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The Hamiltonicity and Hamiltonian Connectivity
of L-shaped Supergrid Graphs

Ruo-Wei Hung*, Jun-Lin Li', and Chih-Han Lih

Abstract—Supergrid graphs include grid graphs and trian-
gular grid graphs as their subgraphs. The Hamiltonian path
problem for general supergrid graphs is a well-known NP-
complete problem. A graph is called Hamiltonian connected
if there exists a Hamiltonian path between any two distinct
vertices. In the past, we verified the Hamiltonian connectivity
of some special supergrid graphs, including rectangular, trian-
gular, parallelogram, trapezoid, and alphabet supergrid graphs,
except few trivial conditions. In this paper, we will prove that
every L-shaped supergrid graph always contains a Hamiltonian

cycle except one trivial condition. We also present necessary and

sufficient conditions for the existence of a Hamiltonian path
between two given vertices inL-shaped supergrid graphs. The
Hamiltonian connectivity of L-shaped supergrid graphs can be
applied to compute the optimal stitching trace of computer
embroidering machines while a varied-sized letterl is sewed
into an object.

Index Terms—Hamiltonicity, Hamiltonian connectivity,
longest path, supergrid graphs, computer embroidering
machines.

|. INTRODUCTION

A

appears exactly once. Thdamiltonian path(resp.,cycle

probleminvolves deciding whether or not a graph contains @. — 1,v, —

Hamiltonian path (resp., cycle). A graph is callelamilto-
nian if it contains a Hamiltonian cycle. A grap®i is said to

known that the Hamiltonian path and cycle problems are NP-
complete for general graphs [11], [26]. The same holds true
for bipartite graphs [32], split graphs [12], circle graphs [8],
undirected path graphs [3], grid graphs [25], triangular grid
graphs [13], and supergrid graphs [20].

In the literature, there are many studies for the Hamiltonian
connectivity of interconnection networks, including WK-
recursive network [10], recursive dual-net [34], hypercom-
plete network [5], alternating group graph [27], arrangement
graph [36]. The popular hypercubes are Hamiltonian but are
not Hamiltonian connected. However, many variants of hy-
percubes, including augmented hypercubes [19], generalized
baseb hypercube [18], hypercube-like networks [38], twisted
cubes [17], crossed cubes [16], Mobius cubes [7], folded
hypercubes [15], and enhanced hypercubes [35], have been
known to be Hamiltonian connected.

A supergrid graph is a graph in which vertices lie on
integer coordinates and two vertices are adjacent if and
only if the difference of theirxz or y coordinates is not
greater than 1. Let = (v,,v,) be a vertex in a supergrid

Hamiltonian path(resp.,cyclé in a graph is a simple graph, wherev, andv, represent the: and y coordinates
path (resp., cycle) in which each vertex of the grapdf v, respectively. Then, the possible adjacent vertices of

include (v, vy — 1), (v — L,vy), (Ve +1,0y), (Vz,vy + 1),
1), (v + 1,0y + 1), (vs +1,v, — 1), and
(vz —1,v, +1). Let R(m,n) be the supergrid graph whose
vertex setV (R(m,n)) = {v = (vy,vy)|1 < v, < m and

beHamiltonian connectei for every pair of distinct vertices 1 < v, < n}. A rectangular supergrid grapls a supergrid

u andv of G, there is a Hamiltonian path fromato v in G.

graph which is isomorphic t®(m, n). Let L(m, n; k,1) be a

If (u,v) is an edge of a Hamiltonian connected graph, thesupergrid graph obtained from a rectangular supergrid graph

there exists a Hamiltonian cycle containing edgev). Thus,

R(m,n) by removing its subgrapl®(k,!) from the upper

a Hamiltonian connected graph contains many Hamiltonigight corner. A L-shaped supergrid graph is isomorphic to
cycles, and, hence, the sufficient conditions of Hamiltoniala(m, n; k,1). In this paper, we only considdr(m, n; k,1).

