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Abstract— Differential calculus was used to obtain the 

ordinary differential equations (ODE) of the probability 

density function (PDF), Quantile function (QF), survival 

function (SF), inverse survival function (ISF), hazard function 

(HF) and reversed hazard function (RHF) of inverse Rayleigh 

distribution. The parameters and support that define the 

distribution inevitably determine the nature, existence, 

uniqueness and solution of the ODEs. The method can be 

extended to other probability distributions, functions and can 

serve an alternative to estimation and approximation. 

Computer codes and programs can be used for the 

implementation.      

 

Index Terms— Differentiation, quantile function, survival 

function, approximation, hazard function, Rayleigh. 

 

I. INTRODUCTION 

ALCULUS is a very key tool in the determination of 

mode of a given probability distribution and in 

estimation of parameters of probability distributions, 

amongst other uses. The method of maximum likelihood is 

an example.                                                    

Differential equations often arise from the understanding and 

modeling of real life problems or some observed physical 

phenomena. Approximations of probability functions are one 

of the major areas of application of calculus and ordinary 

differential equations in mathematical statistics. The 

approximations are helpful in the recovery of the probability 

functions of complex distributions [1-10]. 

Apart from mode estimation, parameter estimation and 

approximation, probability density function (PDF) of 

probability distributions can be expressed as ODE whose 

solution is the PDF. Some of which are available. They 

include: beta distribution [11], Lomax distribution [12], beta 

prime distribution [13], Laplace distribution [14] and raised 

cosine distribution [15]. 

The aim of this research is to develop homogenous 

ordinary differential equations for the probability density 

function (PDF), Quantile function (QF), survival function 
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(SF), inverse survival function (ISF), hazard function (HF) 

and reversed hazard function (RHF) of inverse Rayleigh 

distribution. This will also help to provide the answers as to 

whether there are discrepancies between the support of the 

distribution and the necessary conditions for the existence of 

the ODEs. Similar results for other distributions have been 

proposed, see [16-28] for details.                                                                                                                                  

Inverse or inverted Raylegh distribution was earlier 

studied by [29]. Estimation is one of the areas of the 

distribution that have been studied extensively. The details 

can be seen in the research outputs of [30-36]. In particular, 

emphasis was placed on comparison of the efficiency of 

different estimators [37-39]. Estimation under censoring 

features prominently in the works of [40-42]. Prakash [43] 

work was based strictly on Bayes estimation of the 

parameters of the distribution.  Other areas already explored 

are acceptance sampling based on the distribution [44-45]. 

Rosaiah et al. [46] applied the distribution to economic 

reliability analysis. Recently a new approach of correctly 

estimating the probability density function (PDF) and 

cumulative distribution function (CDF) of the distribution 

was proposed by [47]. Process capability and system 

availability analysis of the distribution was described by 

[48]. Generalizations, compounding and modifications 

include: Bivariate inverse Rayleigh distribution [49], beta 

inverse Rayleigh distribution [50], discrete inverse Rayleigh 

distribution [51], transmuted inverse Rayleigh distribution 

[52], transmuted modified inverse Rayleigh distribution 

[53], modified inverse Rayleigh distribution [54], 

Kumaraswamy inverse Rayleigh distribution [55], mixture of 

inverse Rayleigh distribution [56] and others.  

 The ordinary differential calculus was used to obtain the 

results.               

II. PROBABILITY DENSITY FUNCTION 

   The probability density function (PDF) of the inverse 

Rayleigh distribution is given by;          
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Differentiate equation (1), to obtain;        
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The condition necessary for the existence of the equation is 

, 0.x                                                                                                   

The first order ordinary differential equation of the 

probability density function of the inverse Rayleigh 

distribution is given as;         
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III. QUANTILE FUNCTION 

The Quantile function (QF) of the inverse Rayleigh 

distribution is given by;      
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Differentiate equation (6), to obtain;        
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The condition necessary for the existence of the equation is 

0,0 1.p                                                                                

Substitute equation (6) into (7);               
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Equation (6) can also be written as;         
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Substitute equation (10) into (8);                
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The first order ordinary differential equation of the Quantile 

function of the inverse Rayleigh distribution is given as;  
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IV. SURVIVAL FUNCTION 

The Survival function (SF) of the inverse Rayleigh 

distribution is given by;        
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Differentiate equation (14), to obtain;        

 
2

3

2
( ) e tS t

t


 

                                     (15)             

The condition necessary for the existence of the equation is 

, 0.t                                                                     

Substitute equation (14) into (15);                
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The first order ordinary differential equation of the survival 

function of the inverse Rayleigh distribution is given as;  
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V. INVERSE SURVIVAL FUNCTION 

The inverse survival function (ISF) of the inverse Rayleigh 

distribution is given by;       
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Differentiate equation (19), to obtain;        
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The condition necessary for the existence of the equation is 

0,0 1.p                                                           

Equation (19) can also be written as;         
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Substitute equation (22) into (20);                
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The first order ordinary differential equation of the inverse 

survival function of the inverse Rayleigh distribution is 

given as;         

 
32 (1 ) ( ) ( ) 0p Q p Q p                 (24)            

 (0.11)
0.116533

Q


                                   (25)

                    

VI. HAZARD FUNCTION 

The hazard function (HF) of the inverse Rayleigh 

distribution is given by;      
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Differentiate equation (26), to obtain;                    
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The condition necessary for the existence of the equation is 

, 0.t                                                               
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The first order ordinary differential equation of the hazard 

function of the inverse Rayleigh distribution is given as;  
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VII. REVERSED HAZARD FUNCTION 

The reversed hazard function (RHF) of the inverse Rayleigh 

distribution is given by;          
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Differentiate equation (32), to obtain;                    
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The condition necessary for the existence of the equation is 
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Substitute equation (32) into equation (33);         
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The first order ordinary differential equation of the reversed 

hazard function of the inverse Rayleigh distribution is given 

as;               

 ( ) 3 ( ) 0tj t j t                                  (35)

  (1) 2j                                         (36) 

 

VIII. CONCLUDING REMARKS 

   Ordinary differential equations (ODEs) has been obtained 

for the probability density function (PDF), Quantile function 

(QF), survival function (SF), inverse survival function (ISF), 

hazard function (HF) and reversed hazard function (RHF) of 

inverse Rayleigh distribution. This differential calculus and 

efficient algebraic simplifications were used to derive the 

various classes of the ODEs. The parameter and the supports 

that characterize the inverse Rayleigh distribution determine 

the nature, existence, orientation and uniqueness of the 

ODEs. The results are in agreement with those available in 

scientific literature. Furthermore several methods can be 

used to obtain desirable solutions to the ODEs [57-62]. This 

method of characterizing distributions cannot be applied to 

distributions whose PDF or CDF are either not differentiable 

or the domain of the support of the distribution contains 

singular points.       
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