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Abstract— Lévy distribution is one of few stable 

distributions. The absence of closed form of some of the 

probability functions of distribution has inspired researchers 

into finding alternate options such as approximations. In this 

paper, homogenous ordinary differential equations (ODES) of 

different orders were obtained for the probability density 

function, survival function, hazard function and reversed 

hazard function of Lévy distribution. This is possible since the 

aforementioned probability functions are differentiable. 

However, approximation remains the only option for the 

quantile function and inverse survival function of the 

distribution. This is because those functions may not be 

reduced to an ODE as a result of the intractable nature of the 

cumulative distribution function which is used in obtaining 

them. . Differentiation and modified product rule were used to 

obtain the required ordinary differential equations, whose 

solutions are the respective probability functions. The different 

conditions necessary for the existence of the ODEs were 

obtained and it is in consistent with the support that defined 

the various probability functions considered. The parameters 

that defined each distribution greatly affect the nature of the 

ODEs obtained. This method provides new ways of classifying 

and approximating other probability distributions apart from 

one considered in this research. Algorithms for implementation 

can be helpful in improving the results.  

 

Index Terms— Differentiation, product rule, quantile 

function, survival function, approximation, hazard function, 

Lévy.   

 

I. INTRODUCTION 

IFFERENT mathematical techniques are viable tools in 

statistics. In mathematical statistics, different 

mathematical areas are used heavily in better understanding 

of probability distributions. Some of these are calculus, 

differential equations, algebra, measure theory, fixed point 

and topology and so on. Hitherto most of the use of ordinary 

differential equation (ODE) is often in mode and parameter 

estimation and approximation. Approximation of quantile 

function features prominently in the use of ODE in 

approximation. However, the use is often restricted to 

distributions with intractable probability density function 
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(PDF) and/ or cumulative distribution (CDF). This is due to 

the inability of the inversion method or rejection sampling 

method to recover the quantile function from the CDF [1-

10].                                                    

 Few available literatures have considered the study of the 

ODE of different probability functions of Lévy distribution 

in particular and probability distributions in general. The 

available ones contain previous works done on the ODE of 

the following distributions:  beta distribution [11], Lomax 

distribution [12], beta prime distribution [13], Laplace 

distribution [14] and raised cosine distribution [15]. 

The aim of this research is to develop homogenous 

ordinary differential equations for the probability density 

function (PDF), survival function (SF), hazard function 

(HF) and reversed hazard function (RHF) of Lévy 

distribution. The ODE for the quantile function and inverse 

survival function (ISF) of the distribution are complex and 

not included in the paper. This will also help to provide the 

answers as to whether there are discrepancies between the 

support of the distribution and the necessary conditions for 

the existence of the ODEs. Similar results for other 

distributions have been proposed for the following 

probability distributions: Fréchet Distribution [16], 

exponentiated generalized Exponential distribution [17], 

Cauchy, standard Cauchy and Log-Cauchy distributions 

[18], Burr XII and Pareto distributions [19], Gompertz and 

gamma Gompertz distributions [20], 3-parameter Weibull 

distribution [21], exponentiated Fréchet distribution [22], 

half-Cauchy and power Cauchy  distributions [23], 

exponential and truncated exponential distributions [24], 

exponentiated Pareto  distribution [25], Gumbel distribution 

[26], half-Normal distribution [27], Harris extended 

exponential distribution [28] and Weibull distribution [29].                                                                    

Lévy distribution is a continuous probability distribution 

named after a mathematician called Paul Lévy. The 

distribution is stable and infinitely divisible. The 

distribution is a special case of the inverse gamma and type 

5 Pearson distributions. The distribution is also related to 

the normal, scaled inverse-Chi-squared and folded normal 

distributions.  The distribution has been applied in the 

following areas: spectroscopy, modeling change in a 

planet’s magnetic field, a limiting probability of hitting 

times in Brownian motion, time series analysis, modeling 

the change of position of photon in turbid medium and in 

Cauchy process. Lévy distribution is mostly applied in stock 

analysis, income distribution [30], extreme values and time 

series analysis of rainfall [31], molecular physics [32] and 
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b-spline curve estimation [33]. The applications are often 

limited because of absence of closed form of the probability 

functions of the distribution in particular and stable 

distributions in general. The nature of the distribution makes 

it hard for combining, modification, exponentiation, 

compounding, transmutation, generation and so on. It is 

widely believed to be a special case or sub model of the 

inverse gamma distribution.. The behavior of the product 

and quotient of two Lévy random variables was studied by 

[34].                                                                                                                                                                       

The ordinary differential calculus was used to obtain the 

results presented in different sections.                                     