connectivity are stronger than those of Hamiltonicity. The The possible application of the Hamiltonian connectiv-
longest path problenis to find a simple path with the ity of L-shaped supergrid graphs is presented as follows.
maximum number of vertices in a graph. The Hamiltonia@onsider a computerized embroidery machine to embroider
path problem is clearly a special case of the longest pdtie object, e.g., clothes, with A letter. First, we produce
problem. a set of lattices to represent the letter. Then, a path is
The Hamiltonian path and cycle problems have numeroaemputed to visit the lattices of the set such that each lattice
applications in different areas, including establishing trants visited exactly once. Finally, the software transmits the
port routes, production launching, the on-line optimization sftitching trace of the computed path to the computerized
flexible manufacturing systems [1], computing the perceptuainbroidering machine, and the machine then performs the
boundaries of dot patterns [37], pattern recognition [2§titching work along the trace on the object. Since each stitch
[39], [42], DNA physical mapping [14], and fault-tolerantposition of an embroidering machine can be moved to its
routing for 3D network-on-chip architectures [9]. It is welleight neighboring positions (left, right, up, down, up-left,
up-right, down-left, and down-right), one set of neighboring
Manuscript received October 28, 2017; revised November 13, 2017. |attices forms alL-shaped supergrid graph. Note that each
This work was supported in part by the Ministry of Science an . . .
Technology of Taiwan (R.O.C.) under grant no. MOST 105-2221-E-32 attice will be represented by a vertex of a SUperg”d graph.
010-MY3. The desired stitching trace of the set of adjacent lattices is the
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~———— _ [40] proved that all 2-connected, linear-convex triangular grid
graphs except one special case contain Hamiltonian cycles.
10 The Hamiltonian cycle (path) on triangular grid graphs has
. been shown to be NP-complete [13]. They also proved that all
- :‘.m connected, locally connected triangular grid graphs (with one
@ exception) contain Hamiltonian cycles. Recently, we prove
that the Hamiltonian cycle and path problems on supergrid

2 = graphs are NP-complete [20]. We also showed that every

- ] rectangular supergrid graph always contains a Hamiltonian

g}i B cycle. In [21], we prove linear-convex supergrid graphs,

;i end H . . _
S — o I which form a subclass of supergrid graphs, to be Hamilto
54 5 0 6 0 P70 o P 7 SN 6 O B B nian. Very recently, we verify the Hamiltonian connectivity

© of rectangular, shaped, and alphabet supergrid graphs [24],

Fig. 1. (a) The structure of.-shaped supergrid graph(m,n;k, 1), (b) [22], [23]- ) ] )

L(10,11;6,8), (c) L(10,11;7,9), (d) L(7,10;3,7), and (e) a possible ~ The rest of the paper is organized as follows. In Section I,

stitching trace for the sets of lattices in (b)—(d), where solid arrow line§ome notations and observations are given. Previous results

indicate the computed trace and dashed arrow lines indicate the jump lines . .

connecting two continuous letters. are also introduced. Section Il shows thhtshaped su-
pergrid graphs are Hamiltonian and Hamiltonian connected.

Finally, we make some concluding remarks in Section IV.

