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Abstract—We introduce a successor model of an AND-OR
tree. Leaves are connected to internal nodes via communication
channels that possibly have high probability of interruption.
By depth-first communication we mean the following protocol:
if a given algorithm probes a leaf then it continues to make
queries to that leaf until return of an answer. For each such
tree, we give a concrete example of interruption probability
setting with the following property. For any independent and
identical distribution on the truth assignments (probability is
assumed to be neither 0 nor 1), any depth-first search algorithm
that performs depth-first communication is not optimal. This
result makes sharp contrast with the counterpart on the usual
AND-OR tree (Tarsi) that optimal and depth-first algorithm
exists. A key to the proof is Riemann zeta function.

Index Terms—Analysis of algorithms and problem com-
plexity, AND-OR tree, independent distribution, interruption,
Riemann zeta function.

I. INTRODUCTION

AN AND-OR tree is a mini-max tree whose evaluation
function is Boolean-valued, in other words, value is

1 (true) or 0 (false). The root is labeled by AND, child
nodes of an AND-gate (an OR-gate, respectively) are labeled
by OR (AND, respectively). Each leaf has Boolean value
and their values are hidden. An algorithm probes leaves to
find the Boolean value of the root, and during computation,
the algorithm skips a leaf if unnecessary. Cost of compu-
tation is measured by the number of leaves probed during
computation. Given a probabilistic distribution on the truth
assignments to the leaves, cost means expected value of the
above mentioned cost.

Computational complexity issues on AND-OR trees have
been studied from the early stage of artificial intelligence
([2], [4], [5], [13] and [8]).

On the other hand, current systems of artificial intelligence
are often consist of many devices that communicate each
other. Interruption of communication is one of potential risks
in such systems.

We propose a successor model of an AND-OR tree in
which each leaf is connected to an internal node via a
communication channel. We are interested in the case where
each channel has high probability of interruption. Figure 1
is an example of such a tree. Circles are internal nodes,
squares are leaves, solid lines are usual wire, and broken
lines are communication channels. In our mind, the main
body of the tree is in our local computer, but leaves are on
remote devices.

The most simple type of probability distribution on an
AND-OR tree is an independent and identical distribution
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(IID for short). More precisely, an IID is a distribution such
that there is a fixed positive real number p ≤ 1 and each leaf
has independently has value 0 with probability p.
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Fig. 1. broken lines are communication channels

A tree is balanced (in the sense of Tarsi [13]) if (1) any
two internal nodes of the same depth (the distance from the
root) have the same number of child nodes and (2) all the
leaves have the same depth.

An algorithm A is depth-first if for every internal node x,
once A probes a leaf that is descendant of x then A does
not probe leaves that are non-descendants of x until A finds
value of x. A is directional if there is a fixed linear order
of the leaves, and for any truth assignment to the leaves, the
order of probe by A is consistent to the above mentioned
linear order [4].

The above (standard) definition of depth-first is not exact
for our purpose. In our computation model, “algorithm A
makes a query to leaf x” is merely a necessary condition for
“A finds value of x”.

Thus, we redefine the concept of depth-first, and in addi-
tion, introduce concept of depth-first communication.

Definition Let A be an algorithm on a tree.
1) A performs depth-first search (or simply, A is depth-

first) if for every internal node x, once A finds value
of a leaf that is descendant of x then A does not make
queries to leaves that are non-descendants of x until A
finds value of x.

2) A (possibly does not perform depth-first search) per-
forms depth-first communication if for each leaf, once
A makes a query to a leaf, A consecutively makes
queries to that leaf until return of an answer.

About an IID on an AND-OR tree, the following result of
Tarsi is important and well-known. If 0 < p < 1, there is an
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optimal algorithm (its cost achieves the minimum among all
algorithms) that is depth-first and directional [13].

Suppose that T is a balanced AND-OR tree, and that
an attached distribution is an IID with 0 < p < 1 (p is
probability of a leaf having value 0). For any leaf v and any
positive integer k, at kth query to v, assume that probability
of interruption depends only on k, not depending on v. Let
f(k) be the probability. We give a particular example of
a function f with the following property: Any depth-first
algorithm that performs depth-first communication is not
optimal (The main theorem).

This result and the above result of Tarsi contrast sharply.
Our f(x) is x2/(x + 1)2. In the proof, a key tool is

Riemann zeta function.
In section III, we observe cost of getting value of a leaf via

consecutive access to it through a communication channel. In
section IV, we introduce our interruption probability setting
on a tree of height 1. In section V, we investigate a tree of
general height, and show our main result.