II. PROBABILITY DENSITY FUNCTION 

 The probability density function of the Lévy distribution is 

given by;            
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To obtain the first order ordinary differential equation for 

the probability density function of the Lévy distribution, 

differentiate equation (1), to obtain;      
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The condition necessary for the existence of equation is 

0,c x   .                                                                               

The first order ordinary differential for the probability 

density function of the Lévy distribution  is given as;   

      

 
22( ) ( ) ( 3 3 ) ( ) 0x f x c x f x                    (3)

 2( 1) e
2

c
c

f 


 
   

 
                            (4) 

Consider some special cases;                                                                           

Case 1: When 0  ,equation (3) becomes;       
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To obtain the second order ordinary differential equation for 

the probability density function of the Lévy distribution, 

differentiate equation (2), to obtain;      
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The condition necessary for the existence of equation is 

0,c x   .                                         
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Consider some special cases;                                                                           

Case 1: When 0  , equation (10) becomes;      
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Alternatively, the second order ordinary differential 

equation for the probability density function of the Lévy 

distribution can be derived in this way.                           

Equation (2) can be written as;              
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Substitute equation (15) into equation (8);        
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     To obtain the third order ordinary differential equation 

for the probability density function of the Lévy distribution, 

differentiate equation (8), to obtain;      
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The condition necessary for the existence of equation is 

0,c x   .                                         
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Consider some special cases;                                                                           

Case 1: When 0  , equation (20) becomes;      
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Case 2: When  0  and 2
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Alternatively, the third order ordinary differential equation 

for the probability density function of the Lévy distribution 

can be derived in this way.                           

Substitute equation (15) into equation (19);         
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When 0  , equation (26) becomes;       
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The Quantile function of the Lévy distribution may not be 

reduced to ordinary differential equations.   

III. SURVIVAL FUNCTION 

   The Survival function of the Lévy distribution is given by;
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(28) To obtain the first order ordinary differential equation 

for the probability density function of the Lévy distribution, 

differentiate equation (28), to obtain;      
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The condition necessary for the existence of equation is 

0,c t   .                                                                            

The first order ordinary differential for the Survival function 

of the Lévy distribution  is given as;  
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Consequently higher order ordinary differential equations 

can be derived;                                             
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Substitute equations (29) and (32) into equation (3);   
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Consider some special cases;                                                                           

Case 1: When 0  ,equation (33) becomes;      
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Consider some special cases;                                                                           

Case 1: When 0  , equation (39) becomes;      
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Alternatively, an ordinary differential equation of the third 

order of the Survival function of the Lévy distribution can 

be obtained by substituting equations (29), (32) and (38) 

into equation (18);             
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Case 1: When 0  , equation (44) becomes;      
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IV. HAZARD FUNCTION 

   The Hazard function of the Lévy distribution is given by; 
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To obtain the first order ordinary differential equation for 

the Hazard function of the Lévy distribution, differentiate 

equation (48), to obtain;                           
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The condition necessary for the existence of equation is 
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The first order ordinary differential for the Hazard function 

of the Lévy distribution  is given as; 
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Case 1: When 0  , equation (50) becomes;      
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The second order ordinary differential for the Hazard 

function of the Lévy distribution  is given as;      
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Case 1: When 0  , equation (55) becomes;      
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V. REVERSED HAZARD FUNCTION 

   The reversed Hazard function of the Lévy distribution is 

given by;    
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         (60) 

To obtain the first order ordinary differential equation for 

the reversed Hazard function of the Lévy distribution, 

differentiate equation (60), to obtain;                           
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The condition necessary for the existence of equation is 

0,c t   .                                                                                           

The first order ordinary differential for the reversed Hazard 

function of the Lévy distribution is given as;    
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                                                                               (62)
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                         (63) 