n, k, andl. For example, Fig. 1(a) indicates the structure Il. TERMINOLOGIES AND BACKGROUND RESULTS
of L(m,n;k,1), and Figs. 1(b)—(d) depicL(10,11;6,8),  |n this section, we will introduce some terminologies
L(10,11;7,9), andL(7, 10; 3, 7), respectively. Given a string and symbols. Some observations and previously established
with varied-sizedL letters. By the Hamiltonian connectivity results for the Hamiltonicity and Hamiltonian connectivity of
of L-shaped supergrid graphs, we can seek the end verticegeftangular supergrid graphs are also presented. For graph-
Hamiltonian paths in the correspondiigshaped supergrid theoretic terminology not defined in this paper, the reader is
graphs so that the total length of jump lines connecting tweferred to [4].
L-shaped supergrid graphs is minimum. For instance, given_et G = (V, E) be a graph with vertex séf(G) and edge
three L-shaped supergrid graphs in Figs. 1(b)—(d), in whicket £((). Let S be a subset of vertices ifi, and letu and
each L-shaped supergrid graph represents a set of latticgspe two vertices inG. We write G[S] for the subgraph of
Fig. 1(e) shows a such minimum stitching trace for the sets inducedby S, G — S for the subgraptG[V — 5], i.e.,
of lattices. the subgraph induced by — S. In general, we writeZ — v
Previous related works are summarized as follows. Ristead ofG — {v}. If (u,v) is an edge inG, we say that
cently, Hamiltonian path (cycle) and Hamiltonian connected is adjacentto v, andu andv areincidentto edge(u, v).
problems on grid, triangular grid, and supergrid graphs ha¥ée notationu ~ v (resp.,u ~ v) means that vertices
received much attention. Itest al. [25] showed that the andv are adjacent (resp., non-adjacent). Edge- (u1,v1)
Hamiltonian path problem on grid graphs is NP-completés said to beparallel with edgees = (ug,v2) If u; ~ us
They also gave necessary and sufficient conditions foraadv; ~ v,. The notatiore; = e; means that edges and
rectangular grid graph having a Hamiltonian path between are parallel. Aneighborof v in G is any vertex that is
two given vertices. Note that rectangular grid graphs aeljacent tov. We useN¢(v) to denote the set of neighbors
not Hamiltonian connected. Zamfiresat al. [43] gave of v in G, and letNg[v] = Ng(v) U {v}. The number of
sufficient conditions for a grid graph having a Hamiltoniawertices adjacent to vertexin G is called thedegreeof v in
cycle, and proved that all grid graphs of positive width haw@ and is denoted byieg(v). A path P of length|P| in G,
Hamiltonian line graphs. Later, Cheet al. [6] improved denoted byv; — v2 — -+ = vjpj_1 — v|p|, IS & sequence
the Hamiltonian path algorithm of [25] on rectangular gridv, va, - - - , v p|—1,v|p|) Of vertices such thaw;, v;11) € £
graphs and presented a parallel algorithm for the Hamiltter 1 < i < |P|, and all vertices except,v|p| in it are
nian path problem with two given endpoints in rectangulalistinct. By thelength of path P we mean the number of
grid graphs. Also there is a polynomial-time algorithm fovertices in P. The first and last vertices visited by are
finding Hamiltonian cycles in solid grid graphs [33]. Incalled thepath-startandpath-endof P, denoted bytart(P)
[41], Salman introduced alphabet grid graphs and determireaad end(P), respectively. We will use; € P to denote P
classes of alphabet grid graphs which contain Hamiltoniasits vertexv,;” and use(v;, v;+1) € P to denote P visits
cycles. Keshavarz-Kohjerdi and Bagheri gave necessary aube(v;,v;+1)". A path fromuv, to vy, is denoted byvy, vy)-
sufficient conditions for the existence of Hamiltonian pathgath. In addition, we usé to refer to the set of vertices
in alphabet grid graphs, and presented linear-time algorithwisited by pathP if it is understood without ambiguity. A
for finding Hamiltonian paths with two given endpointycle is a pattC with |V(C)| > 4 andstart(C) = end(C).
in these graphs [28]. They also presented a linear-tinievo paths (or cyclesp; and P, of graphG are calledvertex-
algorithm for computing the longest path between two givedisjointif V() NV () = (). Two vertex-disjoint path$
vertices in rectangular grid graphs [29], gave a parallahdP, can be concatenated into a path, denote@by>- Ps,
algorithm to solve the longest path problem in rectangulathenend(P;) ~ start(Ps).
grid graphs [30], and solved the Hamiltonian connected Let S be the infinite graph whose vertex set consists
problem inL-shaped grid graphs [31]. Reay and Zamfiresaf all points of the plane with integer coordinates and in
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which two vertices are adjacent if the difference of their e 7]