II. PRELIMINARIES

As usual,
∑

and
∏

denote sum and product, respectively.
Throughout the paper, an expression of the form

∑k−1
i=k [· · · ]

denotes 0, and
∏k−1

i=k [· · · ] denotes 1.
We denote Riemann zeta function [1, Chapter 23] by ζ.

Thus, for each s > 1, ζ(s) =
∑∞

n=1 n
−s. In particular,

ζ(2) = π2/6 = 1.6449 · · · and ζ(4) = π4/90 = 1.0823 · · · .
For two events E1 and E2, we denote conditional proba-

bility of E2 under E1 by prob[E2|E1].
The paper given in [9] is a concise survey on complexity

and equilibria of AND-OR trees, by which the reader can
overview the previous research [3] and its subsequent devel-
opments [11], [12] and [7]. For more recent works on this
line, see the papers [6] and [10].

III. CONSECUTIVE QUERIES TO A PARTICULAR LEAF

In this section, we investigate a single leaf x0 with a com-
munication channel (Figure 2). A procedure P consecutively
makes queries to x0 until return of an answer.

communication 

channel

x0 a leaf

Fig. 2. a single leaf with a communication channel

For each positive integer n, we look at the following events
En,0 and En,1.
En,0: “For each j such that 1 ≤ j < n, jth query to x0

is interrupted (that is, P does not receive an answer)”.
En,1: “nth query to x0 is interrupted”.

Lemma 1 (Cost of getting 1-bit information) Let k be a
positive integer. Let αk be expected cost for P to get an
answer, under the assumption that for all n, (1) holds.

prob[En,1|En,0] = [(n+ k − 1)/(n+ k)]2 (1)

Then, we have the following.

αk = k2(ζ(2)−
k−1∑

j=1

j−2) (2)

Recall that by our convention in the notation section, we have∑−1
j=1 j

−2 = 0. Thus, in particular, the following holds.

α1 = ζ(2) (3)

Proof: Let f(x) = [x/(x+ 1)]2.

αk =
∞∑

j=1

prob[Ej,0 ∧ ¬Ej,1]× j

=
∞∑

j=1

[(
k+j−2∏

i=k

f(i))(1− f(k + j − 1))j]

Here, we have the following.

n∑

j=1

[(
k+j−2∏

i=k

f(i))(1 − f(k + j − 1))j]

=
n∑

j=1

[j
k+j−2∏

i=k

f(i)− j
k+j−1∏

i=k

f(i)]

=
n∑

j=1

k+j−2∏

i=k

f(i)− n
k+n−1∏

i=k

f(i)

=
n∑

j=1

[k/(k + j − 1)]2 − n[k/(k + n)]2

= k2[
n∑

j=1

(k + j − 1)−2 − n/(k + n)2]

= k2[
k+n−1∑

j=1

j−2 −
k−1∑

j=1

j−2 − n/(k + n)2]

→ k2(ζ(2)−
k−1∑

j=1

j−2) (n → ∞) (4)

Hence, (2) holds.

IV. HEIGHT 1 BINARY TREE

In this section, we investigate a binary OR-tree of height 1
with a communication channel for each leaf (Figure 3). We
are going to compare depth-first communication and non-
depth-first communication.

Example (Cost of depth-first communication) Let p be
a real number such that 0 < p < 1. Let dp be an IID such
that probability of a leaf having value 0 is p. Assume that
interruption probabilities are given by (1) with k = 1.

prob[En,1|En,0] = [n/(n+ 1)]2 (5)
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Fig. 3. height 1, binary case

In this model, we investigate the following algorithm
LωRω: Make queries to x0 until x0 returns an answer. If
the value is 0 then make queries to x1 until x1 returns an
answer.

Let cost(LωRω, dp; [n/(n+1)]2) denote the expected cost
of LωRω under dp and the interruption probabilities (5).
Then, by Lemma 1, we have the following.

cost(LωRω, dp; [n/(n+ 1)]2) = α1 + pα1

= (1 + p)ζ(2) (6)

Let (LR)ω denotes the following algorithm. Repeat the
following while none of x0 and x1 returns an answer: “Make
a query to x0, then make a query to x1”. If xi returns an
answer, break the above loop. If xi is 0 then make queries
to x1−i until x1−i returns an answer.

