vertex that is
adjacent tov. We useNG(v) to denote the set of neighbors
of v in G, and letNG[v] = NG(v) ∪ {v}. The number of
vertices adjacent to vertexv in G is called thedegreeof v in
G and is denoted bydeg(v). A pathP of length |P | in G,
denoted byv1 → v2 → · · · → v|P |−1 → v|P |, is a sequence
(v1, v2, · · · , v|P |−1, v|P |) of vertices such that(vi, vi+1) ∈ E

for 1 6 i < |P |, and all vertices exceptv1, v|P | in it are
distinct. By thelength of path P we mean the number of
vertices inP . The first and last vertices visited byP are
called thepath-startandpath-endof P , denoted bystart(P )
andend(P ), respectively. We will usevi ∈ P to denote “P
visits vertexvi” and use(vi, vi+1) ∈ P to denote “P visits
edge(vi, vi+1)”. A path fromv1 to vk is denoted by(v1, vk)-
path. In addition, we useP to refer to the set of vertices
visited by pathP if it is understood without ambiguity. A
cycle is a pathC with |V (C)| > 4 andstart(C) = end(C).
Two paths (or cycles)P1 andP2 of graphG are calledvertex-
disjoint if V (P1)∩V (P2) = ∅. Two vertex-disjoint pathsP1

andP2 can be concatenated into a path, denoted byP1 ⇒ P2,
whenend(P1) ∼ start(P2).

Let S∞ be the infinite graph whose vertex set consists
of all points of the plane with integer coordinates and in
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which two vertices are adjacent if the difference of theirx

or y coordinates is not larger than 1. Asupergrid graphis
a finite, vertex-induced subgraph ofS∞. For a vertexv in
a supergrid graph, letvx andvy denotex andy coordinates
of its corresponding point, respectively. We color vertexv to
be white if vx + vy ≡ 0 (mod 2); otherwise,v is colored
to be black. Then there are eight possible neighbors of
vertexv including four white vertices and four black vertices.
Obviously, all supergrid graphs are not bipartite. However,
all grid graphs are bipartite [25].

Rectangular supergrid graphs first appeared in [20],
in which the Hamiltonian cycle problem was solved.
Let R(m,n) be the supergrid graph whose vertex set
V (R(m,n)) = {v = (vx, vy)|1 6 vx 6 m and 1 6 vy 6

n}. That is,R(m,n) containsm columns andn rows of
vertices inS∞. A rectangular supergrid graphis a supergrid
graph which is isomorphic toR(m,n) for some m and
n. Then m and n, the dimensions, specify a rectangular
supergrid graph up to isomorphism. The size ofR(m,n)
is defined to bemn, and R(m,n) is called n-rectangle.
R(m,n) is calledeven-sizedif mn is even, and it is called
odd-sizedotherwise. In this paper, without loss of generality
we will assume thatm > n.

Let v = (vx, vy) be a vertex inR(m,n). The vertexv
is called theupper-left(resp.,upper-right, down-left, down-
right) corner of R(m,n) if for any vertexw = (wx, wy) ∈
R(m,n), wx > vx and wy > vy (resp.,wx 6 vx and
wy > vy, wx > vx andwy 6 vy, wx 6 vx andwy 6 vy).
The edge(u, v) is said to behorizontal (resp.,vertical) if
uy = vy (resp.,ux = vx), and is calledcrossedif it is
neither a horizontal nor a vertical edge. In the figures we will
assume that(1, 1) are coordinates of the upper-left corner
in a rectangular supergrid graphR(m,n). There are four
boundaries in a rectangular supergrid graphR(m,n) with
m,n > 2. The edge in the boundary ofR(m,n) is called
boundary edge. A path is calledboundaryof R(m,n) if
it visits all vertices of the same boundary inR(m,n) and
its length equals to the number of vertices in the visited
boundary.

A L-shaped supergrid graph, denoted byL(m,n; k, l), is a
supergrid graph obtained from a rectangular supergrid graph
R(m,n) by removing its subgraphR(k, l) from the upper
right corner, wherek, l > 1 andm,n > 1. Then,m− k > 1
andn − l > 1. The structure ofL(m,n; k, l) can be found
in Fig. 1(a). The parametersm − k andn − l are used to
adjust the width and height ofL(m,n; k, l), respectively.