VI. CONCLUDING REMARKS 

   Differentiation and modified product rule were used to 

obtain the ordinary differential equations (ODES) of 

different orders for the probability density function, survival 

function, hazard function and reversed hazard function of 

Lévy distribution. This was largely due to differentiability 

of the probability functions. However the case of the 

quantile function and inverse survival function of the 

distribution were not included in this paper because of the 

complexity of the resulting ODEs obtained from the two 

functions.. This is because those functions may not be 

reduced to an ODE as a result of the intractable nature of the 

cumulative distribution function. Every changes in the 

parameters result to a unique ODE. Overall, the ODEs are in 

consistent with the support and parameter domains that 
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characterize the Lévy distribution. In addition, several 

methods can be used to obtain the solutions of the ODEs 

[35-41].   

 

ACKNOWLEDGMENT 

The comments of the reviewers were very helpful and led 

to an improvement of the paper. This research benefited 

from sponsorship from the Statistics sub-cluster of the 

Industrial Mathematics Research Group (TIMREG) of 

Covenant University and Centre for Research, Innovation 

and Discovery (CUCRID), Covenant University, Ota, 

Nigeria.   

REFERENCES 

[1] G. Derflinger, W. Hörmann and J. Leydold, “Random variate 

generation by numerical inversion when only the density is known,” 

ACM Transac.Model. Comp. Simul., vol. 20,  no. 4, Article 18, 

2010. 

[2] W.T. Shaw, T. Luu and N. Brickman, “Quantile mechanics II: 

changes of variables in Monte Carlo methods and GPU-optimised 

normal quantiles,” Euro. J. Appl. Math., vol. 25, no.  2, pp. 177-212, 

2014. 

[3] G. Steinbrecher, G. and W.T. Shaw, “Quantile mechanics” Euro. J. 

Appl. Math., vol. 19, no. 2, pp. 87-112, 2008. 

[4] J. Leydold and W. Hörmann, “ Generating generalized inverse 

Gaussian random variates by fast inversion,” Comput. Stat. Data 

Analy., vol. 55, no. 1, pp. 213-217, 2011. 

[5] H.I. Okagbue, M.O. Adamu and T.A. Anake “Quantile 

Approximation of the Chi-square Distribution using the Quantile 

Mechanics,” In Lecture Notes in Engineering and  Computer Science: 

Proceedings of The World Congress on Engineering and Computer 

Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 477-

483. 

[6] C. Yu and D. Zelterman, “A general approximation to quantiles”, 

Comm. Stat. Theo. Meth., vol. 46, no. 19, pp. 9834-9841, 2017. 

[7] I.R.C. de Oliveira and D.F. Ferreira, “Computing the noncentral 

gamma distribution, its inverse and the noncentrality parameter”, 

Comput. Stat., vol. 28, no. 4, pp. 1663-1680, 2013. 

[8] H.I. Okagbue, M.O. Adamu and T.A. Anake “Solutions of Chi-square 

Quantile Differential Equation,” In Lecture Notes in Engineering and 

Computer Science: Proceedings of The World Congress on 

Engineering and Computer Science 2017, 25-27 October, 2017, San 

 Francisco, U.S.A., pp 813-818.  

[9] W. Hörmann and J. Leydold, “Continuous random variate generation 

by fast numerical inversion,” ACM Transac.Model. Comp. Simul., vol. 

13, no. 4, pp. 347-362, 2003. 

[10] Y. Kabalci, “On the Nakagami-m Inverse Cumulative Distribution 

Function: Closed-Form Expression and Its Optimization by 

Backtracking Search Optimization Algorithm”, Wireless Pers. Comm. 

vol. 91, no. 1, pp. 1-8, 2016. 

[11] W.P. Elderton,  Frequency curves and correlation, Charles and Edwin 

Layton. London, 1906. 

[12] N. Balakrishnan and C.D. Lai, Continuous bivariate distributions, 2nd 

edition, Springer New York, London, 2009.     

[13] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous Univariate 

Distributions, Volume 2. 2nd edition, Wiley, 1995. 

[14] N.L. Johnson, S. Kotz and N. Balakrishnan, Continuous univariate 

distributions, Wiley New York. ISBN: 0-471-58495-9, 1994.    

[15] H. Rinne, Location scale distributions, linear estimation and 

probability plotting using MATLAB, 2010.   