or y coordinates is not larger than 1. gupergrid graphis .| 1 I } IGOTOEOZO KA K
a finite, vertex-induced subgraph 6f°. For a vertexv in - O TR E X F““*‘J {
a supergrid graph, let, andv, denotex andy coordinates @ ® © @ ©

of its gorr_esponding point, respectively. V\_/e CO'_Or verteto Fig. 2. A canonical Hamiltonian cycle containing three flatefa and one
be white if v, + v, = 0 (mod 2); otherwisep is colored concave face for (aR(8,6) and (b)—(e)R(7, 5), where solid arrow lines
to be black Then there are eight possible neighbors dpdicate the edges in the cycles aR{7, 5) contains four distinct canonical
. . . . . Hamiltonian cycles in (b)—(e) such that their concave faces are placed on
vertexv including four white vertices and four black verticeSgitterent boundaries.
Obviously, all supergrid graphs are not bipartite. However,

all grid graphs are bipartite [25].

Rectangular supergrid graphs first appeared in [20], ) . .
9 berg grap PP [ tLree boundaries, and it contains one concave face on the

in which the Hamiltonian cycle problem was solved: : .
ther boundary. The following lemma states the result in

Let R(m,n) be the supergrid graph whose vertex s ; Y .
V(R(m,n)) = {v = (vesvy)]1 < vy < m andl < v, < gzr(;]pﬁgncernlng the Hamiltonicity of rectangular supergrid

n}. That is, R(m,n) containsm columns andn rows of
vertices inS*. A rectangular supergrid grapis a supergrid | emma 1. (See [20].) LetR(m,n) be a rectangular super-
graph which is isomorphic ta?(m,n) for somem and grid graph withm > n > 2. Then, the following statements
n. Thenm and n, the dimensions specify a rectangular nho|d true:

supergrid graph up to isomorphism. The size [ofm,n) (1) if n = 3, thenR(m, 3) contains a canonical Hamiltonian

is defined to bemn, and R(m,n) is called n-rectangle. cycle;

R(m,n) is calledeven-sizedf mn is even, and it is called (2) if n = 2 or n > 4, thenR(m,n) contains four canonical
odd-sizedbtherwise. In this paper, without loss of generalityjamiltonian cycles with concave faces being on different

we will assume thatn > n. boundaries.
Let v = (vg,v,) be a vertex inR(m,n). The vertexv _ ) o )
is called theupper-left(resp.,upper-right down-left down- Fig. 2 shows canonical Hamiltonian cycles for even-sized

right) corner of R(m,n) if for any vertexw = (w,,w,) € and odd-sized rectangular supergrid graphs found in Lemma
R(m,n), w, > v, andw, > v, (resp.,w, < v, and 1. Each Hamiltonian cycle found by this lemma contains all