In [20], we have showed that rectangular supergrid graphs
always contain Hamiltonian cycles except 1-rectangles. Let
R(m,n) be a rectangular supergrid graph withm > n, C be
a cycle ofR(m,n), and letH be a boundary ofR(m,n),
whereH is a subgraph ofR(m,n). The restriction ofC
to H is denoted byC|H . If |C|H | = 1, i.e., C|H is a
boundary path onH , then C|H is called flat face on H .
If |C|H | > 1 andC|H contains at least one boundary edge
of H , thenC|H is calledconcave faceonH . A Hamiltonian
cycle ofR(m, 3) is calledcanonicalif it contains three flat
faces on two shorter boundaries and one longer boundary,
and it contains one concave face on the other boundary,
where the shorter boundary consists of three vertices. And,
a Hamiltonian cycle ofR(m,n) with n = 2 or n > 4
is said to becanonical if it contains three flat faces on

(b)(a)

three
flat
faces

concave face

(c) (d) (e)

Fig. 2. A canonical Hamiltonian cycle containing three flat faces and one
concave face for (a)R(8, 6) and (b)–(e)R(7, 5), where solid arrow lines
indicate the edges in the cycles andR(7, 5) contains four distinct canonical
Hamiltonian cycles in (b)–(e) such that their concave faces are placed on
different boundaries.

three boundaries, and it contains one concave face on the
other boundary. The following lemma states the result in
[20] concerning the Hamiltonicity of rectangular supergrid
graphs.

Lemma 1. (See [20].) LetR(m,n) be a rectangular super-
grid graph withm > n > 2. Then, the following statements
hold true:
(1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian
cycle;
(2) if n = 2 or n > 4, thenR(m,n) contains four canonical
Hamiltonian cycles with concave faces being on different
boundaries.

Fig. 2 shows canonical Hamiltonian cycles for even-sized
and odd-sized rectangular supergrid graphs found in Lemma
1. Each Hamiltonian cycle found by this lemma contains all
the boundary edges on any three sides of the rectangular su-
pergrid graph. This shows that for any rectangular supergrid
graphR(m,n) with m > n > 4, we can always construct
four canonical Hamiltonian cycles such that their concave
faces are placed on different boundaries. For instance, the
four distinct canonical Hamiltonian cycles ofR(7, 5) are
shown in Fig. 2(b)–(e), where the concave faces of these
four canonical Hamiltonian cycles are arranged on different
boundaries.

Let (G, s, t) denote the supergrid graphG with two
specified distinct verticess andt. Without loss of generality,
we will assume thatsx 6 tx. We denote a Hamiltonian
path betweens and t in G by HP (G, s, t). We say that
HP (G, s, t) does exist if there is a Hamiltonian(s, t)-path
in G. From Lemma 1, we know thatHP (R(m,n), s, t) does
exist if m,n > 2 and (s, t) is an edge in the constructed
Hamiltonian cycle ofR(m,n).

Recently, we verify the Hamiltonian connectivity of rect-
angular supergrid graphs except one condition [24]. The
forbidden condition forHP (R(m,n), s, t) holds only for 1-
rectangle or 2-rectangle. To describe the exception condition,
we define the vertex cut and cut vertex of a graph as follows.

Definition 1. Let G be a connected graph and letV1 be a
subset of the vertex setV (G). V1 is a vertex cutof G if
G − V1 is disconnected. A vertexv of G is a cut vertexof
G if {v} is a vertex cut ofG. For an example, in Fig. 3(b)
{s, t} is a vertex cut and in Fig. 3(a)t is a cut vertex.

Then, the following condition impliesHP (R(m, 1), s, t)
andHP (R(m, 2), s, t) do not exist.

(F1) s or t is a cut vertex ofR(m, 1), or {s, t} is a vertex
cut of R(m, 2) (see Fig. 3(a) and Fig. 3(b)). Notice that,
here,s or t is a cut vertex ofR(m, 1) if either s or t is
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Fig. 3. Rectangular supergrid graph in which there is no Hamiltonian
(s, t)-path for (a)R(m, 1), and (b)R(m, 2), where solid lines indicate the
longest path betweens and t.
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v1

u1
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v2
C1

Fig. 4. A schematic diagram for (a) Proposition 1, (b) Proposition 2, (c)
Proposition 3, and (d) Proposition 4, where⊗ represents the destruction of
an edge while constructing a combined cycle or a path.

not a corner vertex, and{s, t} is a vertex cut ofR(m, 2) if
2 6 sx(= tx) 6 m− 1.