Let p and dp be those in Example, and assume
that interruption probabilities are given by (5). Let
cost((LR)ω , dp; [n/(n + 1)]2) denote the expected cost of
LωRω under dp and the above interruption probabilities.

We are going to define sequence {βk}k=0,1,2,··· so that
cost((LR)ω , dp; [n/(n+1)]2) =

∑∞
k=0 βk. In the following,

f(x) denotes [x/(x+1)]2, and αk is that defined in Lemma 1.
For each i ∈ {0, 1} and n ≥ 1, let E′

n be the event “The
first return from a leaf happens at nth access to the leaves”.
Let βn = prob[E′

n] × (n + pα(n+1)/2) (if n is odd), and
βn = prob[E′

n] × (n + pα(n+2)/2) (if n is even). Then the
following holds.

β1 = (1− f(1))(1 + pα1), (7)
β2 = f(1)(1− f(1))(2 + pα2), (8)
β2k+1

= (
k∏

j=1

f(j)2)(1 − f(k + 1))(2k + 1 + pαk+1), (9)

β2k+2

= (
k∏

j=1

f(j)2)f(k + 1)(1− f(k + 1))(2k + 2 + pαk+2)

(10)

Lemma 2

cost((LR)ω, dp; [n/(n+ 1)]2) = 2ζ(2) + (1− p)(ζ(4)− 3)
(11)

Proof: It is easy to verify the following.

β2k+1 + β2k+2

= (k + 1)−4

+
2k + pαk+1

(k + 1)4
− 2(k + 1) + pαk+2

(k + 2)4

+
1

(k + 1)2(k + 2)2
+

p(αk+2 − αk+1)

(k + 1)2(k + 2)2
(12)

Hence, we have the following.

2k+2∑

j=1

βj

=
k+1∑

j=1

j−4 + pα1 − (2k + 2 + pαk+2)/(k + 2)4

+
k∑

j=0

1

(j + 1)2(j + 2)2
+

k∑

j=0

p(αj+2 − αj+1)

(j + 1)2(j + 2)2

(13)

Here, the following holds.

k+1∑

j=1

j−4 → ζ(4) (k → ∞) (14)

Throughout the rest of the proof, let σx denote
∑x

j=1 j
−2.

By Lemma 1, the following hold.

pα1 = p ζ(2), (15)
(2k + 2 + pαk+2)/(k + 2)4

= O(k−3) + p(ζ(2)− σk+1)/(k + 2)2

→ 0 (k → ∞) (16)

The third term of (13) is estimated as follows.

k∑

j=0

1

(j + 1)2(j + 2)2

=
k∑

j=0

(− 2j + 1

(j + 1)2
+

2j + 3

(j + 2)2
+

2

(j + 2)2
)

= −3 + (2k + 3)/(k + 2)2 + 2σk+2

→ −3 + 2ζ(2) (k → ∞) (17)

Again, by Lemma 1, we get the following.

(αj+2 − αj+1)/(j + 1)2(j + 2)2

= [((j + 1)−2 − (j + 2)−2)ζ(2)− (j + 1)−4]

−((j + 1)−2 − (j + 2)−2)σj

(18)

Here, the sum of [· · · ] has the following limit.
k∑

j=0

[((j + 1)−2 − (j + 2)−2)ζ(2)− (j + 1)−4]

= (1− (k + 2)−2)ζ(2)−
k+1∑

j=1

j−4

→ ζ(2)− ζ(4) (k → ∞) (19)
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We are going to show
∑∞

j=0[((j+1)−2−(j+2)−2)σj ] =
−3+2ζ(2). Let a be the left-hand side. Here, we have σ0 =
0, thus we may ignore the term for j = 0.

a =
∞∑

j=1

[(j + 1)−2
j∑

k=1

k−2 − (j + 2)−2
j+1∑

k=1

k−2]

+
∞∑

j=1

(j + 1)−2(j + 2)−2

= 1/4− lim
n→∞

(n+ 2)−2
n+1∑

k=1

k−2

+
∞∑

j=1

(j + 1)−2(j + 2)−2

=
∞∑

j=0

(j + 1)−2(j + 2)−2

= −3 + 2ζ(2) [by (17)] (20)

By (18), (19) and (20), we can evaluate the fourth term of
(13).