wy = vy, Wy > v, andwy, < vy, w, < v, andw, < vy). the bpundary edg.es on any three sides of the rectangular su-
The edge(u,v) is said to behorizontal (resp.,vertical) if pergrid graph. Th|s shows that for any rectangular supergrid
u, = v, (resp.,u, = v,), and is calledcrossedif it is 9raphR(m,n) with m > n > 4, we can always construct
neither a horizontal nor a vertical edge. In the figures we wipur canonical Hamiltonian cycles such that their concave
assume that1,1) are coordinates of the upper-left cornefaces are placed on different boundaries. For instance, the
in a rectangular supergrid grapR(m, n). There are four four distinct canonical Hamiltonian cycles @¥(7, 5) are
boundaries in a rectangular supergrid graphn, n) with shown in Fig. 2(b)—-(e),.where the concave faces of these
m,n > 2. The edge in the boundary @t(m,n) is called four canonical Hamiltonian cycles are arranged on different
boundary edgeA path is calledboundaryof R(m,n) if ~Poundaries.
it visits all vertices of the same boundary ®(m,n) and ~ Let (G,s,t) denote the supergrid grapt with two
its length equals to the number of vertices in the visitegpecified distinct vertices and¢. Without loss of generality,
boundary. we will assume thats, < t,. We denote a Hamiltonian
A L-shaped supergrid graplienoted by..(m, n: k,1),isa Path betweens and ¢ in G by HP(G,s,t). We say that
supergrid graph obtained from a rectangular supergrid grapif’ (G, s, t) does exist if there is a Hamiltonia, ¢)-path
R(m,n) by removing its subgrap®(k, 1) from the upper N G. From Lemma 1, we know thaf P(R(m, n), s,t) does
right corner, wheret, ! > 1 andm,n > 1. Then,m —k > 1 exist_if m,n > 2 and (s, t) is an edge in the constructed
andn — [ > 1. The structure ofL.(m,n; k,[) can be found Hamiltonian cycle ofR(m,n).
in Fig. 1(a). The parameters — k andn — [ are used to  Recently, we verify the Hamiltonian connectivity of rect-
adjust the width and height df(mn, n; k, ), respectively. ~ angular supergrid graphs except one condition [24]. The
In [20], we have showed that rectangular supergrid grapf@sbidden condition fott/ P(R(m, n), s, ) holds only for 1-
always contain Hamiltonian cycles except 1-rectangles. Li&ctangle or 2-rectangle. To describe the exception condition,
R(m,n) be a rectangular supergrid graph with> n, C be We define the vertex cut and cut vertex of a graph as follows.

a cycle of R(m,n), and letd be a boundary of?(m,n), pefinition 1. Let & be a connected graph and gt be a
where [ is a subgraph of(in, n). The restriction ofC g pget of the vertex sat(G). V; is a vertex cutof G if

to H is denoted byC|y. If |C[H| = L ie,Cpgisa 5 V, is disconnected. A vertex of G is acut vertexof
boundary path oni/, then Cyy; is calledflat faceon H. it 1,1 is a vertex cut of. For an example, in Fig. 3(b)

If |Cju| > 1 andCy; contains at least one boundary edge; 41 is a vertex cut and in Fig. 3(d)is a cut vertex.
of H, thenC is calledconcave facen H. A Hamiltonian

cycle of R(m, 3) is calledcanonicalif it contains three flat ~ Then, the following condition implieg? P(R(m, 1), s,t)
faces on two shorter boundaries and one longer boundaagd H P(R(m,2),s,t) do not exist.

and it contains one concave face on the other boundary,

where the shorter boundary consists of three vertices. A1) s or ¢ is a cut vertex ofR(m, 1), or {s,t} is a vertex
a Hamiltonian cycle ofR(m,n) with n = 2 orn > 4 cut of R(m,2) (see Fig. 3(a) and Fig. 3(b)). Notice that,
is said to becanonical if it contains three flat faces onhere,s or ¢ is a cut vertex ofR(m,1) if either s or ¢ is
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[

T :::j The above observation can be extended to a veriex
ooeone where P, = z, as shown in Fig. 4(c), and we then have
@ ® the following proposition.

Fig. 3. Rectangular supergrid graph in which there is no Ham#n e
(s, t)-path for (@) R(m, 1), and (b)R(m, 2), where solid lines indicate the Proposition 3. (See [21].) LetC be a cycle (path) of a

longest path between and . graph G and letx be a vertex inG — V(C). If there exists
an edge(uy,vy) in Cy such thatu; ~ 2 and vy ~ z, then

p, Ci1 andz can be combined into a cycle (path) 6f (see
Fig. 4(c))

Let P, and P, be two vertex-disjoint paths of a graph
G. If there exists one edgeéu;,v;) € P; such that
uy ~ start(P.) andvy; ~ end(P,), then P, and P, can
Fig. 4. A schematic diagram for (a) Proposition 1, (b) Projmsi2, (c) be combined into a patR of G with start(P) = start(Py)

Proposition 3, and (d) Proposition 4, whegerepresents the destruction of andend(P) _ end(Pl). Hence. the following observation is
an edge while constructing a combined cycle or a path. . . '
immediately true.