The following lemma showing thatHP (R(m,n), s, t)
does not exist if(R(m,n), s, t) satisfies condition (F1) can
be verified by the same arguments in [31].

Lemma 2. (See [31].) Let R(m,n) be a rectangular
supergrid graph with two distinct verticess and t. If
(R(m,n), s, t) satisfies condition (F1), then(R(m,n), s, t)
contains no Hamiltonian(s, t)-path.

In [24], we obtain the following lemma to show the
Hamiltonian connectivity of rectangular supergrid graphs.

Lemma 3. Let R(m,n) be a rectangular supergrid graph
with m,n > 1, and lets and t be its two distinct vertices.
If (R(m,n), s, t) does not satisfy forbidden condition (F1),
thenHP (R(m,n), s, t) does exist.

The Hamiltonian(s, t)-pathP of R(m,n) constructed in
[24] satisfies thatP contains at least one boundary edge of
each boundary, and is calledcanonical.

We next give some observations on the relations among
cycle, path, and vertex. These propositions will be used in
proving our results and are given in [20], [21], [24]. LetC1

andC2 be two vertex-disjoint cycles of a graphG. If there
exist two edgese1 = (u1, v1) ∈ C1 ande2 = (u2, v2) ∈ C2

such thate1 ≈ e2, thenC1 andC2 can be merged into a
cycle ofG. Thus the following proposition holds true.

Proposition 1. Let C1 andC2 be two vertex-disjoint cycles
of a graphG. If there exist two edgese1 ∈ C1 and e2 ∈ C2

such thate1 ≈ e2, thenC1 andC2 can be combined into a
cycle ofG. (see Fig.4(a))

Let C1 be a cycle and letP1 be a path in a graphG such
that V (C1) ∩ V (P1) = ∅. If there exist two edgese1 ∈ C1

and e2 ∈ P1 such thate1 ≈ e2, then C1 and P1 can be
combined into a pathP of G with start(P ) = start(P1) and
end(P ) = end(P1). Fig. 4(b) depicts such a construction,
and hence the following proposition holds true.

Proposition 2. (See [21].) LetC1 andP1 be a cycle and a
path, respectively, of a graphG such thatV (C1)∩V (P1) =
∅. If there exist two edgese1 ∈ C1 and e2 ∈ P1 such that
e1 ≈ e2, thenC1 andP1 can be combined into a path ofG.
(see Fig.4(b))

The above observation can be extended to a vertexx,
whereP1 = x, as shown in Fig. 4(c), and we then have
the following proposition.

Proposition 3. (See [21].) LetC1 be a cycle (path) of a
graphG and letx be a vertex inG− V (C1). If there exists
an edge(u1, v1) in C1 such thatu1 ∼ x and v1 ∼ x, then
C1 and x can be combined into a cycle (path) ofG. (see
Fig. 4(c))

Let P1 and P2 be two vertex-disjoint paths of a graph
G. If there exists one edges(u1, v1) ∈ P1 such that
u1 ∼ start(P2) and v1 ∼ end(P2), then P1 and P2 can
be combined into a pathP of G with start(P ) = start(P1)
andend(P ) = end(P1). Hence, the following observation is
immediately true.

Proposition 4. Let P1 and P2 be two vertex-disjoint paths
of a graphG. If there exists one edge(u1, v1) ∈ P1 such
thatu1 ∼ start(P2) andv1 ∼ end(P2), thenP1 andP2 can
be combined into a path ofG. (see Fig.4(d))

III. T HE HAMILTONIAN AND HAMILTONIAN CONNECTED

PROPERTIES OFL-SHAPEDSUPERGRIDGRAPHS

In this section, we will verify the Hamiltonicity and
Hamiltonian connectivity ofL-shaped supergrid graphs. We
begin with the following definition.