∞∑

j=0

p(αj+2 − αj+1)

(j + 1)2(j + 2)2
= p(3− ζ(2)− ζ(4)) (21)

By (13), (15), (16), (17) and (21), we find the cost.

cost((LR)ω, dp; [n/(n+ 1)]2) =
∞∑

j=1

βj

= 2ζ(2) + (1− p)(ζ(4)− 3) (22)

In other words, (11) holds.

Corollary Suppose that 0 < p < 1. Then,
cost((LR)ω , dp; [n/(n + 1)]2) is less than
cost(LωRω, dp; [n/(n+ 1)]2).

Proof: By Example and Lemma 2,
cost(LωRω, dp; [n/(n + 1)]2) − cost((LR)ω, dp; [n/(n +
1)]2) = (1− p)(−ζ(2)− ζ(4) + 3) > 0.

V. THE THEOREM

Now, we investigate a tree of arbitrary height. Let T be
a balanced AND-OR tree or a balanced OR-AND tree of
height h(≥ 1). Suppose that p is a real number such that
0 < p < 1 and let dp be an IID such that at each leaf,
probability of having value 0 is p. Assume that interruption
probabilities are given by (5).

Given an algorithm A on T and a real number p, let
cost(A, dp; [n/(n+1)]2) denote the expected cost of A under
dp and the above interruption probabilities.

Theorem In additon to the above setting, suppose that A
is a depth-first algorithm on T and A performs depth-first
communication (see Definition in Introduction). Then A is
not optimal.

Proof: We investigate the case where nodes just above
leaves are OR-gates. The other case (they are AND-gates) is
treated in a similar way.

The case where T is a binary OR-tree of height 1 is shown
by Corollary. In the following, T is assumed to have more
than 2 leaves.

Since the distribution dp is an IID and 0 < p < 1, there
exists an initial segment γ of a computation path of A on T ,
such that γ has positive probability and after γ, A performs
in the same way as LωRω.

More precisely, γ (its length is, say k ≥ 1) consists of
ordered pairs ⟨x(i), a(i)⟩ (i = 0, . . . , k−1) of leaves x(i) and
truth values a(i) ∈ {0, 1}, and in addition there are leaves
x(k) and x(k+1), and the following hold.

1) There exists an OR-gate (say, xu) such that x(k) and
x(k+1) are its child.

2) At the beginning of computation, A makes queries to
x(0) until return of an answer.

3) For each i < k, if an answer of x(i) is a(i) then A
makes queries to x(i+1) until return of an answer.

4) In the presence of dp and the interruption probabilities
given by (5), A performs the move γ (until getting the
answer a(k−1)) with positive probability.

5) If an answer of x(k−1) is a(k−1) then A makes queries
to x(k) until return of an answer.

6) If an answer of x(k) is 0 then A makes queries to
x(k+1) until return of an answer. Then A finds value
of the root.

7) If an answer of x(k) is 1 then A finds value of the root.
Figure 4 illustrates the OR-gate xu and its child leaves. For

example, x(k) and x(k+1) are possibly xu,m−2 and xu,m−1,
respectively. These two leaves are the last two leaves with
positive probability.

...

...
...

xλ

x x
u0

u

leaves

root

x

x

 u m-1u m-2

Fig. 4. general case

Now, let B be the following algorithm. B simulates A.
However, if history γ (including the instance getting the
answer a(k−1)) happens then B performs as (x(k)x(k+1))ω ,
in other words, B obeys the following instructions. Repeat
the following while none of xk and xk+1 returns an answer:
“Make a query to xk, then make a query to xk+1”. If xk+i

(i ∈ {0, 1}) returns an answer, break the above loop, and then
make queries to xk+1−i until xk+1−i returns an answer.

By Corollary, B has lower cost than A.

VI. SUMMARY AND FUTURE DIRECTIONS

We investigated multi-branching balanced AND-OR trees
with communication channels between leaves and the main
body. For each such tree, we showed concrete example of
interruption probability setting with the following property:
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For any independent and identical distribution on the truth
values on the leaves (probability is assumed to be neither 0
nor 1), depth-first algorithms of depth-first communication
are not optimal. Our main tool is Riemann zeta function.

The following are future directions.
• Characterization of optimal algorithms in the presence

of the above interruption probability setting.
• Study on words of infinite length as algorithms of

our model. For example, LωRω is an infinite sequence
LL · · ·RR · · · , and (LR)ω is (LR)(LR) · · · .

• Application to computation model under emergency
where batteries of devices have loss of power.
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