\\\\\\\\\\\\\\

(a) (b) (c) (d)

\\\\\\\

Proposition 4. Let P, and P, be two vertex-disjoint paths
not a corner vertex, anfls, ¢} is a vertex cut ofR(m, 2) if Of a graphG. If there exists one edge:,v1) € P such
2< sp(=ty) <m—1. thatu, ~ start(P) andvy; ~ end(Pz), thenP; and P, can

be combined into a path a¥. (see Fig.4(d))

The following lemma showing thafl P(R(m,n),s,t)
does not exist if R(m,n), s, t) satisfies condition (F1) can [Il. THE HAMILTONIAN AND HAMILTONIAN CONNECTED
be verified by the same arguments in [31]. PROPERTIES OFL-SHAPED SUPERGRID GRAPHS

Lemma 2. (See [31].) Let R(m,n) be a rectangular In this section, we will verify the Hamiltonicity and
supergrid graph with two distinct vertices and ¢. If Hamiltonian connectivity of.-shaped supergrid graphs. We
(R(m,n),s,t) satisfies condition (F1), theR(m,n),s,t) begin with the following definition.

contains no Hamiltoniargs, )-path. Definition 2. Let £ be a L-shaped supergrid graph

In [24], we obtain the following lemma to show theL(m,n;k,l) or a rectangular supergrid grapR(m,n). A
Hamiltonian connectivity of rectangular supergrid graphs. separation operationof £ is a partition of £ into two
vertex disjoint rectangular supergrid subgraghsand Lo,
ie., V(ﬁ) = V(Cl) U V(ﬁz) and V(Cl) N V(EQ) = 0.

A separation is calledvertical if it consists of a set of
horizontal edges, and is callédrizontalif it contains a set
of vertical edges. For an example, the bold dashed vertical

The Hamiltonian(s, t)-path P of R(m,n) constructed in (resp., horizontal) line in Fig. 5(a) indicates a vertical (resp.,
[24] satisfies that” contains at least one boundary edge dforizontal) separation of.(10,11;9,7) which partitions it
each boundary, and is calle@nonical into R(3,11) and R(7,2) (resp.,R(3,9) and R(10, 2)).

We next give some observations on the relations among
cycle, path, and vertex. These propositions will be used in
proving our results and are given in [20], [21], [24]. L& A. The Hamiltonian Property af-shaped Supergrid Graphs
and C; be two vertex-disjoint cycles of a gragh. If there

exist two edges; = (u1,v1) € Cy andey = (u,v2) € Co o | ghaped supergrid graphs. Obviousl(m, n; k, 1)
such thate; ~ ey, thenCy and C; can be merged into a .,naing no Hamiltonian cycle if there exists a vertein
cycle of G. Thus the following proposition holds true. L(m,n; k,1) such thatdeg(w) = 1. Thus, L(m,n; k, 1) is
Proposition 1. Let C; and C» be two vertex-disjoint cycles not Hamiltonian when the following condition is satisfied.
of a graphG. If there exist two edges, € C; ande; € Cs

such thate; =~ ey, thenC; and C, can be combined into a (F2) there exists a vertexo in L(m,n;k,l) such that
cycle ofG. (see Fig.4(a)) deg(w) = 1.

Lemma 3. Let R(m,n) be a rectangular supergrid graph
with m,n > 1, and lets and ¢ be its two distinct vertices.
If (R(m,n),s,t) does not satisfy forbidden condition (F1)
then HP(R(m,n), s,t) does exist.