Definition 2. Let L be a L-shaped supergrid graph
L(m,n; k, l) or a rectangular supergrid graphR(m,n). A
separation operationof L is a partition of L into two
vertex disjoint rectangular supergrid subgraphsL1 andL2,
i.e., V (L) = V (L1) ∪ V (L2) and V (L1) ∩ V (L2) = ∅.
A separation is calledvertical if it consists of a set of
horizontal edges, and is calledhorizontal if it contains a set
of vertical edges. For an example, the bold dashed vertical
(resp., horizontal) line in Fig. 5(a) indicates a vertical (resp.,
horizontal) separation ofL(10, 11; 9, 7) which partitions it
into R(3, 11) andR(7, 2) (resp.,R(3, 9) andR(10, 2)).

A. The Hamiltonian Property ofL-shaped Supergrid Graphs

In this subsection, we will verify the Hamiltonicity
of L-shaped supergrid graphs. Obviously,L(m,n; k, l)
contains no Hamiltonian cycle if there exists a vertexw in
L(m,n; k, l) such thatdeg(w) = 1. Thus,L(m,n; k, l) is
not Hamiltonian when the following condition is satisfied.

(F2) there exists a vertexw in L(m,n; k, l) such that
deg(w) = 1.

When the above condition is satisfied,m−k = 1 orn−l =
1. We then show the Hamiltonicity ofL-shaped supergrid
graphs as follows.

Theorem 1. Let L(m,n; k, l) be a L-shaped supergrid
graph. Then,L(m,n; k, l) contains a Hamiltonian cycle if
it does not satisfy condition (F2).

Proof: We first make a vertical separation on
L(m,n; k, l) to obtain two disjoint rectangular supergrid
subgraphsL1 = R(m − k, n) and L2 = R(k, n − l), as
depicted in Fig. 5(b). We prove this theorem by constructing
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Fig. 5. (a) Separations ofL(10, 11; 9, 7), (b) a vertical separation for
L(m,n; k, l) to obtain L1 = R(m − k, n) and L2 = R(k, l), (c) a
Hamiltonian cycle ofL(m,n; k, l) whenm−k = 1, and (d) a Hamiltonian
cycle ofL(m,n; k, l) whenm− k > 2, n− l > 2, andk > 2, where the
bold dashed vertical (resp., horizontal) line in (a) indicates a vertical (resp.,
horizontal) separation ofL(10, 11; 9, 7) which partitions it intoR(3, 11)
andR(7, 2) (resp.,R(3, 9) andR(10, 2)), and⊗ represents the destruction
of an edge while constructing a Hamiltonian cycle ofL(m,n; k, l).

a Hamiltonian cycle ofL(m,n; k, l). Depending on the sizes
of L1 andL2, we consider the following cases:

Case 1: m − k = 1 or n − l = 1. Suppose that
m − k = 1. Since there exists no vertexw in L(m,n; k, l)
such thatdeg(w) = 1, we get thatl = 1. Consider that
n − l = 1. Then, k = 1. Thus,L(m,n; k, l) consists of
only three vertices which forms a cycle. On the other hand,
consider thatn − l > 2. Let u be a vertex ofL1 with
deg(u) = 2, L∗

1 = L1 − {u}, and letL∗ = L∗
1 ∪ L2. Then,

L∗ = R(k + 1, n − l), wherek + 1 > 2 and n − l > 2.
By Lemma 1,L∗ contains a canonical Hamiltonian cycle
HC∗. Then, there exists a flat face ofHC∗ that is placed
to faceu. Thus, there exists an edge(x, y) in HC∗ such
that u ∼ x andu ∼ y. By Proposition 3,u andHC∗ can
be combined into a Hamiltonian cycle ofL(m,n; k, l). For
example, Fig. 5(c) depicts such a construction of Hamiltonian
cycle ofL(m,n; k, l), wherem− k = 1 andn− l > 2. The
case ofn−l = 1 can be proved by the same arguments. Thus,
L(m,n; k, l) is Hamiltonian whenm− k = 1 or n− l = 1.