[16] H.I. Okagbue, P.E. Oguntunde, A.A. Opanuga, E.A. Owoloko 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Fréchet Distribution,”  In Lecture Notes in 

Engineering and Computer Science: Proceedings of The World 

 Congress on Engineering and Computer Science 2017, 25-27 

October, 2017, San Francisco, U.S.A., pp 186-191.  

[17]  H.I. Okagbue, P.E. Oguntunde, P.O. Ugwoke, A.A. Opanuga 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Exponentiated  Generalized Exponential 

Distribution,” In Lecture Notes in Engineering and Computer 

 Science: Proceedings of The World Congress on Engineering and 

Computer Science  2017, 25-27 October, 2017, San Francisco, 

U.S.A., pp 192-197.  

[18] H.I. Okagbue, A.A. Opanuga, E.A. Owoloko, M.O. Adamu “Classes 

of Ordinary Differential Equations Obtained for the Probability 

Functions of Cauchy, Standard Cauchy and Log-Cauchy 

Distributions,” In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 198-204. 

[19] H.I. Okagbue, S.A. Bishop, A.A. Opanuga, M.O. Adamu “Classes of 

Ordinary Differential Equations Obtained for the Probability 

Functions of Burr XII and Pareto Distributions,”  In Lecture Notes in 

Engineering and Computer Science: Proceedings of The World 

 Congress on Engineering and Computer Science 2017, 25-27 

October, 2017, San Francisco, U.S.A., pp 399-404. 

[20] H.I. Okagbue, M.O. Adamu, E.A. Owoloko and A.A. Opanuga 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Gompertz and Gamma Gompertz 

Distributions,” In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 405-411. 

[21] H.I. Okagbue, M.O. Adamu, A.A. Opanuga and J.G. Oghonyon 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of 3-Parameter Weibull Distribution,” In 

Lecture Notes in Engineering and Computer Science: Proceedings of 

The World Congress on Engineering and Computer Science 2017, 25-

27 October, 2017, San Francisco, U.S.A., pp 539-545. 

[22] H.I. Okagbue, A.A. Opanuga, E.A. Owoloko and M.O. Adamu 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Exponentiated Fréchet Distribution,” In 

Lecture Notes in Engineering and Computer Science: Proceedings of 

The World Congress on Engineering and Computer Science 2017, 25-

27 October, 2017, San Francisco, U.S.A., pp 546-551. 

[23] H.I. Okagbue, M.O. Adamu, E.A. Owoloko and S.A. Bishop “Classes 

of Ordinary Differential Equations Obtained for the Probability 

Functions of Half-Cauchy and Power Cauchy  Distributions,” In 

Lecture Notes in Engineering and Computer Science: Proceedings of 

 The World Congress on Engineering and Computer Science 2017, 

25-27 October, 2017, San Francisco, U.S.A., pp 552-558. 

[24] H.I. Okagbue, P.E. Oguntunde, A.A. Opanuga and E.A. Owoloko 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Exponential and  Truncated Exponential 

Distributions,” In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 858-864. 

[25] H.I. Okagbue, O.O. Agboola, P.O. Ugwoke and A.A. Opanuga 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Exponentiated Pareto  Distribution,” In 

Lecture Notes in Engineering and Computer Science: Proceedings of 

The World Congress on Engineering and Computer Science 2017, 25-

27 October, 2017, San Francisco, U.S.A., pp 865-870. 

[26] H.I. Okagbue, O.O. Agboola, A.A. Opanuga and J.G. Oghonyon 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Gumbel Distribution,”  In Lecture Notes in 

Engineering and Computer Science: Proceedings of The World 

 Congress on Engineering and Computer Science 2017, 25-27 

October, 2017, San Francisco, U.S.A., pp 871-875. 

[27] H.I. Okagbue, O.A. Odetunmibi, A.A. Opanuga and P.E. Oguntunde 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Half-Normal Distribution,” In Lecture Notes 

in Engineering and Computer Science: Proceedings of The  World 

Congress on Engineering and Computer Science 2017, 25-27 

October, 2017, San Francisco, U.S.A., pp 876-882. 

[28] H.I. Okagbue, M.O. Adamu, E.A. Owoloko and E.A. Suleiman 

“Classes of Ordinary Differential Equations Obtained for the 

Probability Functions of Harris Extended  Exponential 

Distribution,” In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering and 

Computer Science 2017, 25-27 October, 2017, San Francisco, U.S.A., 

pp 883-888. 