In this subsection, we will verify the Hamiltonicity

Let C; be a cycle and leP; be a path in a grapti such
that V(Cy) NV (Py) = 0. If there exist two edges; € (4
and e; € P; such thate; =~ ez, thenC; and P; can be
combined into a pat of G with start(P) = start(P;) and
end(P) = end(P;). Fig. 4(b) depicts such a constructionTheorem 1. Let L(m,n;k,l) be a L-shaped supergrid
and hence the following proposition holds true. graph. Then,L(m,n; k,l) contains a Hamiltonian cycle if
it does not satisfy condition (F2).

When the above condition is satisfied—k = 1 orn—I[ =
1. We then show the Hamiltonicity of-shaped supergrid
graphs as follows.

Proposition 2. (See [21].) LetC; and P, be a cycle and a
path, respectively, of a grapfi’ such thatV’ (C,)NV (Py) = Proof: We first make a vertical separation on
(). If there exist two edges; € C; andey € P, such that L(m,n;k,l) to obtain two disjoint rectangular supergrid
e1 = eq, thenC; and P; can be combined into a path 6f. subgraphsl; = R(m — k,n) and Ly = R(k,n — ), as
(see Fig.4(b) depicted in Fig. 5(b). We prove this theorem by constructing
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w

paration

(a) (c)

horizontal se

& o S Y Y Fig. 6. L-shaped supergrid graph in which there is no Hamiltor{igrt)-
vertical separation L vl path for (a)s is a cut vertex, (b)s,t} is a vertex cut, and (c) there exists
P =R(m—k,n) = R(k, n=1) a vertexw such thatdeg(w) = 1, s # w, andt # w.
(a) (b)

m—k>1
—»

same argumentsy, vs, - -+, v,—; can be merged into the
cycle to form a Hamiltonian cycle ok (m,n; k,1). On the
other hand, consider thdt > 2. Then, Ly = R(k,n — 1)
satisfies that > 2 andn—1 > 2. By Lemma 1,L, contains
a canonical Hamiltonian cyclé/ C5 such that one flat face
of HCs is placed to facel;. Then, there exist two edges
e = (’U,l,l)1> € HCy andey = (UQ,UQ) € HC5 such that
e1 = es. By Proposition 1, HC; and HCs can be combined
© @ into a Hamiltonian cycle of.(m, n; k, ). For instance, Fig.
Fig. 5. (a) Separations of(10,11;9,7), (b) a vertical separation for 5(d) shows a Hamiltonian cycle df(m,n; k,1) Whenm -
L(m,n;k,l) to obtain L1 = R(m — k,n) and Lo = R(k,l), (¢) a k >2,n—1>2,andk > 2. Thus,L(m,n;k,[) contains a
Hamiltonian cycle ofl.(m, n; k,1) whenm—k = 1, and (d) a Hamiltonian Hamiltonian cycle in this case.
cycle of L(m,n; k,l) whenm — k > 2, n —1 > 2, andk > 2, where the . . . .
bold dashed vertical (resp., horizontal) line in (a) indicates a vertical (resp., W& have proved that (m,n; k, 1) is Hamiltonian in any
horizontal) separation of.(10, 11;9,7) which partitions it intoR(3,11) case. Thus, the lemma holds true. [ |

andR(7,2) (resp.,R(3,9) and R(10, 2)), and® represents the destruction
of an edge while constructing a Hamiltonian cyclelofm, n; k, ).

B. The Hamiltonian Connected Property lofshaped Super-

grid Graphs
a Hamiltonian cycle of.(m, n; k,1). Depending on the sizes  In this subsection, we will verify the Hamiltonian
of L, and Ly, we consider the following cases: connectivity of L-shaped supergrid graphs. By the same

Casel: m —k = 1 orn —1 = 1. Suppose that forbidden condition (F1) for HP(R(m,n),s,t), the
m — k = 1. Since there exists no vertex in L(m,n;k,l) following condition impliesH P(L(m,n;k, 1), s,t) does not
such thatdeg(w) = 1, we get thatl = 1. Consider that exist.