Case2: m − k > 2 and n − l > 2. In this case,L1 =
R(m − k, n) andL2 = R(k, n− l) satisfy thatm − k > 2
andn − l > 2. Sincen − l > 1 and l > 1, n > l + 1 > 2.
Thus,L1 = R(m−k, n) satisfies thatm−k > 2 andn > 3.
By Lemma 1,L1 contains a canonical Hamiltonian cycle
HC1 whose one flat face is placed to faceL2. Consider that
k = 1. Then,L2 = R(k, n−l) is a 1-rectangle. LetV (L2) =
{v1, v2, · · · , vn−l}, whereviy is the y-coordinate ofvi and
vi+1y

= viy + 1 for n− l− 1 > i > 1. SinceHC1 contains
a flat face that is placed to faceL2, there exists an edge
(u, v) in HC1 such thatu ∼ v1 andv ∼ v1. By Proposition
3, v1 andHC1 can be combined into a cycleHC∗

1 . By the

(a)

s

t

(b)

s

t

(c)

s

t

w

Fig. 6. L-shaped supergrid graph in which there is no Hamiltonian(s, t)-
path for (a)s is a cut vertex, (b){s, t} is a vertex cut, and (c) there exists
a vertexw such thatdeg(w) = 1, s 6= w, andt 6= w.

same arguments,v2, v3, · · · , vn−l can be merged into the
cycle to form a Hamiltonian cycle ofL(m,n; k, l). On the
other hand, consider thatk > 2. Then,L2 = R(k, n − l)
satisfies thatk > 2 andn− l > 2. By Lemma 1,L2 contains
a canonical Hamiltonian cycleHC2 such that one flat face
of HC2 is placed to faceL1. Then, there exist two edges
e1 = (u1, v1) ∈ HC1 and e2 = (u2, v2) ∈ HC2 such that
e1 ≈ e2. By Proposition 1,HC1 andHC2 can be combined
into a Hamiltonian cycle ofL(m,n; k, l). For instance, Fig.
5(d) shows a Hamiltonian cycle ofL(m,n; k, l) whenm−
k > 2, n− l > 2, andk > 2. Thus,L(m,n; k, l) contains a
Hamiltonian cycle in this case.

We have proved thatL(m,n; k, l) is Hamiltonian in any
case. Thus, the lemma holds true.

B. The Hamiltonian Connected Property ofL-shaped Super-
grid Graphs

In this subsection, we will verify the Hamiltonian
connectivity of L-shaped supergrid graphs. By the same
forbidden condition (F1) for HP (R(m,n), s, t), the
following condition impliesHP (L(m,n; k, l), s, t) does not
exist.

(F3) s or t is a cut vertex ofL(m,n; k, l), or {s, t} is a
vertex cut ofL(m,n; k, l) (see Fig. 6(a) and Fig. 6(b)).

The following lemma showing thatHP (L(m,n; k, l), s, t)
does not exist if(L(m,n; k, l), s, t) satisfies condition (F3)
can be verified by the same arguments in [31].

Lemma 4. (See [31].) Let L(m,n; k, l) be a L-
shaped supergrid graph with two distinct verticess
and t. If (L(m,n; k, l), s, t) satisfies condition (F3), then
L(m,n; k, l) contains no Hamiltonian(s, t)-path.

We can easily see thatHP (L(m,n; k, l), s, t) does not
exist if (L(m,n; k, l), s, t) satisfies the following condition.

(F4) there exists a vertexw in L(m,n; k, l) such that
deg(w) = 1, s 6= w, andt 6= w (see Fig. 6(c)).

We will prove thatHP (L(m,n; k, l), s, t) does exist when
(L(m,n; k, l), s, t) does not satisfy conditions (F3) and (F4)
in Theorem 2. Due to the space limitation, we omit its proof.

Theorem 2. LetL(m,n; k, l) be aL-shaped supergrid graph
with distinct verticess and t. Then,L(m,n; k, l) contains
a Hamiltonian(s, t)-path, i.e.,HP (L(m,n; k, l), s, t) does
exist, if it does not satisfy conditions (F3) and (F4).
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IV. CONCLUDING REMARKS

Based on the Hamiltonicity and Hamiltonian connectivity
of rectangular supergrid graphs, we proveL-shaped supergrid
graphs to be Hamiltonian and Hamiltonian connected except
one or two conditions. The result can be applied toC-shaped
supergrid graphs. We leave it to interesting readers. On the
other hand, the Hamiltonian cycle problem on solid grid
graphs was known to be polynomial solvable. However, it
remains open for solid supergrid graphs in which there exists
no hole.
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