[29] H.I. Okagbue, M.O. Adamu, T.A. Anake (2018) Ordinary Differential 

Equations of the Probability Functions of Weibull Distribution and 

their application in Ecology, Int. J. Engine. Future Tech., vol. 15, no. 

4, pp. 57-78, 2018. 

[30] B. Mandelbrot, “The Pareto- Lévy law and the distribution of 

income”, Int. Econ. Review, vol. 1, no. 2, pp. 79-106, 1960.        

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018



 

[31] M. Menabde and M. Sivapalan, “Modeling of rainfall time series and 

extremes using bounded random cascades and levy‐stable 

distributions”, Water Reso. Res., vol. 36, no. 11, pp. 3293-3300, 2000.           

[32]  E. Barkai,  R. Silbey and G. Zumofen, “Levy distribution of single 

molecule line shape cumulants in glasses”, Phys. Review Lett., vol. 84, 

no. 23, pp. 5339, 2000.                                                                                                                                                                                                                                                                           

[33]  C. Loucera, A. Iglesias and A. Gálvez, “Lévy Flight-Driven 

Simulated Annealing for B-spline Curve Fitting”, Studies in 

Computational Intelligence, vol. 744, pp. 149-169, 2018. 

[34] P.N. Rathie, L.C.D. Ozelim and C.E.G. Otiniano, “Exact distribution 

of the product and the quotient of two stable Lévy random variables”, 

Comm. Nonl. Sci. Num. Simul., vol. 36, pp. 204-218, 2016.      

[35] S.O. Edeki , A.A. Opanuga, H.I. Okagbue , G.O. Akinlabi, S.A. 

Adeosun and A.S. Osheku, “A Numerical-computational technique 

for solving transformed Cauchy-Euler equidimensional equations of 

homogenous type”,  Advanced Studies Theor. Physics, vol. 9, no. 2, 

pp. 85-92, 2015. 

[36] A.A. Opanuga, E.A. Owoloko, H.I. Okagbue, “Comparison 

Homotopy Perturbation and Adomian Decomposition Techniques for 

Parabolic Equations,” In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering 2017, 

5-7 July, 2017, London, U.K., pp. 24-27.      

[37]   A. A. Opanuga, E.A. Owoloko, H. I. Okagbue, O.O. Agboola, 

"Finite Difference Method and Laplace Transform for Boundary 

Value Problems," In Lecture Notes in Engineering and Computer 

Science: Proceedings of The World Congress on Engineering 2017, 

5-7 July, 2017, London, U.K., pp. 65-69.  

[38] A.A. Opanuga, E.A. Owoloko, O.O. Agboola, H.I. Okagbue, 

"Application of Homotopy Perturbation and Modified Adomian 

Decomposition Methods for Higher Order Boundary Value 

Problems," In Lecture Notes in Engineering and Computer Science: 

Proceedings of The World Congress on Engineering 2017, 5-7 July, 

2017, London, U.K., pp. 130-134.     

[39] A.A. Opanuga, H.I. Okagbue, O.O. Agboola “Application of Semi-

Analytical Technique for Solving Thirteenth Order Boundary Value 

Problem,” In Lecture Notes in Engineering and Computer Science: 

Proceedings of The World Congress on Engineering and Computer 

Science 2017, 25-27 October, 2017, San Francisco, U.S.A., pp 145-

148.  

[40] T.A. Anake and S.O. Edeki, “On the Error Analysis of a Continuous 

Implicit Hybrid One Step Method”, Euro. J. Pure Appl. Math., vol. 

10, no. 5, pp. 1092-1098, 2017. 

[41] T.A. Anake, D.O. Awoyemi and A.O. Adesanya, “One-step implicit 

hybrid block method for the direct solution of general second order 

ordinary differential equations”, IAENG Int. J. Appl. Math., vol. 42, 

no. 4, pp. 224-228, 2012.                                                                     

                       

      

      

Proceedings of the International MultiConference of Engineers and Computer Scientists 2018 Vol I 
IMECS 2018, March 14-16, 2018, Hong Kong

ISBN: 978-988-14047-8-7 
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

IMECS 2018