n—1 = 1. Then,k = 1. Thus, L(m,n;k,l) consists of

only three vertices which forms a cycle. On the other hang:3) s or ¢ is a cut vertex ofL(m,n; k1), or {s,t} is a
consider thatn — [ > 2. Let u be a vertex ofL; with vertex cut of L(m, n; k, 1) (see Fig. 6(a) and Fig. 6(b)).
deg(u) =2, L7 = L1 — {u}, and letL* = L} U L,. Then,

L* = R(k+1,n—1), wherek +1 > 2 andn — [ > 2. The following lemma showing thaf P(L(m,n; k,1), s, )
By Lemma 1,L* contains a canonical Hamiltonian cycledoes not exist if(L(m,n; k, 1), s, t) satisfies condition (F3)
HC*. Then, there exists a flat face &fC™* that is placed can be verified by the same arguments in [31].

to facewu. Thus, there exists an edde,y) in HC* such

thatu ~ = andu ~ y. By Proposition 3u and HC* can Leémma 4. (See [31]) Let L(m,n;k,l) be a L-
be combined into a Hamiltonian cycle &f(m, n;k,1). For Shaped supergrid graph with two distinct vertices
example, Fig. 5(c) depicts such a construction of Hamiltonid@fd - If (L(m, n; k,1),s,t) satisfies condition (F3), then
cycle of L(m, n; k, 1), wherem — k = 1 andn — [ > 2. The L(m,n;k,l) contains no Hamiltoniarts, t)-path.

case ofn—I = 1 can be proved by the same arguments. Thus,\ye can easily see thal P(L(m,n;k,1),s,t) does not
L(m,n;k,1) is Hamiltonian whenn — k=1 orn—1l=1. st if (L(m,n;k,1),s,t) satisfies the following condition.

Case2:m —k > 2andn — 1 > 2. In this case,L; =
R(m —k,n) and Ly = R(k,n — 1) satisfy thatm —k > 2 (F4) there exists a vertexo in L(m,n;k,l) such that
andn—1>2.Sincen—Il>1landl>1,n>1+12>2. deg(w) = 1, s # w, andt # w (see Fig. 6(c)).

Thus,L, = R(m — k, n) satisfies thatn —k > 2 andn > 3.
By Lemma 1,L; contains a canonical Hamiltonian cycle \ye will prove thatf P(L(m, n; k, 1), s, t) does exist when
HC(C, whose one flat face is placed to fate. Consider that (L(m,n;k,1),s,t) does not satisfy conditions (F3) and (F4)

k=1.Then,Ly = R(k,n—1)is a 1-rectangle. Lé¥'(L2) = in Theorem 2. Due to the space limitation, we omit its proof.
{v1,v2,--+ ,vn_i}, Wherev;  is they-coordinate ofv; and

viy1, =v;, +1forn—1—1>i> 1. SinceHC; contains Theorem 2. Let L(m, n; k, 1) be aL-shaped supergrid graph
a flat face that is placed to fack,, there exists an edgeWwith distinct verticess and ¢. Then, L(m,n;k,1) contains
(u,v) in HCy such thatu ~ v; andv ~ v1. By Proposition @ Hamiltonian (s, t)-path, i.e., HP(L(m,n;k,1),s,t) does
3, v; and HC; can be combined into a Cy(:]HC‘ik By the exist, if it does not satisfy conditions (F3) and (F4)
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IV. CONCLUDING REMARKS [23]

Based on the Hamiltonicity and Hamiltonian connectivity
of rectangular supergrid graphs, we prdvshaped supergrid
graphs to be Hamiltonian and Hamiltonian connected excéffl
one or two conditions. The result can be appliedtshaped
supergrid graphs. We leave it to interesting readers. On thg]
other hand, the Hamiltonian cycle problem on solid grid
graphs was known to be polynomial solvable. However, el
remains open for solid supergrid graphs in which there exigt3]
no hole.
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